- **Table S1.** For each habitat category are given the source of the data, and the object with the associated
- 2 buffer used for creating the layers.

Habitat category	Source	Object	Buffer
Cereals	Field monitoring	-	-
Root vegetables	Field monitoring	-	-
Pastures	Field monitoring	-	-
Intensive meadows	Field monitoring	-	-
Extensive meadows	Field monitoring	-	-
Wildflower strips	Field monitoring	-	-
Forests	SwissTLM ^{3D}	TLM_BODENBEDECKUNG OBJEKTART = Wald OBJEKTART = Wald offen OBJEKTART = Gebueschwald	- -
Forest edges	SwissTLM ^{3D}	Buffer around "Forests" layer	10 m
Roads	SwissTLM ^{3D}	TLM_STRASSE OBJEKTART = Autobahn OBJEKTART = Autostrasse OBJEKTART = 10m Strasse OBJEKTART = 8m Strasse OBJEKTART = 6m Strasse OBJEKTART = 4m Strasse OBJEKTART = 3m Strasse OBJEKTART = 2m Weg OBJEKTART = 1m Weg	25 m 15 m 10 m 8 m 6 m 4 m 3 m 2 m 1 m
Settlements	SwissTLM ^{3D}	TLM_GEBAEUDE_FOOTPRINT OBJEKTART = all	20 m

Table S2. Correspondence between habitat classification and official agri-environment schemes (AES) categories. The official AES census performed by the canton Vaud in 2017 was compared to 24 corresponding vegetation maps mapped in this study (selected based on their location and year of mapping). The AES category identifiers correspond to the ones defined by the Federal Office for Agriculture (FOAG): 556 = Floral fallow; 557 = Rotational fallow; 559 = Extensive herbaceous strips; 611 = Extensive meadows; 612 = Low intensity meadows; 617 = Extensive pastures; 852 = Hedges and copses. Percentage of correspondence are indicated with the number of matching parcels in brackets.

	AES category identifiers						Tatal		
	556	557	559	611	612	617	852	non-AES	TOLAT
Wildflower strips	70.23% (92)	26.72% (35)	2.29% (3)	0.76% (1)	0	0	0	0	131
Extensive meadows	0.17% (1)	0.50% (3)	0.17% (1)	93.68% (563)	1.83% (11)	1.83% (11)	1.32% (8)	0.50% (3)	601
Intensive meadows	0	0	0	5.44% (102)	5.39% (101)	0.96% (18)	0	88.21% (1653)	1874
Pastures	0	0	0	8.96% (82)	0	18.80% (172)	1.09% (10)	71.15% (651)	915

13

14

15

16

Table S3. Number of barn owl individuals included in habitat selection models. For each analysis, poorly estimated coefficients (because the habitat category was absent or too rare) were removed from the models to avoid misestimating the other habitat selection estimates. In total, 134 barn owls were included

21 in the study.

Category	Home range	Roosting site	Perching site	Hunting ground
Cereals	134	134	134	134
Root vegetables	122	128	127	114
Forests	134	134	134	117
Forest edges	134	134	134	131
Intensive meadows	134	134	134	132
Extensive meadows	131	133	132	115
Pastures	132	132	132	118
Wildflower strips	115	104	104	62
Roads	134	134	134	-
Settlements	134	134	134	-

- 36 **Table S4**. Correspondence between habitat categories and the three dimensions of the non-metric multi-
- 37 dimensional scaling (NMDS) performed on hunting selection estimates.

Habitat	NMDS 1	NMDS 2	NMDS 3
Cereals	-0.033	-0.023	-0.028
Root vegetables	0.146	0.070	0.160
Forests	0.138	-0.150	-0.021
Forest edges	-0.062	-0.011	0.014
Intensive meadows	-0.114	-0.006	-0.012
Extensive meadows	-0.005	0.010	0.004
Pastures	0.092	0.092	-0.081
	HabitatCerealsRoot vegetablesForestsForest edgesIntensive meadowsExtensive meadowsPastures	HabitatNMDS 1Cereals-0.033Root vegetables0.146Forests0.138Forest edges-0.062Intensive meadows-0.114Extensive meadows-0.005Pastures0.092	Habitat NMDS 1 NMDS 2 Cereals -0.033 -0.023 Root vegetables 0.146 0.070 Forests 0.138 -0.150 Forest edges -0.062 -0.011 Intensive meadows -0.114 -0.006 Extensive meadows -0.005 0.010 Pastures 0.092 0.092

Fig. S1. Step length and turning angle distributions for the perching, hunting and commuting behaviours.
The step length is in meters and the turning angle in radians, with a time interval between each location
of 10 seconds.

- 67 **Fig. S3.** Distribution of night activity period duration, defined as the time between two daylight roosting
- 68 events.

Fig. S5. Home range size in relation to barn owl sex.

Fig. S6. Non-metric multi-dimensional scaling (NMDS) model parametrization. NMDS was built in three
dimensions, resulting in a stress value of 0.15 and an acceptable fit.

