
Measurement uncertainty evaluation with a posteriori method

Osamu Sato National Metrology Institute of Japan (NMIJ) National Institute of Advanced Industrial Science and Technology (AIST)

Speaker

Osamu Sato, Ph.D.

- Geometrical features measurement using CMMs
- Senior researcher in dimensional standard section, REIM, NMIJ/AIST

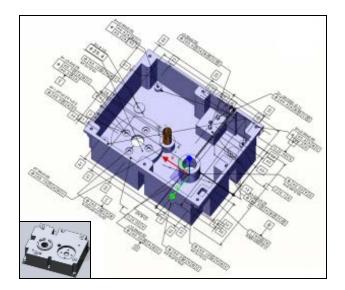
•ISO/TC 213/WG 4, WG 10 expert (JP)

• Role in EUCoM Project

- Development of uncertainty evaluation procedure and measurement protocol for calibration of:
 - 1. size/angle,
 - 2. single features, datum related features, and
 - 3. profile features on prismatic and freeform artefact.

AIS I

Overview


- Demand: evaluate measurement uncertainty using CMM
- Situation: less information for uncertainty estimation
 - CMM's property
 - Uncertainty contributors
 - Detail measurement data
- Situation: less resources for uncertainty estimation
 - Special equipment
 - Software
 - Operator's effort
- Solution proposal: a posteriori method w/o special materials
 - Multiple measurement
 - ANOVA



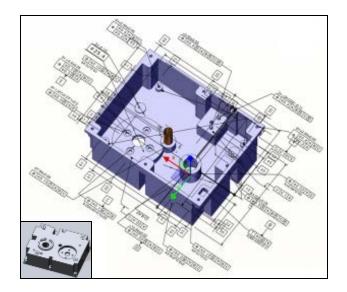
Dimensional measurement using CMMs

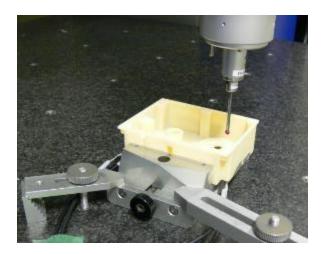
- <u>Suitable</u> for complex GPS validation
- <u>Hard to estimate</u> measurement uncertainty
 - Several number of uncertainty contributors

Designed geometrical features

Product verification using a CMM

Uncertainty evaluation application

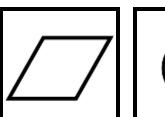

- 1. Calibration of the workpiece
 - Calibration certificate
 - Calibration value
 - <u>Calibration uncertainty</u>
 - Traceability
- 2. Inspection of the workpiece
 - •Conformity/non conformity
 - Measurement value
 - <u>Measurement uncertainty</u>
 - Traceability

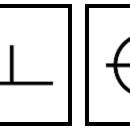


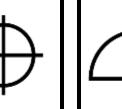
Dimensional measurement using CMMs

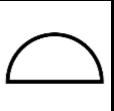
- Development of an uncertainty estimation method for ordinary measurement operation using CMM in factory floor.
 - Equipment, software function, etc..

Designed geometrical features


Product verification using a CMM


Target measurands


- It's possible to evaluate many kinds of geometries of artefacts using CMMs.
 - Parameters derived from points coordinates.
- The developing method focuses on <u>limited geometries</u>.
 - Because actual/practical products are designed with the combination of several geometries.
 - Parameters defined related to geometric tolerances, e.g.,



//	
//	-

Size

Form

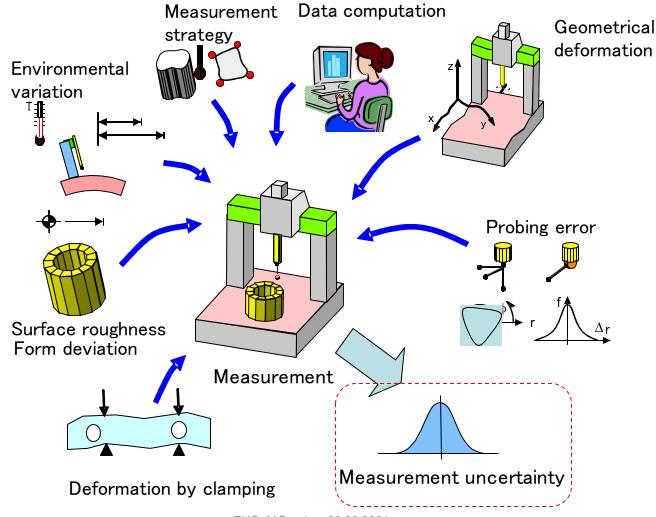
Target parameters in the development

- •Length and angle (size/distance)
- Relative position/location/orientation CLocation
- Single features
 - e.g. straightness, flatness, roundness
- Related features
 - e.g. parallelism, squareness
- Deviation from associated/designed features
 - •e.g. profile

Uncertainty estimation method

- Published methods
 - Uncertainty budget (GUM)
 - Substitution method
 - ISO 15530-3
 - Monte Carlo simulation
 - ISO/TS 15530-4
- Developing methods
 - A posteriori method
 - former DTS 15530-2
 - A priori knowledge

Example of GUM's manner


Uncertainty budget

Len	gtł	n independent	213	nm		-	-	1 - N
No		Item	Size	Unit	Туре	u 🚩		
	1	Probing error (WS measurement)	100	nm	В			
	2	Probing error (RS measurement)	100	nm	В	a series		
	3	Repeatability	230	nm	Α			0
	4	Reproduceability	234	nm	Α	15.00		
	5	Form error	100	nm	В	1284		-a
	6	Error propagation	40	nm	В	and the		and the second sec
	7	Geometrical error of CMM	150	nm	В	87	nm	
	8	RS calibration value (uni-directional)	134	nm	В	134	nm	Centre-to-centre
								distance calibration
Len	gtł	n dependent	252	nm/m				
No.		Item	Size	Unit	Туре	u	Unit	
	9	Abbe error	23	urad/m	В	7	RA	
	10	Scale compensation	109	nm/m	В	109	nm	Estimation for
	11	CTE of WS	5.E-07	/K	В	2	nm	
	12	CTE of RS	5.E-07	/K	В	0	(simple workpiece
	13	Temperature measurement (WS)	5	mK	В	0		is 🔨 /
	14	Temperature measurement (RS)	7	mK	А	0	r	ENOUGH complex
	15	Thermal drift (WS measurement)	5	mK	В	0	n	
	16	Thermal drift (RS measurement)	24	mК	Α	0	nm	
	17	Cosin error		mm/mm	В	0	nm	
	18	RS calibration value (uni-directional)	227	nm	В	227	nm	

Uncertainty contributors in CMM measurement task

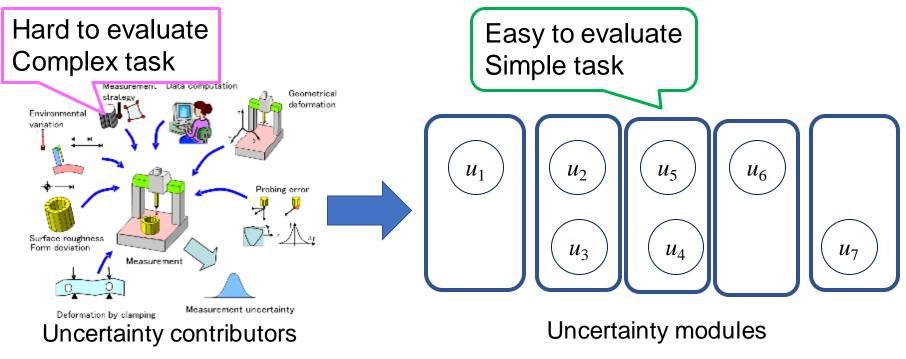
No!

Uncertainty contributors

- Environment for meas.
- Reference element of meas. equipment
- •Meas. equipment itself
- •Meas. setup
- Software/calculation method
- Meas. operator
- Workpiece property
- Definition of the measurand
- Meas. procedure
- Physical constants

Do I need to evaluate all items?

Measurement in factory floor

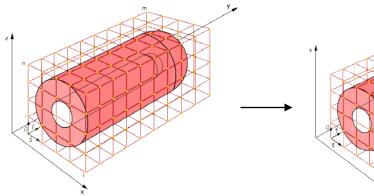


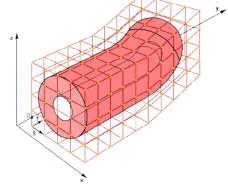
Uncertainty modules

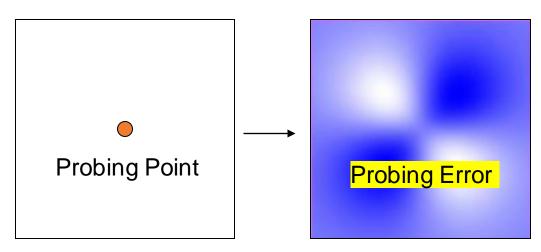
PAIST

• Previous development (DTS 15530-2)

- $U_{\rm rep}$, $U_{\rm geo}$, $E_{\rm L}$, $U_{\rm corr}$, $E_{\rm D}$, $U_{\rm D}$, $U_{\rm temp}$
- and other modules to be considered

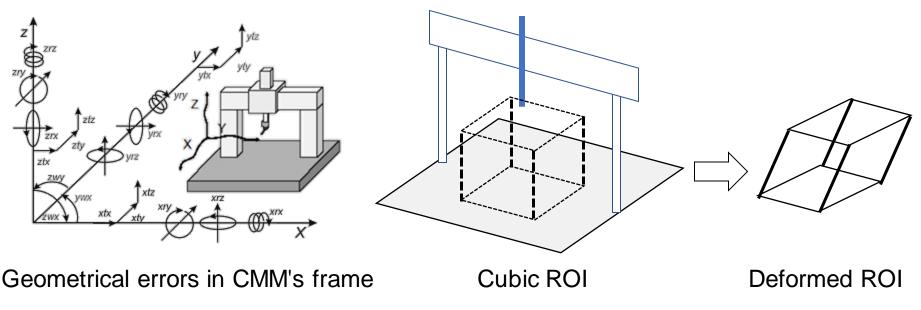

Strategy of uncertainty assessment


- Modularize the <u>dominant</u> measurement uncertainty
 - Known/unknown systematic error
 - Random error
- Practical experimental design
 - Workpiece measurement in several varied conditions
 - Workpiece measurement with several repetitions
 - Analysis of variance


Dominant errors in coordinate measurement domain

- Global error
 - Deformation of the coordinate system

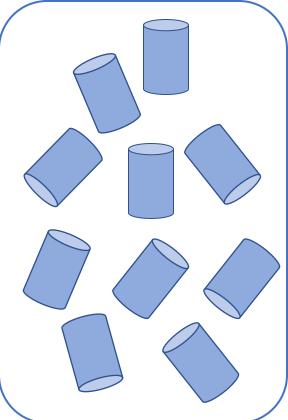
- Local error
 - Bias and fluctuation of the sensing



Assessment on the coordinate system deformation

Background

 Region of interest (ROI) in CMM's measurement volume is a parallel pipe, which is a deformed cubic ROI by several factors.

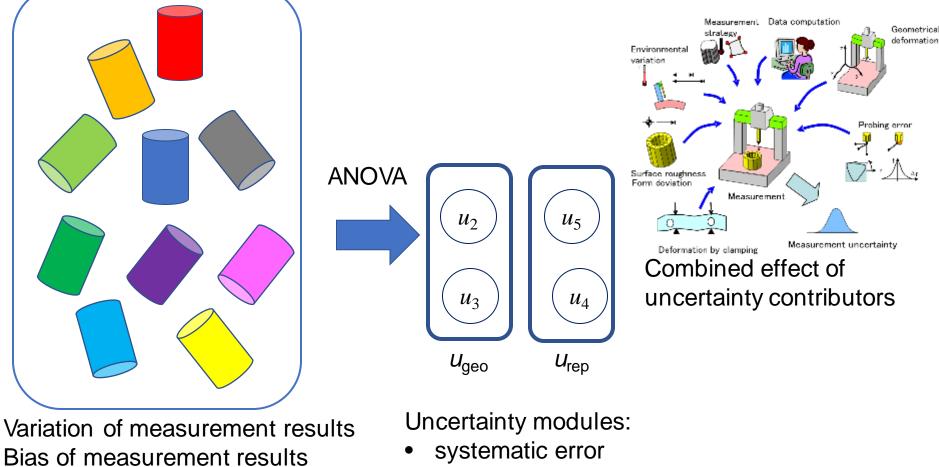


Measurement results in stable regular ROI

Stable regular ROI

The same workpiece measured in different orientations

<u>Uniform</u> measurement result: size, angle, form

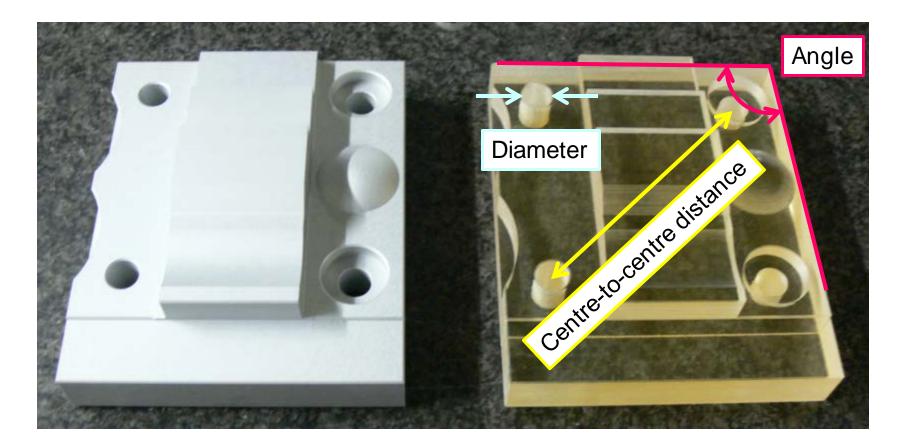


Measurement results in deformed ROI **Deformed ROI** The same workpiece Varied measurement measured in results: size, angle, form different orientations

Systematic/random errors in deformed ROI

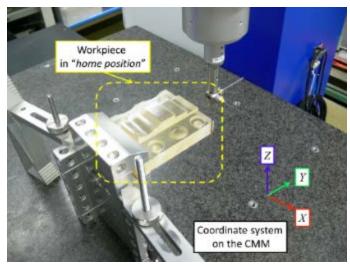
• random error

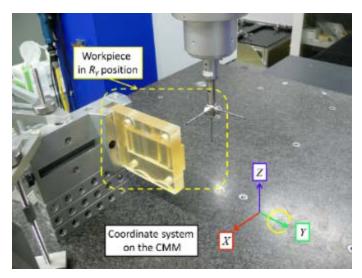
Required measurements for uncertainty evaluation

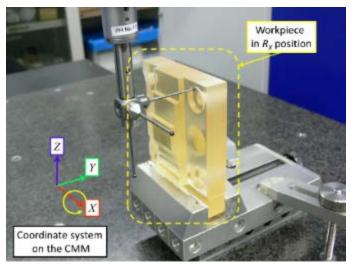

- Measurement of the workpiece
 - 4 orientations
 - 3 repetitions
- Measurement of the length standards
 - along X, Y and Z axes,
 - 3 repetitions
- Measurement of the reference sphere
 - using all styli, which are used in the series of measurement in 4 orientations
 - 3 repetitions

AIST

Practice


• Angle and distance/size measurement

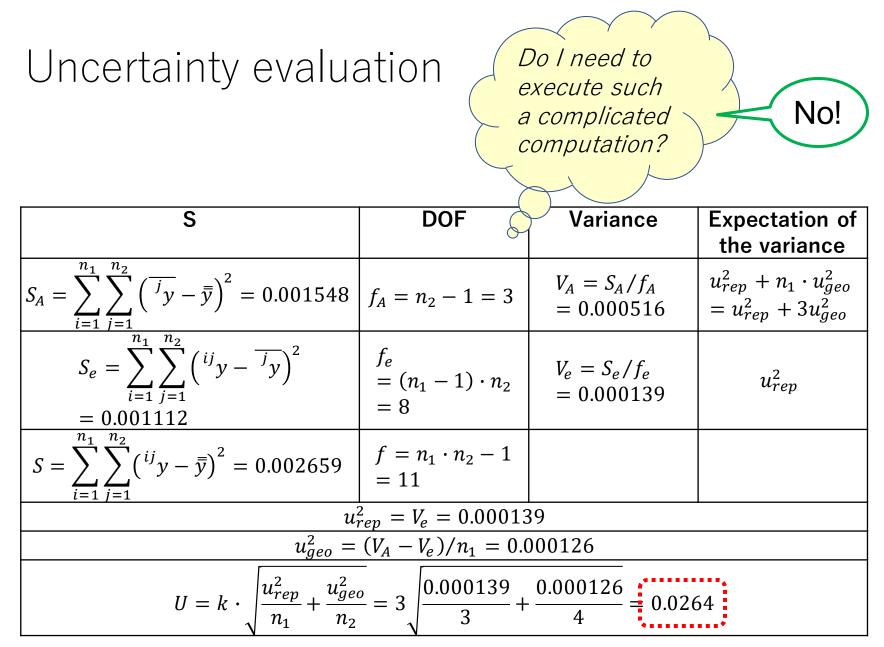




3 repetitive measurements in 4 orientations

AIST

Measurement results

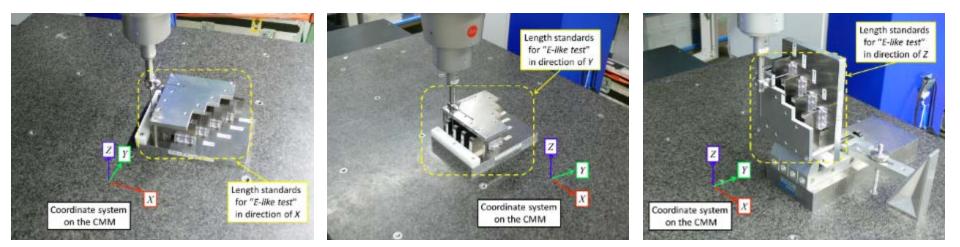

Variation by random errors and shortterm system variation

	Orientation 1 (home position)	Orientation 2 (R _X position)	Orientation 3 (R _Y position)	Orientation 4 (R _Z position)					
Cycle 1	89.9859	90.0140	90.0159	89.9848					
Cycle 2	89.9853	89.9860	90.0166	90.0148					
Cycle 3	89.9853	89.9862	90.0162	90.0144					
$\overline{j_y}$	89.9855	89.9954	90.0162	90.0047					
$\overline{ar{y}}$		90.0005							

Variation by global errors and long-term system variation

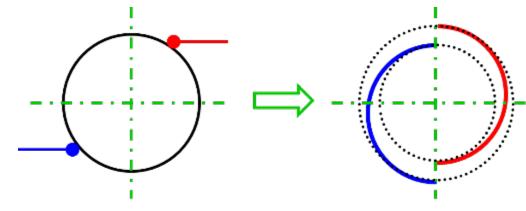
Calculation with spread sheet software

een වො ⊟ 9· ි · ፣		MICJ	LQ_templates	ien - Louad			P	建油											Osam	i Sato 🦚	u –	ι U
ルー・ホーム 挿入 パータレイアウト	奇式 デ	9 校開	春末 開	R 7502	ヘルプ	Acrobat															10 共有	0.7
× ₩5 ₩5 ₩5		- 11 - A' A'	=	35. I st	Second cost			-		al ner	-				- 55	502		NUC-1-SUM	* ≜∀	0	Æ	
Rinke -							<			1 Entre	-32				~			26k×		. <u>~</u>	2	
 し I 8 は 1 8 い 1 8 <l< td=""><td>표~ 쇼·</td><td>▲ < ≧ </td><td>===</td><td></td><td>包括協会に</td><td>T中央協制。</td><td>深枝</td><td>18 - 9</td><td>5 9 18 4</td><td></td><td>ワークにしい 者の設定。</td><td></td><td></td><td></td><td></td><td>入一副除</td><td>1 2</td><td>000 v</td><td>並べ補助 スルター</td><td>「お客と」</td><td>14 77</td><td></td></l<>	표~ 쇼·	▲ < ≧	===		包括協会に	T中央協制。	深枝	18 - 9	5 9 18 4		ワークにしい 者の設定。					入一副除	1 2	000 v	並べ補助 スルター	「お客と」	14 77	
										48.77	station -						- T T	439				
995 7 .(-F 9	2.01		al	823	<u>.</u>		6 #3	3	5.00	al		254	ol.			tai			NE.		7477	
* : × ✓ £																						
秘密院 ■ 前内開り /									NINGL R													
Α	E	C D	E	F	G	н	1	J							Q	R	5	T	U	V	60 E	
									. 00	NNECT	ING ROI	D MEAS	UREME	NT								
																					Measuremen	E
overage factor k	2		Cyple 1			Cys	8e 2			Cyp	le C			Cy:	le 4			Cy:	ster to		τ	0 ×
																					value	un
easured feature	_	1 y 12 y	/ 13 y	14 y	21 y	22 y	23 y	24 y	81 y	82 y	83 y	84 y	41 y	42 y	43 y	44 y	51 y	52 y	53 y	54 y	У	- 07
surface line 1 straightness	41	1.7 1.5.7	197	14.7			20 7	- 7	61.7	an y	00 7	64 y	40.2	46.7	40.7	11.7	41.7	V. 7	0.0 7	V- 7	0.000 00	
single roundness	AI							<u> </u>										<u> </u>	<u> </u>		0.000 00	
by indnoity	A							<u> </u>											<u> </u>	<u> </u>	0.000 00	
diameter	<u>41</u>																				0.000.00	
-U5 distance	UT. 15		_					<u> </u>											<u> </u>		0.000 00	
circle 1 Demeter	C																				0.000 00	
circle 1, concentricity In A1	0, A1																				0 000 00	
circle 1 radial runout to A1	C. A1							<u> </u>											<u> </u>		0.000 00	
cylinear total radial rungut to A	C, A1																				0.000 00	
percendicularity clane E to axis O	0, E																				0 000 00	
fistness	<u> </u>																				0.000 00	í
flatness	F																				0.000 00	
Edistance	EF																				0 000 00	
F parallolism	E.F.																				0.000 00	, — — — — — — — — — — — — — — — — — — —
diameter in plane 20 mm from E	K. E.																				0.000 00	
cons ande	×																				0.000 00	1
angularity to At	VC A1																				0.000 00	,
							5	5		_												
					$l = k \left[B_{1}^{2} + \right]$	$+ E_{2}^{2} + E_{2}^{2}$	$+\frac{v_{rep}^2}{2}$	$+\frac{\partial p_{\mu\nu}^2}{\partial p_{\mu\nu}} + m^2$	$+ u_D^2 + u_{DA}^2$													
					1	-0 -0.0	× ***	<i>n</i> ₂		197												
													Uncert	ainty con	tribution	5						
		1.000 00																				
	6	0.900.00																				
	÷																					
		D.SD0 D0																				
	5	0.700.00																				
	L CO	0.800 00																				
	é.	0.500.00																				
	191	0.400.00																				
	100	0.300.00																				
Scale-Probe MFC	Ð											1	4									


Excellent template provided by EUCoM project

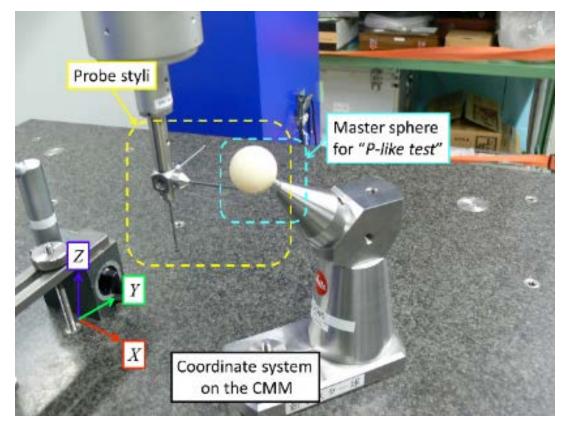
Additional measurement

- Length standards are measured in X, Y and Z directions.
 - Evaluate the averaged scale error in ROI
 - When performing the compensation, the single value is applied for any measurement directions.



Systematic error by using multi styli

- Quasi-systematic error derived by probe stylus location error
- Quasi-systematic error derived by probe size error

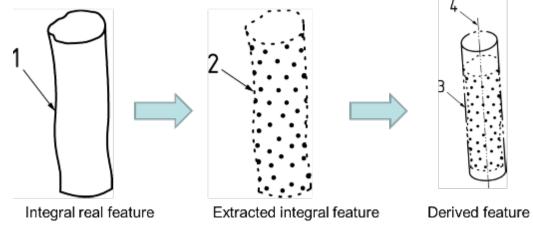


Additional measurement

• Master sphere is measured to estimate the probing errors.

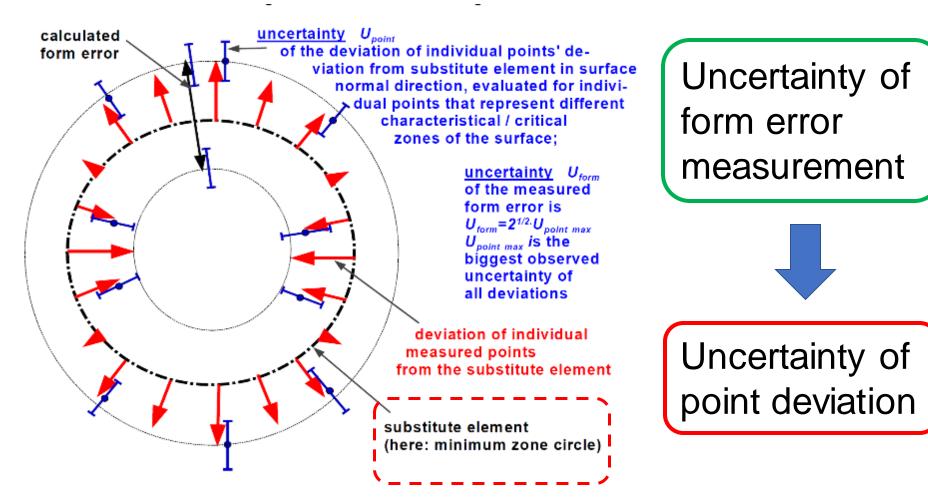
Calculation with spread sheet software

tiken 🖅 🗐 ව·ල·⊽		MIC LO Jam	ilateurian - taxael		0	秋 治	_				Ceanu Sato 🧥 🗉	- //
ファイル ホーム 挿入 パージレイアウト	87 5-4			a E T Acambra		90.11						○ (大有) □ つメン
					~					- 1 S. a. a. m		H 301 1 1 100
▲ X \$05000 NS PU5#2	-]	1 • A' A' = -	- = * · 8:	的原因了全体制度宗主省	a	-			- # e 🗉		Z 1 /2 / 1/	
あたい 114 E= ● ダ 書式のビー/E9(日日 B I 旦 ~ E	± - <u>4</u> - 1	<u>A</u> = <u>2</u> = = = =	E = = = = = =	1.20回泊しつ中央的ス ~	深腔	昭・第 9 昭 昭 新井徳 デールさい 書式。 書式的な。			「「「「「」」」 「「」」 「「」」 「「」」 「」」 「」 「」」 「」 「」	\$ 599 -	並べ結えた 検索と - アイ フロカーマ 運動 マーデア	
	7.01	54	82.35	15	休息	5	23-04	,	1:05	1	NE 7477	
118 * i × ✓ <i>k</i>												
2 私主助 ■ 前内開リ /						利用なし 所内限9 宣						
A LENGT		C DATES AREACT		E	F	G					I	м
	Cycle	DARD MEASI	Y	z	_		Cycle	DIAMETER STAL Probe 1	Prote 2	Probe 3	Probe 4	Probe 5
-	1 I	-	-				- Cycle	T-TOOM I	1 YO DRI 2	Litone 2	TODE 4	T PICCH C
Measuremet recuits of length	2					Measuremet results of diarieter	2					
standarc	3					atandard	2					
	4						4					
	5						5					
Calibrated value	Le				_	Calibrated value	Do					
Espanded calibration uncertainty	L Lc				_	Expanded calibration uncertainty	U D,c					
4 Scale error	EL uL	0.000 000 000.0			_	Probe size error	ED uD	000 000 000 000 000				
7 Scale error uncertainty 8	uL	0.000.000.00	U			Probe size error uncertainty Multitaty us measurement		-				
3						Proba location error	E D.Loc	0.000 000 000.0				
0							u D,Loc	0.000.000.000.0				
1						Coordinates of LSM spheres	Coorde	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5
2												
3						Cycle -	Υ					
1 3												
<u>)</u>						Cycle 2						
r -						0,000	2					
0							×					
0						Cycle 3	v.					
							2					
1						Contract	×					
2						Cycle 4	- Y 7					
3												
5 6 7 8						Cycle 5	Ŷ					
8							ż					
7												
8												
0												
Scale-Probe MFC @)						1.4					
1077 FS											■ □ 円	+
		_										


Excellent template provided by EUCoM project

Form evaluation

AIST


- Form error of the feature is evaluated
 - not as that of the integral real feature,
 - but as that of the feature associated with <u>the designated extracted</u> <u>measured points</u>
- Uncertainty of the form error measurement is estimated related with the distribution of the designated measurement points.

Basic idea: form error meas.

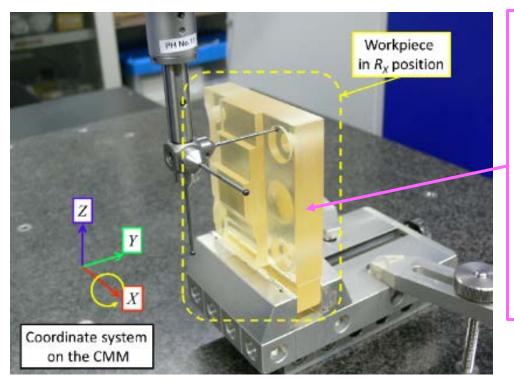
Data to be required for evaluation

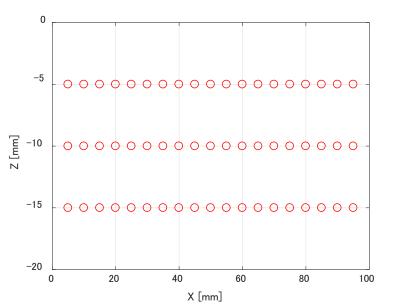
Pla_3		Home 🔯 s	Rx	Ry	Rz	Deviations for
n1	n7/n2	1	2	3	4	
1	1	0.0029	0.0026	0.0007	0.0009	respective
	2	0.0006	0.0005	-0.0001	0.0007	points
					•••	
	12	-0.0019	-0.0021	-0.0012	-0.0008	
2	1	0.0020	0.0021	0.0007	0.0003	
	2	0.0003	0.0003	-0.0002	0.0002	
	12	-0.0017	-0.0019	-0.0013	-0.0008	
3	1	0.0015	0.0019	0.0008	0.0000	Is the data
	2	0.0000	0.0002	-0.0002	0.00	available?
	12	-0.0015	-0.0019	-0.0012	-0.0007	

Output from CMM software

Depending on the software

- 1. Form error value only
- 2. Form error value and limited information
 - Maximum/minimum deviation
 - standard deviation of the distribution of extracted points
- 3. Form error value and full information
 - respective deviations from the associated feature


Note


- •The full information is stored as internal parameters in the software.
 - Whether the operator can access the internal parameters or not depends on the software.
- For practical use in industrial floors, the uncertainty estimation should be executable with poor information:
 - the value of form error itself and number of measurement points, at least.

Example: plane measurement

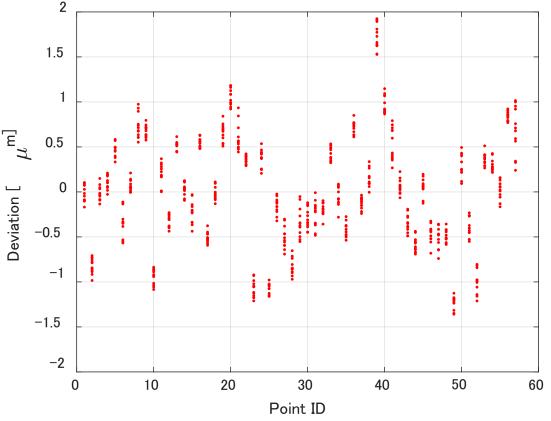
57 measurement pointsOrthogonal grid sampling4 positions2 times repetition

3 times repetition

Uncertainty evaluation using full information

• Flatness measurement result in μ m

	Home			
	position	Rx	Ry	Rz
1st	2.8	2.9	3.1	3.2
2nd	2.8	2.9	3.1	3.0
3rd	2.9	2.9	2.9	3.0


Flatness of the plane derived from the designated 57 points is 3.0 μm

Uncertainty evaluation using full information

A1

	n1	n2	n3
B1	-0.0012	-0.00118	-0.00124
B2	-0.00114	-0.00098	-0.00098
B3	-0.00112	-0.00105	-0.00105
B4	-0.00107	-0.00115	-0.00116
B5	-0.00094	-0.00092	-0.00093
B6	-0.00085	-0.00085	-0.00086
B7	-0.00073	-0.00089	-0.00098
B8		-0.00067	
B9		-0.00048	
B10		-0.00051	

u for single point is 0.11 μ m *u* for two points is 0.16 μ m *U* for form meas. is 0.48 μ m from 57 points probing

For poor information case

- Estimation of single point deviation uncertainty with the PV value
 - •ex.
 - Flatness = 2.8 μ m
 - Actual peak/valley = 1.6 $\,\mu$ m / -1.2 $\,\mu$ m
 - Invisible for the CMM operator
 - Assumed peak/valley = 1.4 $\,\mu$ m / -1.4 $\,\mu$ m
 - Principle of maximum entropy
 - W/o any information of the distribution of deviation

For poor information case

• Data for analysis with the assumption

		n1	n2	n3	E uroputak la
A1	B1	-0.0014	-0.0014	-0.0014	Executable
	B2	0.0014	0.0014	0.0014	with any CMM
A2	B1	-0.0014	-0.0014	-0.0014	
	B2	0.0014	0.0014	0.0014	
A3	B1	-0.0016	-0.0016	-0.0015	
	B2	0.0016	0.0016	0.0015	Executable
A4	B1	-0.0016	-0.0015	-0.0015	for any form
	B2	0.0016	0.0015	0.0015	
		•	5		

u for single point is 0.09 μ m *u* for two points is 0.13 μ m *U* for form meas. is 0.39 μ m from 2 points data Might be

under

estimation

For poor information case

• Input actually observed PV values

		n1	n2	n3	Executable
A1	B1	0.0016	0.0016	0.0016	
	B2	-0.0012	-0.0012	-0.0012	with several CMMs
A2	B1	0.0017	0.0015	0.0015	
	B2	-0.0012	-0.0014	-0.0013	
A3	B1	0.0019	0.0019	0.0017	Executable
	B2	-0.0012	-0.0012	-0.0012	
A4	B1	0.0019	0.0018	0.0018	for any form
	B2	-0.0013	-0.0012	-0.0012	
	<i>u</i> for sing <i>u</i> for two <i>U</i> for forn	, points is	0.18 µn	า	Good estimation

AIST

Summary

- Uncertainty evaluation for dimensional measurement using CMM is developed
- Solution proposal: a posteriori method w/o special materials
 - Multiple measurement
 - ANOVA
- Feature: executable in ordinal industrial floor
 - Operation is executable with ordinal CMM
 - Additional measurement is needed, but without special equipment
 - Uncertainty is computable with spread sheet software
 - Calculation template is provided

A posteriori method is available!

Acknowledgement

- This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.
- AIST participates this project as a nonfunded partner.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States