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CMM uncertainty evaluation

Uncertainty evaluation a key component of the quality infrastructure:
traceability, reproducibility, inter-operability

CMM used extensively in industry

CMM uncertainty evaluation not straightforward

Large number of influence factors: geometrical, environmental

EUCoM project: practical observation-based methods, model-based
methods
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Motivation

Guide to the expression of uncertainty in measurement (GUM,
coordinate metrology)

Model based approach, measurement equation relating the measurand
to influence factors

Principled, probabilistic approach

Assign distributions (uncertainties) to influence factors

Calculate sensitivity of measurand with respect to influence factors

Use the law of propagation of uncertainties to associate an
uncertainty with the measurand

Measurement systems analysis, gauge R&R observational approach:
change the influence factors, observe the change in the measurement
results
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Implementing a model-based approach

We need a model that is:

plausible, reflecting actual behaviours of CMMs
valid for uncertainty evaluation

We are not using it for error correction, only assessing uncertainty

We would like to specify the model straightforwardly

MPE statement A + d/B

We would like to perform calculations using the model
straightforwardly
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Basic model for measurement along a single measuring line

Measurement along a line (call it x)

x = x∗ + e + ε

where

x is the recorded position
x∗ is the ‘true’ position along the line,
e represents a systematic effect, that persists over a measurement
cycle, and
ε a random effect (repeatability effect)

We only know x , everything else is uncertain.

Use some information/model about the likely behaviour the
measurement system to determine an estimate x̂ of x∗ and its
associated uncertainty, e.g., x̂ = x , u(x)
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Model incorporating a scale effect

Importance of temperature in affecting scale

Simple model incorporating a scale effect, measurement of two points
along the line

x1 = x∗1 (1 + e) + ε1, x2 = x∗2 (1 + e) + ε2

Distance between x∗i and x∗2 (x1, x2 known, everything else uncertain):

x∗2 − x∗1 = x2 − x1 + (x∗2 − x∗1 )e + ε2 − ε1,
≈ x2 − x1 + (x2 − x1)e + ε2 − ε1
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Statistical model for influence factors

Model for d12 = d(x∗1 , x
∗
2 ) = x∗2 − x∗1 :

x∗2 − x∗1 ≈ x2 − x1 + (x2 − x1)e + ε2 − ε1

Statistical model: : e ∈ N (0, σ2M), ε1, ε2 ∈ N (0, σ2S)

Estimates of influence factors: ê = 0, ε̂1 = ε̂2 = 0

Standard uncertainties associated with influence factors:

u(e) = σM , u(ε1) = u(ε2) = σS

Rules: estimates add linearly, uncertainties add in quadrature:

c = a + Kb, ĉ = â + Kb̂, u2(c) = u2(a) + K 2u2(b)
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Estimate of the distance

Model for d12 = d(x∗1 , x
∗
2 ) = x∗2 − x∗1 :

d12 = x2 − x1 + (x2 − x1)e + ε2 − ε1

Estimates of influence factors: ê = 0, ε̂1 = ε̂2 = 0

Estimate d̂12 of d12:

d̂12 = x2 − x1 + (x2 − x1)ê + ε̂2 + ε̂1 = x2 − x1
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Uncertainty associated with the distance estimate

Model for d12 = d(x∗1 , x
∗
2 ) = x∗2 − x∗1 :

d12 = x2 − x1 + (x2 − x1)e + ε2 − ε1

Standard uncertainties associated with influence factors:

u(e) = σM , u(ε1) = u(ε2) = σS

Standard uncertainty u(d12) associated with d̂12 (sum in quadrature)

u2(d12) = (x2 − x1)2u2(e) + u2(ε1) + u2(ε2)

= (x2 − x1)2σ2M + 2σ2S ,

or

u(d12) =
√

2σ2S + d2
12σ

2
M =

√
A2 + d2/B2

Absolute component, length dependent component
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Models derived from an MPE-type statement

Length measuring capability:

|d̂12 − d12| ≤ A + d12/B

Basic statistical model: x1 = x∗1 + e1 + ε1, x2 = x∗2 + e2 + ε2, with

e1, e2 ∈ N (0, σ2M), ε1, ε2 ∈ N (0, σ2S)

MPE implies |e2 − e1 + ε2 − ε1| ≤ A + d12/B

MPE implies 2σ2S ≤ A2

For σS � σM ,

e1 − (A + d12/B) ≤ e2 ≤ e1 + (A + d12/B)

Spatial correlation: for x2 near x1, e2 is similar to e1
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MPE-type statements and error models

Length measuring capability:

|d̂ − d | ≤ A + d/B

Error model:

x = x∗ + e(x∗) + ε ≈ x∗ + e(x) + ε, ε ∈ N (0, σ2S)

MPE implies |e(x2)− e(x1) + ε2 − ε1| ≤ A + |x2 − x1|/B
For σS � σM , x1 6= x2,∣∣∣∣e(x2)− e(x1)

x2 − x1

∣∣∣∣ ≤ A

|x2 − x1|
+

1

B

The slope of the error function e(x) cannot be too large.
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Candidate error functions: Fourier series, polynomials
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Candidate error functions, slope constraints

Higher frequency components dampened down
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Spatial correlation

Basic model

x = x∗ + e + ε, e ∈ N (0, σ2M), ε ∈ N (0, σ2S)

Spatial correlation: if x1 is ‘close’ to x2, then e1 should be ‘close’ to e2

Implement in terms of a correlation kernel

cov(e1, e2) = σ2Mk(|x2 − x1|/λ)

for some function k(r), e.g., k(r) = e−r
2
.

The length scale parameter λ specifies ‘closeness’

For this case

u2(e2 − e1) = 2σ2M

(
1− e−(d12/λ)

2
)
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Spatially correlated error functions, λ = 2000 mm
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Spatially correlated error functions, λ = 500 mm
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Spatially correlated error functions, λ = 200 mm
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Model involving three length scales, explicit scale effect

Random effects: very short length scale (λS ≈ 0)

Scale effect: very long length scale (λL > L)

Spatially correlated systematic effect with medium length scale:
0 < λM < L

x = x∗(1 + eL) + eM + ε,

where

eL ∈ N (0, σ2L), eM ∈ N (0, σ2M), ε ∈ N (0, σ2S)

Uncertainty associated with a distance d12 = |x2 − x1|:

u2(d12) = 2σ2S + d2
12σ

2
L + 2σ2M

(
1− e−(d12/λM)2

)
u(d12) can be compared with A + d12/B
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Plausible error functions, scale effect, λM = 1000 mm
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Plausible error functions, scale effect, λM = 200 mm
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Uncertainties for distances, scale effect, λM = 1000 mm
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Uncertainties for distances, scale effect, λM = 500 mm
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Uncertainties for distances, scale effect, λM = 200 mm
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Model for three dimensions

Three length scales: short (random effects), long (scale and
squareness), medium (spatially correlated effects)

Scale and squareness model in three dimensions

x = x∗ + (eL + eL,xx)x + eL,xyy + eL,xzz

y = y∗ + (eL + eL,yy )y + eL,yzz

z = z∗ + (eL + eL,zz)z

where
eL ∈ N (0, σ2L), eL,xx , eL,yy , eL,zz ∈ N (0, σ2L,a),

and
eL,xy , eL,xz , eL,yz ∈ N (0, σ2Q)

eL represents a global scale effect

eL,xx etc., represent additional scale effects for each axis

exy etc., represent squareness effects, x-axis to y -axis, etc.
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Scale and squareness effects: uncertainties in distances

Scale and squareness model in three dimensions

x = x∗ + (eL + eL,xx)x + eL,xyy + eL,xzz

y = y∗ + (eL + eL,yy )y + eL,yzz

z = z∗ + (eL + eL,zz)z

If d12 = ‖x2 − x1‖, then

u2(d12) = σ2Ld
2
12 + σ2L,aD

2
L,a + σ2QD

2
Q ,

where

D2
L,a =

1

d2
12

[
x412 + y412 + z412

]
,

and

D2
Q =

1

d2
12

[
x212y

2
12 + x212z

2
12 + y212z

2
12

]
.

with x12 = x2 − x1, etc.
Non isotropic behaviour: measurement along an axis different from
measurement along diagonals
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Scale and squareness effects: uncertainties in distances II

If d12 = ‖x2 − x1‖ and d34 = ‖x4 − x3|, then

u2(d12 − d34) = σ2L(d12 − d34)2 + σ2L,aD
2
L,a + σ2QD

2
Q ,

where

D2
L,a =

(
x212
d12
− x234

d34

)2

+

(
y212
d12
− y234

d34

)2

+

(
z212
d12
− z234

d34

)2

and D2
Q =(

x12y12
d12

− x34y34
d34

)2

+

(
x12z12
d12

− x34z34
d34

)2

+

(
y12z12
d12

− y34z34
d34

)2
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Scale and squareness effects: III

Two diameters of length d along the x- and y -axes

For this case, d = d12 = d34, x12 = d , y34 = d and

u2(d12 − d34) = 2d2σ2L,a.

Two diameters of length d along the x = y and x = −y
For this case, d = d12 = d12, x12 = y12 = x34 = −y34 = d/

√
2 and

u2(d12 − d34) = σ2Qd
2

Likely impact on evaluated form error depends on σL,ad and σQd .
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Model in 3D with three length scales

Length scales: random, scale and squareness, spatially correlated
effects:

x = x∗ + eL + eM + ε,

where eL is a scale and squareness effect, eM is a spatially correlated
effect with length scale λM

u2(d12) = 2σ2S + σ2Ld
2
12 + σ2Qc

2
12 + 2σ2M

(
1− e−d

2
12/λ

2
M

)
.

u2(d12) can be compared with an A + d/B statement.

Example: two diameters of length d , contribution from spatially
correlated effects

u2M(d12 − d34) ≤ 4σM

(
1− e−d

2/λ2M

)
,

maximised when the diameters are a 90 degrees to each other.
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Example: quantifying Abbe effects

Measurement of a length standard against a calibrated standard

Two measuring lines parallel to the x-axis, one offset by L0 mm from
the other.

Four measurement points x1 = (0.0, 0.0, 0.0), x2 = (500.0, 0.0, 0.0),
x3 = (0.0, L0, 0.0) and x4 = (500.0, L0, 0.0)

Scale and squareness effects make no contribution to u(d12 − d34)

Contribution from random effects and spatially correlated effects:

4σ2S ≤ u2(d12 − d34) ≈ 4σ2S + 4σ2M

(
1− e−L

2
0/λ

2
M

)
≤ 4(σ2S + σ2M)
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Uncertainties associated with point clouds, derived features

So far looked at uncertainties associated with distances (A + d/B
statements)

Statistical model:

x i = x∗i + eL,i + eM,i + εi , i = 1, 2, . . . ,m

Point cloud variance 3m × 3m variance matrix VX

Diagonal elements are u2(x i )

Derived parameters a = (a1, . . . , an)> = a(x1:m) depending on data
X = x1:m

n × 3m sensitivity matrix GAX evaluating change in aj due to a
change in each coordinate in x1:m

Variance VA associated with a is given by matrix multiplication

VA = GAXVXG
>
AX

The ith diagonal element of VA is u2(aj).
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Derived feature calculations

Example: uncertainties associated with distances:

6× 6 variance matrix associated with x1 and x2, V12 =

u2(x1) u(x1, y1) u(x1, z1) u(x1, x2) u(x1, y2) u(x1, z2)
u2(y1) u(y1, z1) u(y1, x2) u(y1, y2) u(y1, z2)

u2(z1) u(z1, x2) u(z1, y2) u(z1, z2)
u2(x2) u(x2, y2) u(x2, z2)

u2(y2) u(y2, z2)
u2(z2)


Uncertainty in the distance d12 = ‖x2 − x1‖ is given by

u2(d12) =

[
n12

−n12

]>
V12

[
n12

−n12

]
, n12 =

x2 − x1

d12
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Example: connecting rod
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Key characteristics and model

Key characteristics

Radii of the two circles, nominally r0,1 = 20 mm, r0,2 = 12 mm
Distance D between the two circle centres, nominally D = 120 mm
Form error associated with the two circles, contribution associated with
CMM measurement

Model involving three length scales: scale (long), random effects,
(short), spatially correlated effects (medium)

x = x∗ + eL + eM + ε

Statistical parameters σS , σL (scale), σM and λM
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Measurement strategy, calculations

Align artefact with a CMM axis, e.g., x-axis

Measurement strategy: m points uniformly spaced around each circle,
special case m = 4

Determine Gaussian (least squares) associated circle to measured data
to determine estimates â1 and â2 of a1 = (x0,1, y0,2, r0,1) and a2

Estimate D̂ of D given by D̂ = x̂0,2 − x̂0,1

Derived features (centres, radii) only depend on uncertainty
contributions orthogonal (normal) to the profile/surface
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Uncertainty contribution associated with random effects
(short length scales)

For a uniform distribution ofm points around a circle
(xi , yi ) = (r0 cos θi , r0, sin θi ,

u2(x0) = u2(y0) =
2σ2S
m

, u2(r0) =
σ2S
m

Uncertainty associated with the distance D between centres

u2(D) = u2(x0,1) + u2(x0,2) =
4

m
σ2S
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Uncertainty contribution associated with scale effects (long
length scales)

Circle radius
u(r0) = σLr0

Uncertainty associated with the distance D between centres
(measurement along an axis)

u(D) = σLD
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Uncertainty contribution from spatially correlated effects

Special case m = 4, measurement points (±r0, 0) and (0,±r0)

x̂0 =
x1 + x2

2
, ŷ0 =

y3 + y4
2

Uncertainties associated with circle parameters

u2(x0) = u2(y0) =
σ2M
2

(1 + e−4r
2
0 /λ

2
), u2(r0) =

σ2M
4

(1− e−4r
2
0 /λ

2
)

Uncertainty associated with the estimate of D:

u2(D) ≈
σ2M
2

(
2 + e−4r

2
0,1/λ

2

+ e−4r
2
0,2/λ

2

− 4e−D
2/λ2
)
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Example: uncertainty contribution from spatially correlated
effects, σM = 0.005 mm
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Estimating statistical parameters

Model based on a small number of statistical parameters σ2S , σ2L, σ2Q ,
σ2M and λM

In general: u(d) ≤ (A + d/B)/k , 2 ≤ k ≤ 3

σS relates directly to repeatability and A in A + d/B, 2σ2S ≤ A2/k2

σL relates to scale effects and B: σLd ≤ (A + d/B)/k

σQ relates to scale effects

σM relates to kinematic errors, form errors

λM : not too large λM < L, not too small, λM ≈ 100 mm (can use
more than one λ)

Estimating the balance between scale errors and spatially correlated
errors, try a few

σ2Ld
2 + 2σ2M(1− e−d

2/λ2) ≤ (A + d/B)2/k2
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Summary

Length measuring capability statement |d̂ − d | ≤ A + d/B

Constraint on behaviour over short and longer length scales

Statistical interpretation in terms of random effects associated short,
medium and long length scales

Long length scale behaviour described in terms of scale and
squareness errors

Behaviour characterised by a small number of statistical parameters
σ2S , σ2L, σ2Q , σ2M and λM

Straightforward uncertainty calculus based on the GUM and the law
of propagation of uncertainty

Formulæ for uncertainties associated with distances, other cases

Implementation in spreadsheets straightforward in principle: all
calculations are direct
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