
 
 

SUPPORT SYSTEMS FOR MODERN CODE REVIEWS (III) 
 

 
This briefing reports scientific evidence of 28       
studies that investigate support systems for      
the recommendation of reviewers,    
automation of reviews and code reviews on       
touch enabled devices. 

 

FINDINGS 
Reviewer recommendations. 
The recommendation of adequate reviewers in      
modern code reviews is a very popular topic in the          
related research community. Most papers related to       
this theme focus on proposing tools to recommend        
reviewers and validate their approaches using      
historical data extracted from open source projects. 
Most approaches (15 approaches) recommend code      
reviewers based on the similarity between files       
modified or reviewed by each developer and the files         
of a new pull request [RR1, RR3, RR5, RR7, RR8,          
RR11-RR17, RR20-RR22]. While in most cases all files        
included in a pull request are considered, one        
approach only considers external files mentioned in a        

pull request [RR20]. In some cases, file path similarity         
is the sole predictor used to recommend reviewers        
[RR1, RR7, RR14, RR17, RR20, RR21], while in others it          
is combined with other predictors such as previous        
interactions between submitter and potential     
reviewers [RR3, RR11, RR12, RR16], pull request       
content similarity [RR3, RR8, RR12], contribution to       
similar files [RR5, RR13], developer activeness in a        
project [RR3, RR5, RR11, RR15] and file metadata        
[RR22]. 
Another popular predictor used to recommend code       
reviewers (7 approaches) is the similarity between the        
content of previous and new pull requests [RR3, RR4,         
RR6, RR8, RR9, RR10, RR12]. This similarity is measured         
using topic modelling. Half of the identified       
recommendation approaches rely only on this      
predictor [RR4, RR9, RR10], while the others either        
combine it with the file path similarity (as shown         
above), or previous interactions between submitter      
and potential reviewers. 
Out of all approaches identified by us, only one does          
not include file path similarity or pull request similarity         
[RR2]. Instead, the authors combined the metadata of        
pull requests (e.g., number of files) with the metadata         
associated with potential reviewers (e.g., contributor      
type and number of overall contributions). In relation        
to how the predictors are used to recommend code         
reviewers, most approaches employ traditional     
approaches (e.g., cosine similarity), while a few use        
machine learning technics, such as Random Forest       
[RR2] Naive Bayes [RR2], Context-Aware Collaborative      
Filtering [RR22], and Support Vector Machines [RR6,       
RR11]. One approaches code reviewer     
recommendation as an optimization problem and uses       
Genetic Algorithms. 
The performance of the identified approaches varies a        
lot and is often measured using Accuracy [RR2, RR4,         
RR7, RR11, RR13, RR20, RR22], Precision and Recall        
[RR1, RR3, RR6, RR9, RR12, RR16, RR20, RR21], or         
Mean Reciprocal Rank [RR1, RR8, RR11, RR21, RR22].        
Considering that it is not possible to compare the         
values reported in all analyzed studies due to different         
validation setups, overall the results show that there is         
still room to improve the performance of existing        
recommenders. 
Another aspect that is worth mentioning is that out of          
the 22 studies we analyzed, only three [RR5, RR17,         
RR22] have evaluated code reviewer recommendation      
tools in live environments, while just one has [RR22]         

has checked the accuracy based on the opinion of         
users and the opinion of the recommend developers.        
Instead, the majority of the studies measures       
performance (accuracy, precision, recall, and mean      
reciprocal rank) by comparing the actual list of        
reviewers present in historical data with the list of         
developers recommended by their respective     
approaches. This type of approach to evaluate       
recommendation performance misses the fact that a       
developer recommended by tool might be adequate       
but was not in the list of actual reviewers, which leads           
to underestimation of the performance associated      
with most approaches analyzed by us. 
Finally, one study focuses on identifying factors that        
should be accounted for when recommending      
reviewers [RR18]. They have identified that factors       
such as the number of files and commits in a pull           
request, pull requester profile, previous interactions      
between contributors, previous experience with     
related code, and ownership of modified code are        
factors related to how code reviewers are selected. 
What we think: There is little evidence of the feasibility          
of code reviewer recommenders in production      
environments. This is due to the fact that most studies          
have used historical data to validate their respective        
approaches. Furthermore, the historical data used in       
the existing studies mostly comes from open source        
projects, which is an additional limitation of the state         
of the art. We believe more research is necessary to          
show the feasibility of code reviewer recommenders in        
real environments. Research must focus on other       
contexts as well in addition to open source projects. 
Automating code reviews. 
Researchers have proposed to train a classifier on        
whether a change request is likely to be accepted or          
not [RP6]. Knowing in advance the likelihood of a         
rejected change request would reduce the review       
effort as those changes would not even reach the         
reviewing stage. The researchers use the following       
historic information as input for their classifier: the        
change request owner, the assigned reviewers, project       
context, change summaries, review results, and      
revision counts. They found that the change requests        
by inexperienced developers that involve many      
reviewers are the most likely to be rejected.  
Review Bot, an extension to the code review tool         
Review Board, uses multiple static code analysis tools        
(PMD, Checkstyle) to check for common defect       
patterns and coding standard violations to create       
automated code reviews [SRA4]. An evaluation with       
seven developers found that they agreed to 93% of the          
automatically generated comments, likely due to the       
lack of consistent adoption of coding standards, which        
were the majority of the identified defects.  
In a similar way, researchers studied the overlap of         
PMD findings with reviewer comments in 92 pull        
requests from GitHub [SRA3]. Of 274 comments, 43        
overlapped with PMD warnings, indicating that 16% of        
the review workload could have been reduced with        
automated review feedback.  
CFar, developed at Microsoft, has been used in a         
production environment resulting in: (a) enhanced      
team collaboration as analysis comments were      
discussed; (b) improved productivity as the tool freed        
developers from providing feedback about shallow      
bugs; (c) improved code quality since the flagged issues         
were acted upon; and (d) the automatic review        
comments were found useful by the 98 participating        
developers [SRA2]. 
What we think: Reducing the review effort by providing         
automated review feedback is certainly interesting as it        
allows for administering these tools centrally (not       
relying on individual developers installing them), keep       
rules up-to-date, run the analysis, and act on the         

results. However, as with all static code analyzers, it is          
important to keep false positives under control,       
otherwise the reports will either be ignored or lead to          
additional unnecessary review effort. 
 
Code reviews on touch enabled devices. 
Researchers have proposed to use multi-touch      
devices, such as the Microsoft Surface Table, for        
collaborative code reviews, in an attempt to make        
the review process more desirable [D17]. The       
approach provides visualizations, for example to      
illustrate code smells (indicators for bad code) and        
metrics.  
Other researchers have compared reviews     
performed on the desktop and on mobile devices        
(the mobile application is a specifically developed       
front-end for Gerrit) [D8]. In an experiment, they        
analyzed 2,500 comments, produced by computer      
science students and found that: (a) the reviewers        
on the mobile device found as many defects as the          
ones on the desktop; and (b) seemed to pay more          
attention to details (speculatively, because only a       
few lines of code could be shown at once). 
What we think: The main question is, why would         
touch-enabled devices provide benefits for the      
reviewing process. A table-top computer with      
touch interface could replace virtual meetings and       
the large screen would allow multiple reviewers to        
review the code at the same time. But again, what          
is the benefit there? On mobile devices, the        
benefits are even less obvious as the small screen         
limits the reviewer in gaining an overview on large         
change sets.  
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