

MODERN CODE REVIEWS PROCESS PROPERTIES

This briefing reports scientific evidence of
13 studies that observe the code review
process and its properties.

FINDINGS
When code reviews should be performed?
Research shows that code reviews in large open
source software projects are done frequently and
in short intervals [PR2, PR5]. The results show that
large and formal organizations might benefit from
more frequent reviews and having invested
reviewers (produced by overlap in developers’
work) [PR5].
What we think: Evidence from large open-source
projects shows that code reviews are done early
and in short intervals. Code reviews should begin
as soon as the change is submitted in order to
capture the defects early.
What are the benefits of code reviews besides
finding defects?
Analysis of large open source software projects
found that the review acts as a group
problem-solving activity where reviews support
team discussions of defect solutions [PR2, PR5]. An
analysis of over 100, 000 peer reviews found that
reviews also enable developers and passive
listeners to learn from the discussion [PR2, PR5].
What we think: There is evidence that code reviews
are not only used to identify defects. It can be used
as a collaborative tool where the overall
knowledge of the code can be improved and joint
discussions on solving problems can be done. This
makes code reviews a good approach to support
the onboarding of newcomers.
How review requests are distributed.
An analysis of five Apache projects found that
broadcast reviews (e.g., mailing list) were twice
faster. However, unicast reviews (e.g., Jira) were
more effective in capturing defects [PR3]. In the
same investigation, reviewers responded that
unicast review allows them to comment on
specific code, visualize changes and have less
traffic of patches circulating among reviewers.
However, new developers learn about the code
structure faster with high traffic of patches
circulated among those who subscribe to
broadcast reviews.
What we think: Broadcast reviews are good to
increase the overall knowledge sharing particularly
for newcomers, while unicast facilitates the work
of the code reviewers.
Efficiency and effectiveness of code reviews
compared to team walkthroughs.
The code review process was compared with the
walkthrough process in an industrial setting and
was found to be very useful and efficient in
comparison to walkthroughs [PR6].
What we think: Code reviews are lightweight and
more effective compared to walkthroughs.
Mentioning peers in code review comments.
A study explored the current use of @mentions
[PR7] and found that it is mostly used by code
submitters. It reduces delay in developers’
collaboration. Furthermore, it is more likely to be
used in complex pull-requests that have more
commits, comments, participants, and a longer
time to handle.
What we think: There is evidence that @-mention
can improve participation and response time. For
critical issues, @-mention can help to get more
attention to the review request.

Test code reviews.
Observations on code reviews found that the
discussions on test code are related to testing
practices, coverage, and assertions. However, test
code is not discussed as much as production code
[PR8]. When reviewing test code, developers face
challenges such as lack of testing context, poor
navigation support (between test and production
code), unrealistic time constraints imposed by
management, and poor knowledge of good
reviewing and testing practices by novice
developers [PR8].
What we think: Reviewing the test code to ensure
good test coverage among other things will
improve code maintainability and overall quality.
Better tool support is needed to enable efficient
and effective test code reviews, e.g., to navigate
between test and production code.
Decision-making (integration, abandonment,
resubmission) process in the code review process.
An analysis of the QT project showed that
integrators only use the patch votes as a reference
to make the decision to integrate or request a
patch update [PR11]. However, patches that
receive more negative votes are likely to be
rejected.
What we think: Patch voting can be used when
multiple reviewers review the same patch. It
provides a quick overview of the review and also
helps to look at decisions that were different from
the majority vote. It can help in reducing bias.
Comparison of pre-commit and post-commit.
Pre-commit is commonly practiced in the form of
pull requests and post-commits supports early and
continuous integration whithatch may reduce
conflicts. Comparison of pre-commit and
post-commit reviews in 19 companies, ranging
from startups to multinational companies found
that there are no differences in most cases [PR13].
In some cases, post-commits were better
regarding cycle time and quality. For pre-commit
review, the review efficiency was better.
What we think: Evidence shows that there are no
differences between pre and post-commit reviews.
However, the performance of the reviews highly
depends on the context such as the developer
skills, number of developers, and conflict
probability.
Strategies for merging pull requests.
A survey of developers and analysis of data from a
commercial project found that pull request size,
the number of people involved in the discussion of
a pull request, author experience, and their
affiliation are significant predictors of review time
and merge decision [PR15]. It was found that
developers determine the quality of a pull request
by the quality of its description, its complexity,
reversibility and the quality of the review process
by the feedback quality, test quality, and the
discussion among developers [PR15].
What we think: Evidence shows the factors that
can be used to predict review time and merge
decisions. Such predictions can be used to allocate
resources and time for the review process. In
addition, knowing the pull request qualities that
reviewers look for will help in writing good
patches.
Motivations, challenges and best practices of the
code review process.
Analysis of the code review process at Microsoft
found that improving code, finding defects and
sharing knowledge were the top three out of nine
identified benefits associated with code reviews
[PR16].

Similarly, Google found that knowledge sharing,
history tracking, gatekeeping, and accident
prevention as benefits of code reviews [PR18].
In Microsoft challenges such as receiving timely
feedback, review size and managing time
constraints were identified as the top three
challenges out of 13 identified challenges [PR16
and PR17]. Whereas at Google, challenges such as
geographical and organizational distance, misuse
of tone and power, unclear review
objectives/subject and context were identified as
breakdowns of code review process [PR18].
The best practices for authors include writing small
patches, describing and motivating changes,
considering selecting reviewers and being
receptive towards reviewers’ feedback [PR16]. The
reviewers should provide timely and constructive
feedback through effective communication
channels [PR16].
What we think: Evidence shows that code reviews
have several benefits other than finding defects
alone. Authors should consider sending good
patches that are reviewable and reviewers should
consider sending timely and constructive feedback.

References

ID Title Link

PR1 The Choice Of Code Review Process: A Survey On The State Of The Practice http://tobias-baum.de/rp/stateofpractice.pdf

PR2 Convergent Contemporary Software Peer Review Practices http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.1046&rep=rep1&type=pdf

PR3 Broadcast Vs. Unicast Review Technology: Does It Matter? http://swat.polymtl.ca/~foutsekh/docs/ICST-Tita.pdf

PR5
Contemporary Peer Review In Action: Lessons From Open Source
Development https://users.encs.concordia.ca/~pcr/paper/Rigby2012IEEE.pdf

PR6 Applying Continuous Code Reviews In Airport Operations Software Please contact one of the authors of this evidence briefing to receive a copy of this paper.

PR7 A Exploratory Study Of @-Mention In Github'S Pull-Requests

https://www.researchgate.net/profile/Yang_Zhang178/publication/283325670_A_Explorator

y_Study_of_-Mention_in_GitHub%27s_Pull-Requests/links/5633816a08aeb786b7012f77/A-Ex

ploratory-Study-of-Mention-in-GitHubs-Pull-Requests.pdf

PR8 When testing meets code review: Why and how developers review tests https://dl.acm.org/doi/pdf/10.1145/3180155.3180192

PR11 Pilot Study Of Collective Decision-Making In The Code Review Process

http://library.naist.jp/dspace/bitstream/handle/10061/12706/111_CASCON2015.pdf?sequenc

e=1&isAllowed=y

PR13
Comparing Pre-Commit Reviews And Post-Commit Reviews Using Process
Simulation

https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1865?casa_token=TF0spbCXULYAAAAA

%3A_WbHX1N6evg5u3pwdEQWViKLft9fWi6JuntjvRO_QVgFWBu3n5WljvQZHLpSmBQrN3jkOE

W-2u9yJoc

PR15 Studying Pull Request Merges: A Case Study Of Shopify'S Active Merchant https://dl.acm.org/doi/pdf/10.1145/3183519.3183542

PR16 Code Reviewing In The Trenches: Challenges And Best Practices https://pdfs.semanticscholar.org/2ba0/85afac89d6d5491bff9e93d6658a945cca10.pdf

PR17 Expectations, Outcomes, And Challenges Of Modern Code Review

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICSE202013-coder

eview.pdf

PR18 Modern Code Review: A Case Study At Google https://dl.acm.org/doi/pdf/10.1145/3183519.3183525

http://tobias-baum.de/rp/stateofpractice.pdf
http://swat.polymtl.ca/~foutsekh/docs/ICST-Tita.pdf
https://users.encs.concordia.ca/~pcr/paper/Rigby2012IEEE.pdf
https://www.researchgate.net/profile/Yang_Zhang178/publication/283325670_A_Exploratory_Study_of_-Mention_in_GitHub%27s_Pull-Requests/links/5633816a08aeb786b7012f77/A-Exploratory-Study-of-Mention-in-GitHubs-Pull-Requests.pdf
https://www.researchgate.net/profile/Yang_Zhang178/publication/283325670_A_Exploratory_Study_of_-Mention_in_GitHub%27s_Pull-Requests/links/5633816a08aeb786b7012f77/A-Exploratory-Study-of-Mention-in-GitHubs-Pull-Requests.pdf
https://www.researchgate.net/profile/Yang_Zhang178/publication/283325670_A_Exploratory_Study_of_-Mention_in_GitHub%27s_Pull-Requests/links/5633816a08aeb786b7012f77/A-Exploratory-Study-of-Mention-in-GitHubs-Pull-Requests.pdf
https://dl.acm.org/doi/pdf/10.1145/3180155.3180192
http://library.naist.jp/dspace/bitstream/handle/10061/12706/111_CASCON2015.pdf?sequence=1&isAllowed=y
http://library.naist.jp/dspace/bitstream/handle/10061/12706/111_CASCON2015.pdf?sequence=1&isAllowed=y
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1865?casa_token=TF0spbCXULYAAAAA%3A_WbHX1N6evg5u3pwdEQWViKLft9fWi6JuntjvRO_QVgFWBu3n5WljvQZHLpSmBQrN3jkOEW-2u9yJoc
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1865?casa_token=TF0spbCXULYAAAAA%3A_WbHX1N6evg5u3pwdEQWViKLft9fWi6JuntjvRO_QVgFWBu3n5WljvQZHLpSmBQrN3jkOEW-2u9yJoc
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1865?casa_token=TF0spbCXULYAAAAA%3A_WbHX1N6evg5u3pwdEQWViKLft9fWi6JuntjvRO_QVgFWBu3n5WljvQZHLpSmBQrN3jkOEW-2u9yJoc
https://dl.acm.org/doi/pdf/10.1145/3183519.3183542
https://pdfs.semanticscholar.org/2ba0/85afac89d6d5491bff9e93d6658a945cca10.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICSE202013-codereview.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICSE202013-codereview.pdf
https://dl.acm.org/doi/pdf/10.1145/3183519.3183525

