

MODERN CODE REVIEWS AND ORGANIZATIONAL FACTORS

This briefing reports scientific evidence of
12 studies that investigate organizational
factors and their relationship to modern
code reviews.

FINDINGS
The difference between core and irregular
contributors and reviewers: process aspects.
In 2011, Mozilla migrated to a rapid release cycle,
with releases every six weeks instead of, on average,
every 10 months. A study has investigated how this
change impacted the code reviews process, in
particular regarding the review of contributions from
core and casual developers [OG1]. In the rapid
release cycle, patches were generally reviewed more
quickly. Contributions from core developers were
rejected faster, while contributions from casual
developers were accepted faster than before.
Finally, patches by casual contributors were more
likely abandoned compared to core contributors. It is
therefore important to create a positive experience
for first-time contributors to encourage further
participation in the project.
Similar observations were made in a study on eight
open source projects [OG7]: core developers receive
quicker feedback on review requests, and complete
the review process faster.
Another study investigated social networks of code
contributors and reviews on five open source
projects (AngularJS, Docker, Rails, Symfony, and
JQuery) [OG4]. Through social network analysis, they
identified core and peripheral contributors. They
also observed that core contributors receive the
fastest review feedback.
Similar observations were made in another study on
open source systems (Musicbrainz server on
Asterisk) [OG13], where top code contributors were
also the top reviewers.
What we think: There is some clear evidence that
core developers, at least in open source projects, are
treated differently than casual contributors. It makes
sense that regular contributors build up a good
reputation over time, but also know the particular
contribution etiquette well and are therefore
fast-tracked in reviews. However, this could
potentially lead to bias and lower quality reviews and
code. It would be interesting to study the effect of
reputation on the fault detection effectiveness in
code reviews.
The difference between core and irregular
contributors and reviewers: acceptance of
contributions.
In a study on eight open source projects (Chromium
OS, ITK/VTK, LibreOffice, OmapZoom, Openstack,
OVirt, Qt, and Type3), it was found that core
contributors are more likely to have their changes
accepted to the code base than irregular
contributors [OG7].
A potential explanation for this observation was
found in another study that investigated 22 open
source projects and 1.4 million lines of submitted
code [OG10]. The study showed that rejected code is
significantly different (due to different code styles)
to the project code than accepted code.
Furthermore, code that has a different code style is
subject to a more thorough review. More
experienced contributors submit code that is more
conformant to the project’s code style.
What we think: There is some evidence that indicates
that the experience of contributors affects the
acceptance of code in reviews. One of the identified
reasons in conformance to coding styles. Ensuring

the conformity of code before it is reviewed could
therefore reduce the reviewing effort. Furthermore,
it would be interesting to study if there exist other
objective code quality aspects that could be used to
determine the likelihood of contributions acceptance.
The difference between core and irregular
contributors and reviewers: agreement between
reviewers.
A study on the Qt and Openstack open source
projects investigated the consequences of
disagreement between reviewers who review the
same patch [OG9]. The study found that more
experienced reviewers are more likely to have a
higher level of agreement than less experienced
reviewers. Unsurprisingly, reviews in which
reviewers with generally low agreement participate
take longer time and have more discussions.
What we think: The authors of OG9 suggest to
choose reviewers that usually have a high
agreement, in case a review must be done in a brief
time. We think this is dangerous advice, since the
degree of agreement is not necessarily an indicator
of the quality of reviews (even though experience
seems to correlate with agreement). Since
experience is measured by past review participation,
after some time, reviewers might become too
trustworthy of each other and become less critical.
High agreement among reviewers could also be a
warning sign for reviewer bias.
The difference between core and irregular
contributors and reviewers: career paths.
A study in the Openstack project investigating the
career paths of contributors (from non-reviewer, i.e.
developer, to reviewer, to core reviewer) found that
(a) there is little movement between the population
of developers and reviewers, (b) the turnover of core
reviewers is high and occurs rapidly, (c) companies
are interested in having core reviewers in their
full-time staff, and (d) being a core reviewer seems
to be helpful in achieving a full-time employment in
a project [OG5].
What we think: We know very little about the
progression of reviewers in open source projects or
companies. As the career path has been reported in
other software engineering studies as a strong
motivator, defining a reviewer progression path
could be interesting for companies to actively steer
and develop.
The effect of the number of involved reviewers on
code reviews.
A study on the Mozilla project found that developer
participation is a good indicator of review quality,
i.e., the more the developers are involved in the
discussion of bugs and their resolution, the less likely
the reviewers are to miss potential problems in the
code [OG12]. The same holds not true for reviewer
comments: surprisingly, the studied data indicates
that the more reviewers participate with comments
on reviews, the more likely they miss bugs in the
code they review. A possible explanation is that
controversial or complex code changes simply lead
also to more discussions.
A study on the Chromium browser also made a
counter-intuitive observation: files vulnerable to
security issues tended to be reviewed by more
people [OG8]. One explanation that was given to this
observation is that reviewers get confused about
what their role in the review is if there are many
reviewers involved (diffusion of responsibility).
Similar results were found in a study of a commercial
application: the more reviewers are active, the less
efficient the review and the lower the comment
density (comments per lines of code) [PR12]. In a
study including both open source (Apache,
Subversion, Linux, FreeBSD, KDE, Gnome, Android,

Chrome OS) and commercial (at Lucent, AMD and
Microsoft) projects, it was observed that it is general
practice to involve two reviewers in a review [PR2].
What we think: There is some evidence indicating
that more reviewers not necessarily means higher
review quality. Practice observations in large open
source and commercial projects indicate that two is a
good number. However, the type of change
(complexity, size, system impact) should be taken
into consideration too. If many reviewers are
required, they should have clear responsibilities in
the review process.
Information needs of reviewers in code reviews.
A study on the Openstack, Android and Qt projects
identified the following information need categories:
alternative solutions and improvements, correct
understanding, rationale, code context, necessity,
specialized expertise, splitability of a change [OG15].
The authors of the study find that some of the
information needs can be satisfied by current tools
and research results, but some aspects seem not to
be solved yet and need further investigation.
What we think: This kind of systematic research is
important as it points to hindrances that prevent
effective code reviews in practice. Practitioners can
use the list to select tools that satisfy these
information needs and researchers can investigate
means to automate the analysis and processing of
the needed information.

References

ID Title Link

PR2 Convergent Contemporary Software Peer Review Practices http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.1046&rep=rep1&type=pdf

PR12 Investigating The Effectiveness Of Peer Code Review In Distributed

Software Development

Please contact one of the authors of this evidence briefing to receive a copy of this paper.

OG1 The Secret Life Of Patches: A Firefox Case Study http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.9506&rep=rep1&type=pdf

OG4 Who Can Help To Review This Piece Of Code? https://hal.inria.fr/hal-01614583/document

OG5 Reviewing Career Paths Of The Openstack Developers http://www.win.tue.nl/~aserebre/ICSME2017Perry.pdf

OG7

Impact Of Developer Reputation On Code Review Outcomes In Oss

Projects: An Empirical Investigation http://www.amiangshu.com/papers/Bosu-ESEM-2014.pdf

OG8

An Empirical Investigation Of Socio-Technical Code Review Metrics And
Security Vulnerabilities

Please contact one of the authors of this evidence briefing to receive a copy of this paper.

OG9

The Impact Of A Low Level Of Agreement Among Reviewers In A Code

Review Process https://hal.inria.fr/hal-01369055/file/426535_1_En_8_Chapter.pdf

OG10 Will They Like This? Evaluating Code Contributions With Language Models https://www.sback.it/publications/msr2015.pdf

OG12 Investigating Code Review Quality: Do People And Participation Matter? http://svn-plg.uwaterloo.ca/~migod/papers/2015/icsme15-OleksiiOlgaLatifa.pdf

OG13 Peer Code Review In Open Source Communities Using Review Board http://www.amiangshu.com/papers/plat03-bosu.pdf

OG15 Information Needs In Contemporary Code Review https://www.lucapascarella.com/articles/2018/Pascarella_CSCW_2018.pdf

https://hal.inria.fr/hal-01614583/document
https://hal.inria.fr/hal-01369055/file/426535_1_En_8_Chapter.pdf

