

SUPPORT SYSTEMS FOR MODERN CODE REVIEWS (III)

This briefing reports scientific evidence of 28
studies that investigate support systems for
the recommendation of reviewers,
automation of reviews and code reviews on
touch enabled devices.

FINDINGS
Reviewer recommendations.
The recommendation of adequate reviewers in
modern code reviews is a very popular topic in the
related research community. Most papers related to
this theme focus on proposing tools to recommend
reviewers and validate their approaches using
historical data extracted from open source projects.
Most approaches (15 approaches) recommend code
reviewers based on the similarity between files
modified or reviewed by each developer and the files
of a new pull request [RR1, RR3, RR5, RR7, RR8,
RR11-RR17, RR20-RR22]. While in most cases all files
included in a pull request are considered, one
approach only considers external files mentioned in a

pull request [RR20]. In some cases, file path similarity
is the sole predictor used to recommend reviewers
[RR1, RR7, RR14, RR17, RR20, RR21], while in others it
is combined with other predictors such as previous
interactions between submitter and potential
reviewers [RR3, RR11, RR12, RR16], pull request
content similarity [RR3, RR8, RR12], contribution to
similar files [RR5, RR13], developer activeness in a
project [RR3, RR5, RR11, RR15] and file metadata
[RR22].
Another popular predictor used to recommend code
reviewers (7 approaches) is the similarity between the
content of previous and new pull requests [RR3, RR4,
RR6, RR8, RR9, RR10, RR12]. This similarity is measured
using topic modelling. Half of the identified
recommendation approaches rely only on this
predictor [RR4, RR9, RR10], while the others either
combine it with the file path similarity (as shown
above), or previous interactions between submitter
and potential reviewers.
Out of all approaches identified by us, only one does
not include file path similarity or pull request similarity
[RR2]. Instead, the authors combined the metadata of
pull requests (e.g., number of files) with the metadata
associated with potential reviewers (e.g., contributor
type and number of overall contributions). In relation
to how the predictors are used to recommend code
reviewers, most approaches employ traditional
approaches (e.g., cosine similarity), while a few use
machine learning technics, such as Random Forest
[RR2] Naive Bayes [RR2], Context-Aware Collaborative
Filtering [RR22], and Support Vector Machines [RR6,
RR11]. One approaches code reviewer
recommendation as an optimization problem and uses
Genetic Algorithms.
The performance of the identified approaches varies a
lot and is often measured using Accuracy [RR2, RR4,
RR7, RR11, RR13, RR20, RR22], Precision and Recall
[RR1, RR3, RR6, RR9, RR12, RR16, RR20, RR21], or
Mean Reciprocal Rank [RR1, RR8, RR11, RR21, RR22].
Considering that it is not possible to compare the
values reported in all analyzed studies due to different
validation setups, overall the results show that there is
still room to improve the performance of existing
recommenders.
Another aspect that is worth mentioning is that out of
the 22 studies we analyzed, only three [RR5, RR17,
RR22] have evaluated code reviewer recommendation
tools in live environments, while just one has [RR22]

has checked the accuracy based on the opinion of
users and the opinion of the recommend developers.
Instead, the majority of the studies measures
performance (accuracy, precision, recall, and mean
reciprocal rank) by comparing the actual list of
reviewers present in historical data with the list of
developers recommended by their respective
approaches. This type of approach to evaluate
recommendation performance misses the fact that a
developer recommended by tool might be adequate
but was not in the list of actual reviewers, which leads
to underestimation of the performance associated
with most approaches analyzed by us.
Finally, one study focuses on identifying factors that
should be accounted for when recommending
reviewers [RR18]. They have identified that factors
such as the number of files and commits in a pull
request, pull requester profile, previous interactions
between contributors, previous experience with
related code, and ownership of modified code are
factors related to how code reviewers are selected.
What we think: There is little evidence of the feasibility
of code reviewer recommenders in production
environments. This is due to the fact that most studies
have used historical data to validate their respective
approaches. Furthermore, the historical data used in
the existing studies mostly comes from open source
projects, which is an additional limitation of the state
of the art. We believe more research is necessary to
show the feasibility of code reviewer recommenders in
real environments. Research must focus on other
contexts as well in addition to open source projects.
Automating code reviews.
Researchers have proposed to train a classifier on
whether a change request is likely to be accepted or
not [RP6]. Knowing in advance the likelihood of a
rejected change request would reduce the review
effort as those changes would not even reach the
reviewing stage. The researchers use the following
historic information as input for their classifier: the
change request owner, the assigned reviewers, project
context, change summaries, review results, and
revision counts. They found that the change requests
by inexperienced developers that involve many
reviewers are the most likely to be rejected.
Review Bot, an extension to the code review tool
Review Board, uses multiple static code analysis tools
(PMD, Checkstyle) to check for common defect
patterns and coding standard violations to create
automated code reviews [SRA4]. An evaluation with
seven developers found that they agreed to 93% of the
automatically generated comments, likely due to the
lack of consistent adoption of coding standards, which
were the majority of the identified defects.
In a similar way, researchers studied the overlap of
PMD findings with reviewer comments in 92 pull
requests from GitHub [SRA3]. Of 274 comments, 43
overlapped with PMD warnings, indicating that 16% of
the review workload could have been reduced with
automated review feedback.
CFar, developed at Microsoft, has been used in a
production environment resulting in: (a) enhanced
team collaboration as analysis comments were
discussed; (b) improved productivity as the tool freed
developers from providing feedback about shallow
bugs; (c) improved code quality since the flagged issues
were acted upon; and (d) the automatic review
comments were found useful by the 98 participating
developers [SRA2].
What we think: Reducing the review effort by providing
automated review feedback is certainly interesting as it
allows for administering these tools centrally (not
relying on individual developers installing them), keep
rules up-to-date, run the analysis, and act on the

results. However, as with all static code analyzers, it is
important to keep false positives under control,
otherwise the reports will either be ignored or lead to
additional unnecessary review effort.

Code reviews on touch enabled devices.
Researchers have proposed to use multi-touch
devices, such as the Microsoft Surface Table, for
collaborative code reviews, in an attempt to make
the review process more desirable [D17]. The
approach provides visualizations, for example to
illustrate code smells (indicators for bad code) and
metrics.
Other researchers have compared reviews
performed on the desktop and on mobile devices
(the mobile application is a specifically developed
front-end for Gerrit) [D8]. In an experiment, they
analyzed 2,500 comments, produced by computer
science students and found that: (a) the reviewers
on the mobile device found as many defects as the
ones on the desktop; and (b) seemed to pay more
attention to details (speculatively, because only a
few lines of code could be shown at once).
What we think: The main question is, why would
touch-enabled devices provide benefits for the
reviewing process. A table-top computer with
touch interface could replace virtual meetings and
the large screen would allow multiple reviewers to
review the code at the same time. But again, what
is the benefit there? On mobile devices, the
benefits are even less obvious as the small screen
limits the reviewer in gaining an overview on large
change sets.

References

ID Title Link

D8 Experimental Validation Of Source Code Reviews On Mobile Devices Please contact one of the authors of this evidence briefing to receive a copy of this paper.

D17
An Approach For Collaborative Code Reviews Using Multi-Touch
Technology https://www.zora.uzh.ch/62916/1/20120604161811_merlin-id_7014.pdf

SRA2
Cfar: A Tool To Increase Communication, Productivity, And Review
Quality In Collaborative Code Review https://mariachris.github.io/Pubs/CHI-2018.pdf

SRA3 Evaluating How Static Analysis Tools Can Reduce Code Review Effort https://people.umass.edu/bijohnson/docs/vlhcc2017.pdf

SRA4
Reducing Human Effort And Improving Quality In Peer Code Reviews
Using Automatic Static Analysis And Reviewer Recommendation

https://www.researchgate.net/profile/Vipin_Balachandran2/publication/261501912_Reducing_huma

n_effort_and_improving_quality_in_peer_code_reviews_using_automatic_static_analysis_and_revie

wer_recommendation/links/5ce4439d458515712eba57aa/Reducing-human-effort-and-improving-qu

ality-in-peer-code-reviews-using-automatic-static-analysis-and-reviewer-recommendation.pdf

RP6 Will It Pass? Predicting The Outcome Of A Source Code Review http://online.journals.tubitak.gov.tr/openAcceptedDocument.htm?fileID=887608&no=212187

RR1 Profile Based Recommendation Of Code Reviewers https://link.springer.com/content/pdf/10.1007/s10844-017-0484-1.pdf

RR2 Developers Assignment For Analyzing Pull Requests https://dl.acm.org/doi/pdf/10.1145/2695664.2695884

RR3

Who Should Comment On This Pull Request? Analyzing Attributes For
More Accurate Commenter Recommendation In Pull-Based
Development

Link

RR4
An Empirical Study Of Reviewer Recommendation In Pull-Based
Development Model

https://dl.acm.org/doi/pdf/10.1145/3131704.3131718

RR5 Does Reviewer Recommendation Help Developers? https://pure.tudelft.nl/portal/files/46774016/revrec_preprint.pdf

RR6 Reviewer Recommender Of Pull-Requests In Github

https://www.trustie.net/attachments/download/84261/Reviewer%20Recommender%20of%20Pull-
Requests%20in%20GitHub.pdf

RR7
Improving Code Review Effectiveness Through Reviewer
Recommendations

https://dl.acm.org/doi/pdf/10.1145/2593702.2593705

RR8
Who Should Review This Change?: Putting Text And File Location
Analyses Together For More Accurate Recommendations

https://xin-xia.github.io/publication/icsme15.pdf

RR9 Topic-Based Integrator Matching For Pull Request https://arxiv.org/pdf/1710.10421.pdf

RR10
Understanding Review Expertise Of Developers: A Reviewer
Recommendation Approach Based On Latent Dirichlet Allocation

https://www.mdpi.com/2073-8994/10/4/114/pdf

RR11
Coredevrec: Automatic Core Member Recommendation For
Contribution Evaluation

https://link.springer.com/content/pdf/10.1007/s11390-015-1577-3.pdf

RR12
Earec: Leveraging Expertise And Authority For Pull-Request Reviewer
Recommendation In Github

https://dl.acm.org/doi/pdf/10.1145/2897659.2897660

RR13
Automatically Recommending Code Reviewers Based On Their
Expertise: An Empirical Comparison

https://dl.acm.org/doi/pdf/10.1145/2970276.2970306

RR14
Who Should Review My Code? A File Location-Based Code-Reviewer
Recommendation Approach For Modern Code Review

https://library.naist.jp/dspace/bitstream/handle/10061/12737/10061_12737.pdf?sequence=1

RR15
Revrec: A Two-Layer Reviewer Recommendation Algorithm In
Pull-Based Development Model

https://link.springer.com/content/pdf/10.1007/s11771-018-3812-x.pdf

RR16
Search-Based Peer Reviewers Recommendation In Modern Code
Review

https://ouniali.github.io/papers/ICSME2016.pdf

RR17 Exploring How Software Developers Work With Mention Bot In Github https://link.springer.com/content/pdf/10.1007/s42486-019-00013-2.pdf

RR18 What Factors Influence The Reviewer Assignment To Pull Requests? Link

RR19
A Code Reviewer Assignment Model Incorporating The Competence
Differences And Participant Preferences

https://content.sciendo.com/downloadpdf/journals/fcds/41/1/article-p77.xml

RR20
Correct: Code Reviewer Recommendation In Github Based On
Cross-Project And Technology Experience

https://dl.acm.org/doi/pdf/10.1145/2889160.2889244

RR21 Automatically Recommending Peer Reviewers In Modern Code Review Please contact one of the authors of this evidence briefing to receive a copy of this paper.

RR22
Using a Context-Aware Approach to Recommend Code Reviewers:
Findings from an Industrial Case Study

Please contact one of the authors of this evidence briefing to receive a copy of this paper.

https://www.zora.uzh.ch/62916/1/20120604161811_merlin-id_7014.pdf
https://people.umass.edu/bijohnson/docs/vlhcc2017.pdf
https://www.researchgate.net/profile/Vipin_Balachandran2/publication/261501912_Reducing_human_effort_and_improving_quality_in_peer_code_reviews_using_automatic_static_analysis_and_reviewer_recommendation/links/5ce4439d458515712eba57aa/Reducing-human-effort-and-improving-quality-in-peer-code-reviews-using-automatic-static-analysis-and-reviewer-recommendation.pdf
https://www.researchgate.net/profile/Vipin_Balachandran2/publication/261501912_Reducing_human_effort_and_improving_quality_in_peer_code_reviews_using_automatic_static_analysis_and_reviewer_recommendation/links/5ce4439d458515712eba57aa/Reducing-human-effort-and-improving-quality-in-peer-code-reviews-using-automatic-static-analysis-and-reviewer-recommendation.pdf
https://www.researchgate.net/profile/Vipin_Balachandran2/publication/261501912_Reducing_human_effort_and_improving_quality_in_peer_code_reviews_using_automatic_static_analysis_and_reviewer_recommendation/links/5ce4439d458515712eba57aa/Reducing-human-effort-and-improving-quality-in-peer-code-reviews-using-automatic-static-analysis-and-reviewer-recommendation.pdf
https://www.researchgate.net/profile/Vipin_Balachandran2/publication/261501912_Reducing_human_effort_and_improving_quality_in_peer_code_reviews_using_automatic_static_analysis_and_reviewer_recommendation/links/5ce4439d458515712eba57aa/Reducing-human-effort-and-improving-quality-in-peer-code-reviews-using-automatic-static-analysis-and-reviewer-recommendation.pdf
http://online.journals.tubitak.gov.tr/openAcceptedDocument.htm?fileID=887608&no=212187
https://link.springer.com/content/pdf/10.1007/s10844-017-0484-1.pdf
https://dl.acm.org/doi/pdf/10.1145/2695664.2695884
https://pdf.sciencedirectassets.com/271539/1-s2.0-S0950584917X00025/1-s2.0-S095058491630283X/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEEQaCXVzLWVhc3QtMSJHMEUCIGi9zEwLxR3tauxwND9ErZgJx8kmUs7PIyoHKlNIE88oAiEA%2Br9FezTTlPhHvFqs3PY7Rsv2qziJNP7c6UkgnR7Yx%2FAqtAMIfRADGgwwNTkwMDM1NDY4NjUiDCycllS4%2F8eU2UtuwCqRA3xEWZgYHrSYxe%2F2cY35znl7%2BrYiaiqvES50SAUVz361RC1t8KSKOakdpkTNQqh4FMAAoHG8DYVmDfaCYFtw8KateEGvzu8HSDWA38wKQAMoaFkXFKngSaAZKXyyGCndbXEn3uU9z%2B5IeyX41AoNZU6RLGw8Cpf6lHRcfmFzinvbD4Ax76c4eEI5VPjnw4lMVBW1HRbBPOMYYc46rjYZAz%2Fh5x9svNy6r4Q5qrl8Kemr8po%2FF%2Ful51FyZPpnF%2B0V876hZ5qIVTilOrMvMZF1klNwSETEAyFHcWiNvIC4BjVZrE%2B9rJ82HddrJ9z0xzsMLnBap9FZPoF8efCUg%2BAgIZUgtnDFB9T1rm2S%2F2097Phqp2KZSZ7YIKlpXUc3v5n2wgS7v5Kg71nbhwqD3Zq2ZSWgaPKnqAWOEAsC8Ffiw%2BuEu2%2BcXUd3JIedUwkxnlfWM3T4BpAj3BgzVEjk%2Bh%2B0n6%2Frb6RR8AUoPpLXDWRcV9qxqAwj%2BrGHzzOs61KCKtAF0lYox7CcPcYZBF8wFdvtRVXpMJ3gwfUFOusBj00%2BzO8IR7VmVKT4TDWkuGirpAo73ct8sss3qua74WEFhT5KFtdXjPK4JyzI0wsz%2BAUguCHuNJTpjTqmaaa7CY3AB7B4YA3hBnuGYwwAYOwvDLoxngtORKlXYRZ9I6gctLps6wnWWKhKL5zfn5mS3csgfUJg%2FL%2Fn49%2BfEPRf35Iyq1eseCXUHo5ytNoXE0LNlN2uD4B4jRP%2BjfhuMMhtLy7PAtEDvJfWSA2pGzH89EzJSU3K9LQKog6PskJW02Nypyanl4yypIH8yk0e5vSNwik2577pAAWKtzGo59kT7PMcKxi25lho7SF8Yw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200504T205314Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY2XEEG2QF%2F20200504%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a65024d6fc11708b4e7fff6d170a09d950f348ee56a36de97322796385f35dc8&hash=c30d59584e4ae87e57c6b547c4bcb7d7592f6ebd053b4ff808c2e277374121e0&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S095058491630283X&tid=spdf-aa2bab4e-0a4c-4fd6-aca1-9e24b4c92022&sid=67d279149fc95749c41bf761e3763f10bed3gxrqb&type=client
https://dl.acm.org/doi/pdf/10.1145/3131704.3131718
https://pure.tudelft.nl/portal/files/46774016/revrec_preprint.pdf
https://dl.acm.org/doi/pdf/10.1145/2593702.2593705
https://xin-xia.github.io/publication/icsme15.pdf
https://arxiv.org/pdf/1710.10421.pdf
https://link.springer.com/content/pdf/10.1007/s11390-015-1577-3.pdf
https://dl.acm.org/doi/pdf/10.1145/2897659.2897660
https://dl.acm.org/doi/pdf/10.1145/2970276.2970306
https://library.naist.jp/dspace/bitstream/handle/10061/12737/10061_12737.pdf?sequence=1
https://link.springer.com/content/pdf/10.1007/s11771-018-3812-x.pdf
https://ouniali.github.io/papers/ICSME2016.pdf
https://link.springer.com/content/pdf/10.1007/s42486-019-00013-2.pdf
https://pdf.sciencedirectassets.com/271539/1-s2.0-S0950584918X00044/1-s2.0-S0950584917303804/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEEUaCXVzLWVhc3QtMSJHMEUCIQChID%2F1XZbknKrav%2BnoQDagUdg4FA2vFlLCFvgGBm2IVQIgG13o9H11BQelWgpzN%2BGEPmnxFb0wGrgWmRkEoN7sT1kqtAMIfRADGgwwNTkwMDM1NDY4NjUiDLRLNrslv4wEYwyVDSqRAywRA67JtqwOg%2BZmtwIvzrHZFxJC7pXSPGsdAq5PZWL2hb36Ihz9w3UI%2FwNc4mSRfjRE%2FeY5mM9Zk66E7DjMSdoOHJmhXbYBpEjeyVsqWNWGjkjzgjFjhypod1mwlCRs%2FXp22W4%2FZ2cQfWKab3YygOW665y%2BW20Bf%2BT0d09SEdvsmWcSoy7rF6ojnD2FLlhFy9Bjrxnp6xvDSWVjO3k3GxooT5UaWuOXF2PEa7wWqMc%2Bc4M%2Fz65Y9l9TcPi5HxDrT%2FSphNX0W1fwEJlNt0dOB29JX3zNtZ1nh3acyli64%2BcD1dvs7R%2B4L2XXpwqhYkKdya3cyn%2BS00oc%2BqvPFfZVN6uUaLhxHnKwzPThB7uTq3mJxeCqlKBDQouzIsEiQ4be7HWwdEZG0LIZIvYxA6O5AYpj%2FI0uZ4X6fAOKHc8RhwGV14UKtVF9CyF37HvOIFVEPW098RXXvOkS7aMh93r9ZqOmeupUv5uXlYHEXpKXOAesUmLY6dmiZV%2FnGc6TyxjoJD806UuglFxsWU6xF5GCU8XNMMDqwfUFOusBWz6C4kkRiWEodlZdELc2hLUJfVQGU0XN38F0F8O3QOw1OAs5mC9XdcUNAi0p6NVjy8um6lO23TsPTtLYd9L3bf9A%2Bv8Xh5%2B42clx%2BlYEiC6EPL59kdIY5oXfKh6V5OUv3yRVKHO6%2B%2BnJHnOZpTTEvBXcziIh%2BjJch3B%2FmP2P%2BEIwLmdX3WZohT9Gw7lA07KRVdcrdj65KZHUcY7wTHpq%2Faw0lyPA2DEMIXt6rEO1OXJcwBYWM9YMotOdO3mQnUD40qkaFVwtk1SHrPNj12VhUmPBGQqISm7b3jV2sJVoxLh6WjTWM%2B8OyATXBw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200504T211118Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYU2UY6YJ4%2F20200504%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=86363e94d6c4412f47ab1b98f0af3a8ec47730adcf99e5986af068287371543a&hash=40995dcc940cda0e6a9a4428183c325f163d093851ff8304ab51f85fa0e3f66c&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0950584917303804&tid=spdf-7c8cf05e-03ab-4e93-8aef-4edb3f7bd489&sid=67d279149fc95749c41bf761e3763f10bed3gxrqb&type=client
https://dl.acm.org/doi/pdf/10.1145/2889160.2889244

