

Digital Twin Workflow Development Framework in the Context of Fluid Structure Interaction

WESC2021 "Emerging Technologies and Special Sessions" Digital Twin Technology

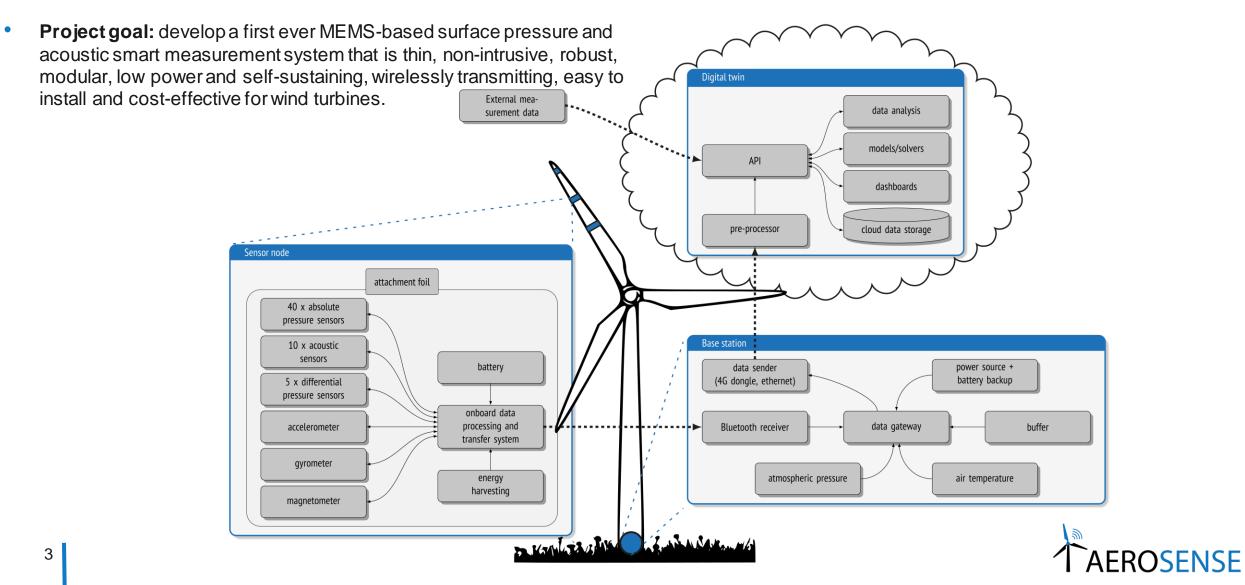
Yuriy Marykovskiy^{1,2}, Thomas Clark³, Sarah Barber¹ and Eleni Chatzi² ¹Eastern Switzerland University of Applied Sciences ²ETH Zurich ³Octue Ltd.

BRIJGE

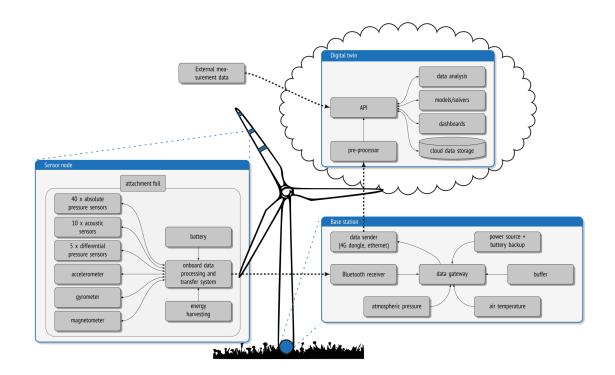
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizra Swiss Confederation

nosuisse – Swiss Innovation Agend

25th May 2021

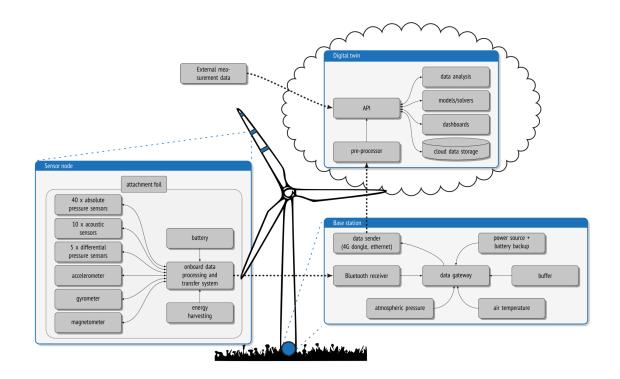

Contents

- Aerosense Project
- Digital Twins:
 - Concept and Hierarchy
 - FSI Context
 - Software Development and Integration
- Digital Twin: "Aventa" Wind Turbine
- Conclusions


The Aerosense project

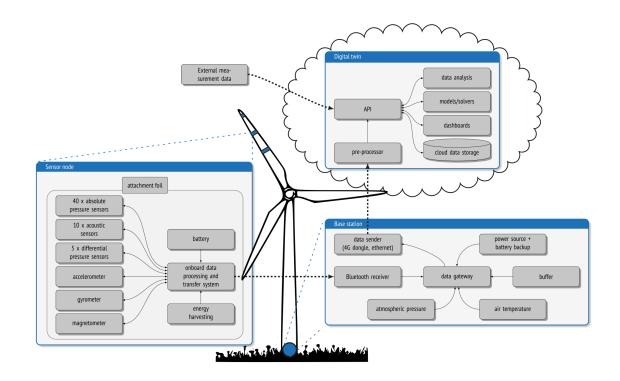
The Aerosense project

Project goal: develop a first ever MEMS-based surface pressure and acoustic smart measurement system that is thin, non-intrusive, robust, modular, low power and self-sustaining, wirelessly transmitting, easy to install and cost-effective for wind turbines.


- Use cases:
 - **Operators**: blade surface and structural damage detection, performance optimisation, amplitude modulation detection
 - **OEMs:** optimisation of aeroacoustic design tools and wind turbine designs, understanding 3D field aerodynamics.
- Scope:
 - 3 years May 2020 April 2023
 - Funding from SNF/Innouisse BRIDGE programme: CHF 2.3 m
- Partners:
 - Eastern Switzerland University of Applied Sciences (OST)
 - ETH Zurich Chair of Structural Mechanics and Monitoring
 - ETH Zurich Center for Project-Based Learning
 - Octue (UK)
- Advisory Board:
 - RES, EKZ Renewables, Enercon, GE (LM), Brüel&Kjaer
 - Fraunhofer IWES, ECN, DTU, TU Delft, NREL.

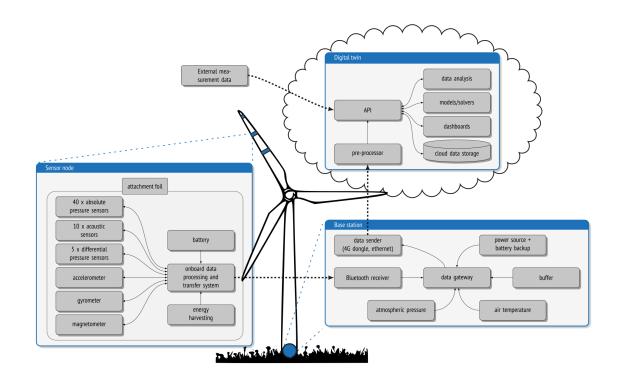
The Aerosense Digital Twin

• **Project subgoal:** develop a digital twin platform, that is cloud based, rapidly deployable and scalable.



The Aerosense Digital Twin

Project subgoal: develop a digital twin platform, that is cloud based, rapidly
 deployable and scalable.


- Digital Twins Development:
 - Multidisciplinary
 - Measurement hardware
 - Calibration
 - Modeling
 - Statistics
 - IT/Software
 - Multiscale

The Aerosense Digital Twin

• **Project subgoal:** develop a digital twin platform, that is cloud based, rapidly deployable and scalable.

- Digital Twins Development:
 - Multidisciplinary
 - Measurement hardware
 - Calibration
 - Modeling
 - Statistics
 - IT/Software
 - Multiscale
- Aerosense Digital Twin Requirement:

An **open** framework that enables scientists from different fields to contribute to the wind energy research and digital twin development by providing easy **data access** and possibility for **testing and validation** of their models.

Supervisory (Digital Shadow)	Measurement Stored Data/ Visual Data	Measurement System	
Hierarchy	Workflow	Usage	

Operational (Digital Shadow)	Measurement Data Analysis Stored Data/Visual Data Operator Decision	Operational Analysis
Supervisory (Digital Shadow)	Measurement Stored Data/ Visual Data	Measurement System
Hierarchy	Workflow	Usage
		AEROSENSE

		Modelling (Digital Shadow/ Digital Twin e.g. Ansys Twin Builder)	Measurement Data Analysis Modelling (Simulations / Surrogate Models) Predicted States/Visual Data Operator Decision	Asset management
	Op	perational (Digital Shadow)	Measurement Data Analysis Stored Data/Visual Data Operator Decision	Operational Analysis
Su	Supervisory (Digital Shadow)		Measurement Stored Data/ Visual Data	Measurement System
Hierarchy			Workflow	Usage

	Self-Improving (Digital Shadow/ Digital Twin)	Measurements Data Analysis Evaluation of uncertainties on the state variables of the system Multi-Fidelity Simulation / Surrogate Model Uncertainty propagation/Datafusion/ Statistical Inference Predicted state with quantified uncertainty Operator Decision	Uncertainty Quantification
	Modelling (Digital Shadow/ Digital Twin e.g. Ansys Twin Builder)	Measurement Data Analysis Modelling (Simulations / Surrogate Models) Predicted States/Visual Data Operator Decision	Asset management
	Operational (Digital Shadow)	Measurement Data Analysis Stored Data/Visual Data Operator Decision	Operational Analysis
Supervisory (Digital Shadow)		Measurement Stored Data/ Visual Data	Measurement System
Hi	erarchy	Workflow	Usage

_			Self-Managing (Digital Twin)		Same as below, with the system actively controlling/changing physical object	Asset Control	
	Self-Improving (Digital Shadow/ Digital Twin) Modelling (Digital Shadow/ Digital Twin e.g. Ansys Twin Builder) Operational (Digital Shadow)			Measurements Data Analysis Evaluation of uncertainties on the state variables of the system Multi-Fidelity Simulation / Surrogate Model Uncertainty propagation/Datafusion/ Statistical Inference Predicted state with quantified uncertainty Operator Decision	Uncertainty Quantification		
				Measurement Data Analysis Modelling (Simulations / Surrogate Models) Predicted States/Visual Data Operator Decision	Asset management		
				Measurement Data Analysis Stored Data/Visual Data Operator Decision	Operational Analysis		
Supervisory (Digital Shadow)			hadow)		Measurement Stored Data/ Visual Data	Measurement System	
Hierarchy					Workflow	Usage	
Wagg, I	D. J., Wor	den, K., Ba	arthorpe, F	R. J., and Gardner, P.: Digital Twins: State-of-the-Art and Fu	uture l	Directions for Modeling and Simulation in Engineering Dynamics Application	ns, ASCE-ASME J Risk and

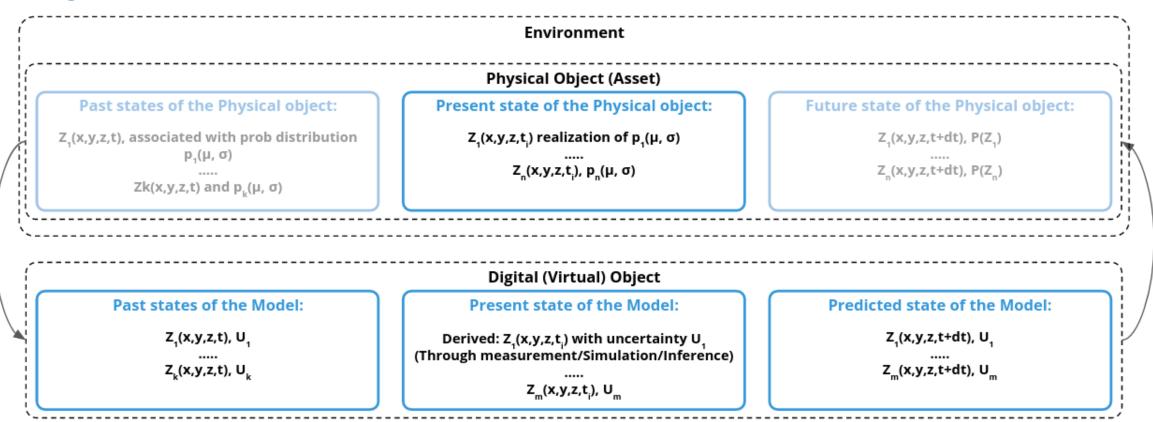
[1] Wagg, D. J., Worden, K., Barthorpe, R. J., and Gardner, P.: Digital Twins: Uncert in Engrg Sys Part B Mech Engrg, 6,https://doi.org/10.1115/1.4046739 The Artanu Future Directions for Modeling and Simulation in Engineering Dynamics App ICALIONS, ASCE-ASIVIE J RISK ANU

AEROSENSE

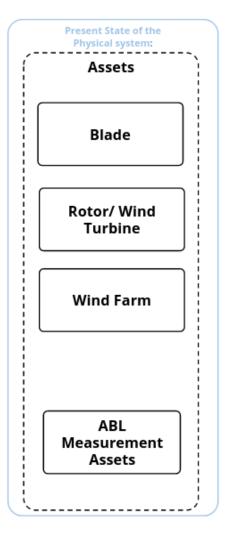
Physical Object (Asset)				
Past states of the Physical object:	Present state of the Physical object:	Future state of the Physical object:		
Z ₁ (x,y,z,t), associated with prob distribution p ₁ (μ, σ) Zk(x,y,z,t) and p _k (μ, σ)	Z ₁ (x,y,z,t _i) realization of p ₁ (μ, σ) Z _n (x,y,z,t _i), p _n (μ, σ)	Z ₁ (x,y,z,t+dt), P(Z ₁) Z _n (x,y,z,t+dt), P(Z _n)		

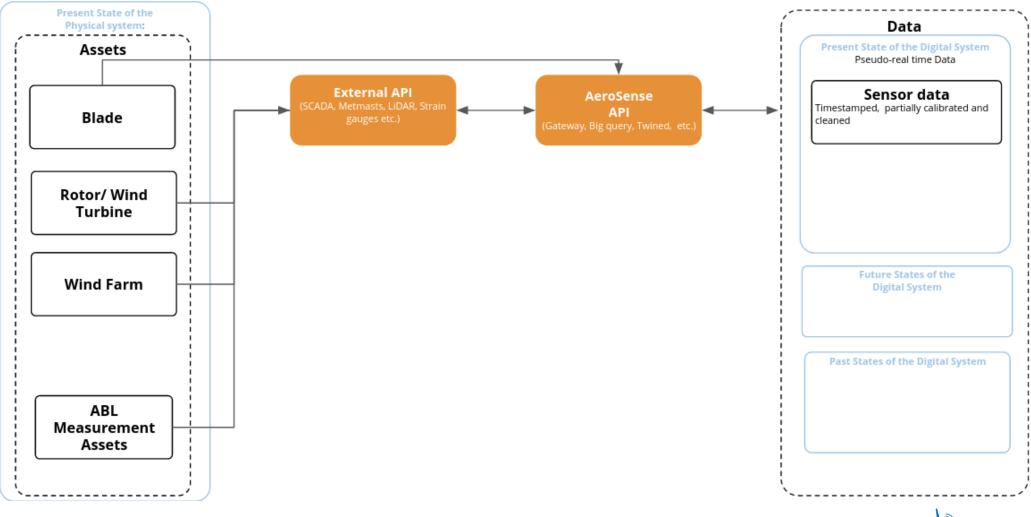
	Environment	
	Physical Object (Asset)	
Past states of the Physical object: Z ₁ (x,y,z,t), associated with prob distribution	Present state of the Physical object: Z ₁ (x,y,z,t _i) realization of p ₁ (μ, σ)	Future state of the Physical object: Z ₁ (x,y,z,t+dt), P(Z ₁)
p ₁ (μ, σ) Zk(x,y,z,t) and p _k (μ, σ)	 Ζ _n (x,y,z,t _i), p _n (μ, σ)	$Z_n(x,y,z,t+dt), P(Z_n)$

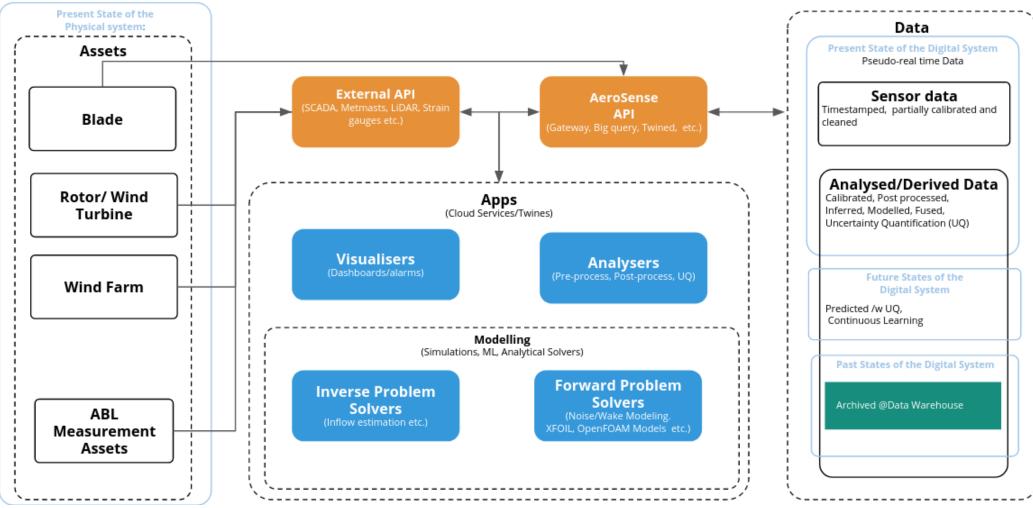
í		Environment		
ľ		Physical Object (Asset)		
······	Past states of the Physical object: $Z_1(x,y,z,t)$, associated with prob distribution $p_1(\mu, \sigma)$ $Zk(x,y,z,t)$ and $p_k(\mu, \sigma)$	Present state of the Physical object: $Z_1(x,y,z,t_i)$ realization of $p_1(\mu, \sigma)$ $Z_n(x,y,z,t_i)$, $p_n(\mu, \sigma)$	Future state of the Physical object: Z ₁ (x,y,z,t+dt), P(Z ₁) Z _n (x,y,z,t+dt), P(Z _n)	
Í		Digital (Virtual) Object		ì
		Present state of the Model: Derived: Z ₁ (x,y,z,t _i) with uncertainty U ₁ (Through measurement/Simulation/Inference) Z _m (x,y,z,t _i), U _m		·····

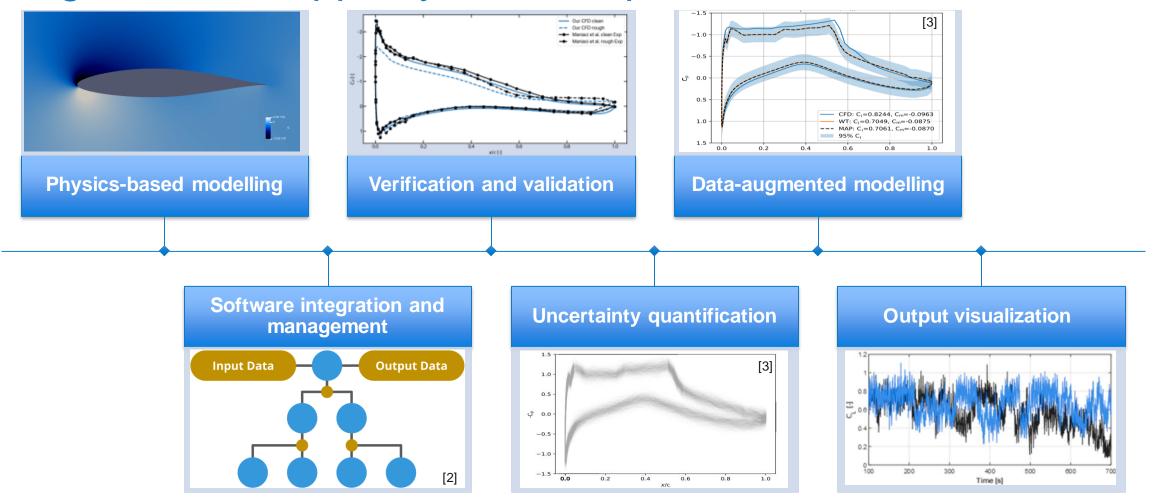


í		Environment		``
Í		Physical Object (Asset)		ì
	Past states of the Physical object: $Z_1(x,y,z,t)$, associated with prob distribution $p_1(\mu, \sigma)$ $Zk(x,y,z,t)$ and $p_k(\mu, \sigma)$	Present state of the Physical object: Z ₁ (x,y,z,t _i) realization of p ₁ (μ, σ) Z _n (x,y,z,t _i), p _n (μ, σ)	Future state of the Physical object: Z ₁ (x,y,z,t+dt), P(Z ₁) Z _n (x,y,z,t+dt), P(Z _n)	
Í		Digital (Virtual) Object		ì
×	Past states of the Model: Z ₁ (x,y,z,t), U ₁ Z _k (x,y,z,t), U _k	Present state of the Model: Derived: Z ₁ (x,y,z,t _i) with uncertainty U ₁ (Through measurement/Simulation/Inference) Z _m (x,y,z,t _i), U _m		



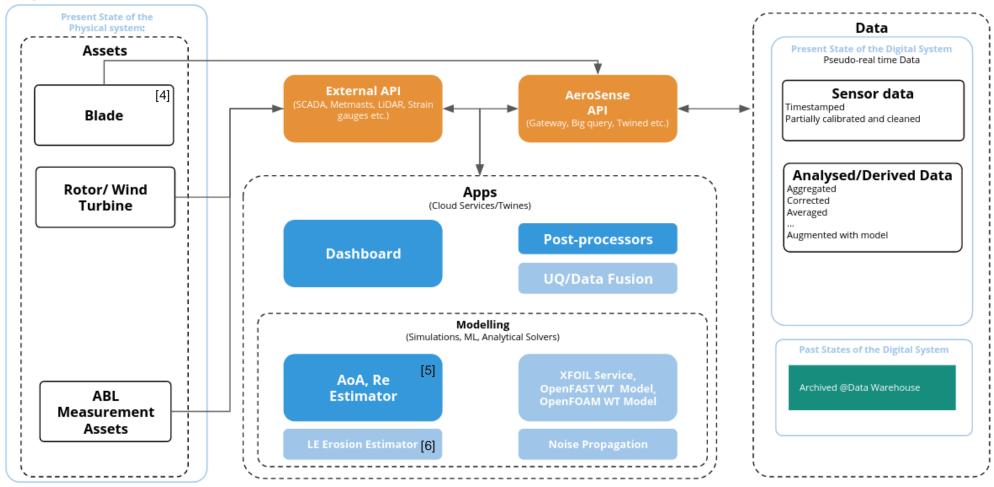

Digital Twins: FSI context


Digital Twins: FSI context


Digital Twins: FSI context

AEROSENSE

Digital Twins: App Layer Development


[2] Octue - https://twined.readthedocs.io

[3] Renganathan, S. A., Harada, K., and Mavris, D. N.: Aerodynamic Data Fusion Tow ard the Digital Tw in Paradigm, AIAA Journal, 58,3902–3918, https://doi.org/10.2514/1.J059203, 2020.

Digital Twins: AEROSENSE - AVENTA Test Wind Turbine

[4] Tommaso Polonelli et al - Towards A Self-sustaining Wireless Smart Sensor Node for Continuous Monitoring of Wind Turbines, WESC 2021
[5] Julien Deparday et al - Development of a method for obtaining local inflow angle from pressure gradient at leading edge on operating wind turbine blades, WESC 2021
[6] Gregory Duthé et al - Learning to diagnose leading edge erosion degradation on an airfoil via aerodynamic pressure coefficients, WESC 2021

Conclusions

Software integration and management

- Bottleneck for implementation of research advances in industry.
- Common open-source framework will significantly accelerate DT developments, especially UQ and Data Augmented Modelling research

High-level DT Abstractions and Open-Source Libraries

- IT/Cloud infrustucture (Twined, Octue SDK)
- Python Libraries (OpenOA, Aerosense)
- Published Wrappers (Aerosense)
- Common metadata definitions

Thank you for your attention!

marykovskiy@ibk.baug.ethz.ch

Aerosense at WESC:

- Tommaso Polonelli Towards A Self-sustaining Wireless Smart Sensor Node for Continuous Monitoring of Wind Turbines
- Gregory Duthé Le arning to diagnose leading edge erosion degradation on an airfoil via aerodynamic pressure coefficients
- Julien Deparday Development of a method for obtaining local inflow angle from pressure gradient at leading edge on operating wind turbine blades
 Find out more here:

https://www.iet.hsr.ch/index.php?id=19191&L=4

