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A B S T R A C T   

This paper establishes an optimal power flow based framework for quantifying the amount and assessing the 
ability of DSO to enable the provision of flexibility service to the TSO. Within this framework, a comparison of 
three different formulations is conducted on several real life distribution networks and IEEE test cases consid
ering computational effort and quality of solution as metrics. By reformulating the branch flow variant of the 
original problem, a convex approximation approach is established and assessed with regards to exactness and 
suboptimality of the solution. Based on the results of smaller test cases we develop a method that is able to 
efficiently solve the problem for large test case instances. The results indicate significant advantages of refor
mulations over the classical approach on smaller test cases as well as its usefulness when solving more 
demanding test cases.   

1. Introduction 

The principles of system balancing as well as other transmission 
system operator (TSO) responsibilities have faced multiple challenges 
due to ever increasing number of intermittent generation being intro
duced to the grid, especially on the distribution side. It has become 
harder for the TSO to achieve its operational goals like balancing system 
generation and demand, reducing the overall system losses, maximizing 
social welfare and keeping the voltages within prescribed limits. The 
potential of the TSO-DSO interactions to increase the overall stability 
and efficiency of power systems has generated a substantial amount of 
research in this field. A comprehensive and recent literature review on 
this topic, can be found in [1]. In [2] a method is proposed that is able to 
alleviate overload in transmission network using the flexibility of a 
distribution network. An integral framework of leveraging distribution 
systems as a reactive power prosumers is developed in [3]. 

One cost effective way to confront system balancing issues is to 
exploit the positive correlation between voltage and demand by con
trolling the transformer on load tap changers (OLTC), capacitor banks as 
well as power injected into the grid by generators connected to distri
bution grid. Recent research, the CLASS project [4], shows that, 
depending on type and structure of consumption, this voltage-demand 
correlation can be substantial[5] and the exploitation of this 

correlation, when properly executed, does not significantly affect the 
end customers. 

In this paper the focus is on determining the capability of a distri
bution network to adjust its active and reactive power flow at the TSO- 
DSO connection node by using optimization techniques, an approach 
that has been discussed in several papers. In [6] authors develop a 
linear, optimization based approach for determining distribution net
work’s flexibility and compare their approach with nonlinear ones. 
Although the reduction in computational time is significant, the 
approach is sensitive to selection of a proper linearization point. In [7] 
authors develop a tractable method for determining the capability area 
of a network, based on a lossless linear power flow approximation. 
However, the method does not consider tap ratios and exhibits consid
erable errors when applied to networks with significant branch sus
ceptance. Paper [8] derived a methodology for generating a DSO 
capability chart for TSO flexibility services provision. In order to provide 
the maximum response for the TSO, while at the same time satisfying 
operational constraints, DSO solves the optimal power flow (OPF) 
problem which accounts for voltage demand correlation, with optimal 
distribution generator’s (DG) power injections, OLTC tap positions and 
capacitor banks shunt position as decision variables. However, the pri
mary focus of the aforementioned paper is the OPF based concept of the 
TSO and DSO interaction, not the performance of the algorithm itself. 
The incorporation of discrete variables (OLTC, capacitor bank positions) 
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into the OPF only exacerbate performance issues. A good recent over
view of different approaches that deal with discrete variables is provided 
in the introductory part of [9]. As authors of this paper state, most of 
these methods replace the discrete variables with continuous ones and 
use rounding to satisfy the integrality constraints. However, this 
method, when applied to OLTCs could easily lead to infeasibility or incur 
suboptimality, which is clearly demonstrated in aforementioned paper. 
In [10] the authors look at flexibility provision from a TSO perspective, 
while development of a more tractable form of OPF for large scale cases 
is set for future work, therefore implying that scalability of the algorithm 
could present an issue. In [11] the authors develop a nonlinear opti
mization based approach similar to [8]. While computationally efficient, 
the method is tested on small test cases while ignoring complexities of 
real distribution networks and voltage-demand correlation, all of which 
could result in higher computational time. 

OPF is, in general, a NP hard nonconvex problem, even for a simpler 
case where topology of the network is radial, as shown in [12]. A sub
stantial amount of research has been done in order to try to convexify 
the original OPF problem for the purpose of reaping the benefits of 
convex programming, such as finding the globally optimal solution, 
potentially increasing the tractability or providing the certificate of 
infeasibility for the original problem. A comprehensive and up to date 
survey of the topic is given in [13]. While most of the relaxations are 
relatively straightforward, ensuring the exactness of the relaxation re
mains an issue. The exactness of the relaxation for radial networks, 
under certain conditions, was first proved in [14]. However, as the au
thors of [15] show, these conditions could be very restrictive and un
realistic, so there is a reasonable chance that on realistic distribution 
network relaxations will be inexact making the solution physically 
meaningless. Furthermore, when the objective function does not steer 
the algorithm towards loss reduction directly or indirectly by mini
mizing the overall generation cost, the relaxation will always be inexact. 
For instance, in recent paper [16], authors formulate a multi-period OPF 

based problem, where the objective function is such that the convex 
reformulation does not necessarily lead to inexactness. However, the 
applicability of this approach is limited to objective being in some form 
of network loss reduction. 

The issue of dealing with inexactness of the relaxations has been 
addressed by several papers in two general directions. In [17,18] the 
authors propose a penalization method to the semi definite program
ming (SDP) relaxation in order to drive the solution to AC feasibility. 
The major drawback of this method is the need to specify the penali
zation parameters. The authors in [19] propose an algorithm for 
calculating an appropriate objective function defined using a weighted 
Laplacian matrix. In [20] authors conduct a thorough analysis of several 
penalization methods proposed in literature by using test cases that are 
known to exhibit inexactness. However, the main focus of these works is 
the inexactness of SDP relaxation with generation cost minimization as 
its objective function. On the other hand, only few papers deal with the 
inexactness of the second order cone programming (SOCP) relaxation 
when applied to objectives that differ from minimizing network loss or 
generation cost. Authors in [21] propose a sequential convex optimi
zation method to solve broader class of optimal power flow (OPF) 
problems over radial networks. In [22] authors focus on a second-order 
cone relaxation applied to an OPF based on a branch flow model of a 
radial and balanced distribution system and develop an algorithm con
sisting of adding an increasingly tight linear cut to the SOC relaxation in 
order to ensure its exactness. Authors in [23] further develop cutting 
planes algorithm in order to deal with inexactness of SOC relaxation in 
cases where the relaxation is inexact even when the objective function is 
to minimize network losses. However, as authors state, the algorithm is 
not applicable for certain objectives, such as conservative voltage 
reduction (CVR), an objective similar to demand response scheme pre
sented here. In a more recent paper [24] the authors analyze, in a unified 
manner, several SOCP relaxations of OPF on distribution networks 
previously proposed in several papers. The main focus of this paper is 

Nomenclature 

Sets 
N The set of nodes in the network 
Ng The set of distributed generator nodes 
B The set of nodes with capacitor shunt banks 
E The set of from edges in the network 
ER The set of to edges in the network 
T The set of integer transformer tap positions 
sh The set of integer shunt banks positions 

Variables 
pg,qg Real/reactive power generation 
tap Transformer tap position 
t Transformer turns ratio in per unit 
psh Capacitor bank position 
w Voltage magnitude squared, |V|2 

l Current magnitude squared, |I|2 

pg
sl,q

g
sl Active/reactive power injected at TSO-DSO connection 

node 
v = e + if Voltage in rectangular coordinates 

Parameters 
pd,qd Real/reactive power demand 
np Real power exponential coefficient 
nq Reactive power exponential coefficient 
θΔ Voltage angle difference limit 
Δt Transformer regulation step 
Δbsh Capacitor bank susceptance step 

λ Penalization parameter 
δex Maximum cone residual 
∊ex Maximum cone residual tolerance 
∊opt Stopping tolerance for the difference in penalization 

parameters 
α Step size for the penalization parameter increase 
v0 = e0 + if0 Reference voltage magnitude 
Z = r + ix Line impedance 
Y = g + ib Line admittance 
Yc = gc + ibc Line charging/ transformer admittance 
aP,aQ ∈ { − 1,1} Parameters used to define a search direction 
ϕ Angle between the selected search direction and real 

power axis 
pbase

sl ,qbase
sl Active/reactive power at TSO-DSO connection node for 

the base case operating point 
pstp,qstp Active/reactive power at TSO-DSO connection node for 

desired setpoint within capability area 

Other 
x a constant value 
CA Capability area problem 
CA-R Capability area problem with relaxed discrete variables 
SD Setpoint distance problem 
SD-F Feasibility setpoint distance problem 
DG Distributed generation 
OLTC On Load Tap Changer 
EBF Exact branch flow formulation 
CBF Convexified branch flow formulation  
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the study of different approaches that are (un) able to successfully 
retrieve exact solutions. Authors also propose, as already proposed in 
[18], adding a mild penalty on current magnitudes in the objective 
function to achieve exactness without incurring substantial sub
optimality and claim that with this amendment SOCP relaxation can be 
successfully applied to a substantially wider range of objectives than the 
theoretically sufficient conditions suggest. 

In contrast to the aforementioned papers, which discuss a specific 
problem in particular, here we establish a framework which is both able 
to determine the amount of flexibility, but also the ability of the users 
and assets in the distribution grid to provide the flexibility previously 
determined. We conduct rigorous testing on realistic test cases that 
encompass variable load and generation profiles, discrete variables and 
voltage sensitive loads in order to draw more consistent conclusions 
regarding the performance and solution quality. Although we consider a 
specific application for the methods developed, the paper suggests 
potentially wider applicability as we discuss convex approximation 
approach and its potential to provide exact solution even with objectives 
which inherently lead to inexactness of convex relaxations. 

The main contributions of this paper are:  

• We establish a two part, OPF based framework for quantifying the 
amount and assessing the ability of DSO to provide flexibility service 
to the TSO  

• Within this framework, we propose a convex approximation 
approach and assess its performance and solution quality, with 
regards to standard approaches, on distribution networks which 
encompass discrete variables, voltage sensitive loads and detailed 
network modeling  

• Based on the results on smaller test cases, we develop an efficient 
method which exploits the computational efficiency of a convex 
approximation approach when solving large test cases 

This paper is further structured as follows. Section 2 establishes OPF 
based framework and discusses different formulations. Section 3 pro
vides convex approximation approach and describes a novel algorithm 
developed. Section 4 discusses numerical results, in Section 5 we pro
pose a computationally efficient method for solving large test cases, 
while Section 6 concludes. 

2. General framework and problem formulations 

2.1. Objectives 

We begin by formulating, for the lack of a better term, capability area 
(CA) problem that provides a polygon in P,Q plane that quantifies dis
tribution network’s ability to change its power injection at TSO-DSO 
connection node. Ideally, this polygon should encompass all of real 
and reactive power values at the TSO-DSO connection node that can be 
achieved by controlling the OLTCs, capacitor shunt positions and 

distribution generators. 
The objective function of CA problem takes the following form: 

min − aPpg
sl (1)  

An example of 12 h evolution of the capability area is given in Fig. 1. 
After the capability area has been formed, we formulate a second 
problem, so called setpoint distance problem (SD). We first generate a 
number of setpoints within the capability area created and test the 
ability of the DSO in achieving these setpoints by formulating the 
objective function as minimization of the square of the Euclidean dis
tance between the solution and the desired setpoint. In this case, the 
objective function takes the following form: 

min (pg
sl − pstp)

2
+ (qg

sl − qstp)
2 (2)  

An example of a capability area with generated setpoints is shown in 
Fig. 2. 

In order to ensure exactness of the further developed convex branch 
flow formulation, which is discussed in subsequent sections, objective 
functions (1) and (2) are modified in a manner where the product of 
square current term and inductive series component of a branch 
impedance is added: 

min − aPpg
sl + λ

∑

(i,j)∈E∪ER

xijlij (3)  

min (pg
sl − pstp)

2
+ (qg

sl − qstp)
2
+ λ

∑

(i,j)∈E∪ER

xijlij (4)  

We justify our selection of penalization term in Section 3. 

2.2. Constraints in rectangular coordinates 

The constraints of the OPF based model in rectangular coordinates 
and real numbers are given by (5)–(21). The formulation differs from the 
standard formulation of OPF in that Eqs. (5) and (6) encompass the 
voltage demand correlation, and tij and pshi are now decision variables. 
Note here that the representation of ZIP load models (loads that consist 
of constant-impedance, constant-current and constant-power) in convex 
relaxations has been discussed in [25]. However, as authors in [4] show, 
although less exact, an exponential load model, which we use here, is 
more practical as the coefficients needed are easier to obtain on a larger 
scale. 

∑

(i,j)∈E∪ER

pij = pg
i − pd

i

(
e2

i + f 2
i

(e0
i )

2
+ (f 0

i )
2

)np/2

∀ i ∈ N (5)  

∑

(i,j)∈E∪ER

qij = qg
i − qd

i

(
e2

i + f 2
i

(e0
i )

2
+ (f 0

i )
2

)nq/2

+ (6) 

Fig. 1. An example of 12 h time evolution of distribution network capability 
area for DURD test case. 

Fig. 2. An example of distribution network capability area with generated 
setpoints for BJEL test case. 
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pij =
(

gc
ij + gij

)(
e2

i + f 2
i

)
t2
ij−

tij
[
gij
(
eiej + fifj

)
+ bij

(
fiej − eifj

) ]
(i, j) ∈ E

(7)  

qij = −
(

bc
ij + bij

)(
e2

i + f 2
i

)
t2
ij+

tij
[
bij
(
eiej + fifj

)
− gij

(
fiej − eifj

) ]
(i, j) ∈ E

(8)  

pji =
(

gc
ji + gij

)(
e2

i + f 2
i

)
−

tij
[
gij
(
eiej + fifj

)
+ bij

(
fjei − ejfi

) ]
(i, j) ∈ E

(9)  

qji = −
(

bc
ji + bij

)(
e2

i + f 2
i

)
+

tij
[
bij
(
eiej + fifj

)
− gij

(
fjei − ejfi

) ]
(i, j) ∈ E

(10)  

(
vl

i

)2⩽e2
i + f 2

i ⩽
(
vu

i

)2
∀ i ∈ N (11)  

p2
ij + q2

ij⩽s2
ij(i, j) ∈ E (12)  

(− θΔ)⩽tan− 1
(

fi

ei

)

− tan− 1
(

fj

ej

)

⩽(θΔ) (i, j) ∈ E (13)  

tij = tapijΔtij + 1 tap ∈ T, (i, j) ∈ E (14)  

pshi ∈ shi, ∀i ∈ B (15)  

pgl
i ⩽pi⩽pgu

i ∀ i ∈ Ng (16)  

qgl
i ⩽qi⩽qgu

i ∀ i ∈ Ng (17)  

(pg
i )

2
+ (qg

i )
2⩽(sgu

i )
2

∀ i ∈ Ng (18)  

qg
sl = qbase

sl + aPaQtan
(
ϕ
)(

pg
sl − qbase

sl

)
(19)  

aPpg
sl⩾aPqbase

sl (20)  

aQqg
sl⩾aQqbase

sl (21) 

Eqs. (5), (6) capture the active and reactive power balance where an 
exponential load model is used to best represent voltage dependent 
consumption, while (7)–(10) represent active and reactive power flows. 
Voltage operating constraints are given in (11), while DG real and 
reactive power constraints are provided in (16)–(18),. With these con
straints, we model the DG capability curve similar to one of, for example, 
the gas turbine. However, the model could be easily extended to gen
erators with simpler box constraints or linearized curves, usually used to 
model the PVs, as long as this does not change the underlying problem 
class. The line thermal limit constraints as well as transformer power 
constraints are enforced through (12). The voltage angle difference is 
bounded by (13). Eqs. (14) and (15) constrain the transformer tap and 
capacitor shunt positions. Eqs. (19)–(21), define a search direction when 
constructing the capability area. This is accomplished in a manner 
similar to [26], by alternating the values of aP and aQ and changing the 
predefined values of angle ϕ. A base case is a DSO operating point, 
determined, for example, in day ahead operation, for each time step. 

2.3. Branch flow constraints 

The constraints of the branch flow formulation are presented by 
(22)–(32). Two modifications of the original formulation from [27] are 
done in order to include the voltage-demand dependency in (23), (24) 
and to simplify the terms in (25), (26) by setting the imaginary part of 
tap position tIij = 0. 

(vl
i)

2⩽wi⩽(vu
i )

2
∀i ∈ N (22)  

pg
i − pd

i

(
wi

w0

)np/2

=
∑

(i,j)∈E∪ER

pij ∀i ∈ N (23)  

qg
i − qd

i (
wi

w0
)

nq/2
+ pshiΔbshiwi =

∑

(i,j)∈E∪ER

qij ∀i ∈ N (24)  

(
− xijgc

ij − rijbc
ij

)
wit2

ij + xijpij − rijqij⩾tan(− θΔ)
((

1 + rijgc
ij + xijbc

ij

)
wit2

ij − rijpij − xijqij

) (25)  

(
− xijgc

ij − rijbc
ij

)
wit2

ij + xijpij − rijqij⩽tan(θΔ)
((

1 + rijgc
ij + xijbc

ij

)
wit2

ij − rijpij − xijqij

) (26)  

pij + pji = rijl
′

ij + gc
ijwit2

ij + gc
jiwj (i, j) ∈ E (27)  

qij + qji = xijl
′

ij − bc
ijwit2

ij − bc
jiwj (i, j) ∈ E (28)  

(
1 + 2(rijgc

ij − xijbc
ij)
)

wit2
ij − wj =

2(rijpij + xijqij) − (r2
ij + x2

ij)l
′

ij (i, j) ∈ E
(29)  

p2
ij + q2

ij = wit2
ijlij (i, j) ∈ E (30)  

p2
ij + q2

ij⩽s2
ij(i, j) ∈ E (31)  

(pg
i )

2
+ (qg

i )
2⩽(sgu

i )
2

∀ i ∈ Ng (32)  

where 

l
′

ij = lij − 2(gc
ijpij − bc

ijqij)+ (yc
ij)

2wit2
ij  

2.4. Convex relaxation of the branch flow constraints 

Due to equality in (30), the alterations in (23), (24) and the intro
duction of integer variables that represent transformer tap and capacitor 
bank positions, the problem at hand is still a mixed integer nonconvex 
problem. In this section we deal with the introduced nonlinearities in 
order to establish the convex model. 

2.4.1. Voltage-demand dependency 
We use the a first order Taylor approximation in order to linearize 

the terms in (23) and (24). The term (wi
w0
)

np/2 is expanded, for simplicity, 
around voltage of w0 = 1 p.u. leading to: 

(
wi

w0
)

np/2
≈ 1+

np
2
(wi − 1) (33)  

2.4.2. Transformer turns ratio and capacitor banks shunt position 
When transformer tap changers are decision variables, a nonlinear 

term wit2
ij makes the formulation non convex. In order to address this we 

consider an approach from [28] which develops the exact linear relax
ation of the aforementioned term. The main idea is to introduce a new 
variable wtr for each primary side of OLTC equipped transformer, for 
which the following holds: 

wtr =
∑|T|

i=1
aibiw (34)  

where ai is a binary variable such that 

∑|T|

i=1
ai = 1 (35)  
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and b is a constant value calculated for each tap position: 

b = t2 = (tapΔt + 1)2
∀ tap ∈ T (36)  

However, a bilinear term in (34) still exist. This term is transformed to 
linear constraint by using McCormick inequalities: 

wtr⩾aibiwl (37)  

wtr⩽aibiwu (38)  

wtr⩾bi(w+wuai − wu) (39)  

wtr⩽bi(w+wlai − wl) (40)  

The convexification of the product pshiwi regarding the capacitor banks is 
done in the same manner but is here omitted for brevity. 

2.4.3. Introducing conic constraint 
With the introduction of a new variable wtr from (34) a term in (30) is 

relaxed with an inequality that takes the form of a rotated SOC 
constraint: 

p2
ij + q2

ij⩽wtr
i lij (i, j) ∈ E (41)  

Finally, we summarize the formulations for two problems of interest in 
Table 1. 

The first formulation is the classical OPF based formulation in rect
angular coordinates belonging to a class of mixed integer nonlinear 
programs (MINLP). A similar and well known formulation with polar 
coordinates is not examined as our initial testing showed considerably 
poorer performance when compared to rectangular formulation, which 
is in line with observations in [29] where authors state that, although 
conceptually similar, polar and rectangular formulation can exhibit 
substantial difference in tractability. 

The second formulation is convex reformulation of the Extended 
Branch Flow variant of the problem from [27], here referred to as 
Convexified Branch Flow (CBF). This formulation belongs to a class of 
mixed integer second order cone programs (MISOCP). 

The third (re) formulation, here referred to as Exact Branch Flow 
(EBF), is based on CBF with the exception of not relaxing the nonlinear 
constraint in (30). It serves as a reference for analysing the quality of 
solutions of the previous two formulations. 

3. Convex approximation 

In order to ensure exactness of a convex relaxation, we use a 
penalization approach where we add a penalization term that minimizes 
current magnitude to the objective function in (3) and (4). However, 
adding a penalization term could influence the objective function in a 
manner that favors loss reduction over maximization of real power ex
change between DSO and TSO. In other words, relaxation could be made 
exact, but suboptimal at the same time. 

Unlike usual approaches where only current magnitude squared is 
penalized, here we decide to penalize the product of current magnitude 
squared and inductive series component of a branch/transformer 
impedance. As our analysis shows, this allows for a wider range of 

penalization parameter values for which the CBF is exact and still does 
not incur substantial suboptimality as illustrated on jag test case in 
Fig. 3. 

The right graph of the figure also shows that as the value of penali
zation parameter is increased, three distinct sets of solutions are pro
duced by an optimization algorithm. First set of solutions for which the 
relaxation is inexact, and therefore physically meaningless. This is re
flected in high value of residual in (41). Second set of solutions, for 
which relaxation is exact and penalization parameter is not set high 
enough to influence the objective, and the third set for which relaxation 
is again exact, but influences the result in favor of loss reduction which is 
reflected in substantial suboptimality incurred. Having these observa
tions in mind, a simple bisection algorithm that finds the appropriate 
penalization parameters is proposed and further explained. The solution 
procedure is given by Algorithm 1. Note that the developed approxi
mation approach is based on the existence of the set of solutions which 
yields exactness and does not incur suboptimality. Although we do not 
provide evidence that such set is non-empty, our testing suggests the 
procedure provided could be applied to a wide range of distribution 
networks while its theoretical guarantees are left for future work. 

3.1. Bisection algorithm 

Let δex, defined by (42), denote the maximum cone residual that is 
evaluated in post processing in order to determine the exactness of the 
relaxation. 

δex = max(|p2
ij + q2

ij −
wi

t2
ij

lij|) (i, j) ∈ E (42)  

Let α denote step size and ∊ex and ∊opt denote the convergence criteria for 
the exactness of the relaxation and difference between values of λex and 
λrel. After setting the appropriate convergence criteria and step size, we 
compute the CBF with λ initially set to 0. If the SOC constraint in CBF is 
not met with equality up to a predefined precision, we update variable 
λrel, corresponding to penalization parameter that provided non exact 
solution, and run another instance of CBF with (3) as an objective 
function with increased value of penalization parameter λ. 

If the penalization parameter that provides the exact solution is 
found, the corresponding λex is updated and the algorithm proceeds to 
bisection part, which ensures that the penalization parameter that does 
not incur substantial suboptimality is found. 

Algorithm 1. Determining penalization parameter   
Input: ∊ex ,∊opt ,α, λ = 0  
repeat 

Run CBF 
Compute δex  

(continued on next page) 

Table 1 
Formulation description.   

Capability area (CA) Setpoint distance (SD) 

Form. 
name 

Obj. Constraints Obj. Constraints 

Rect. (1) (5)–(21) (2) (5)–(18) 
CBF (3) (16)–(29), (31)– 

(41) 
(4) (16)–(18), (22)–(29), (31)– 

(41) 
EBF (1) (16)–(40) (2) (16)–(18),(22)–(40)  

Fig. 3. An example of changes in incurred suboptimality and resulting 
maximum cone residual with changes in penalization parameter for jag test 
case. The left graph shows the changes when only the 

∑
l is penalized in the 

objective, while the right graph shows the changes when 
∑

xl is penalized. 
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(continued ) 

if δex > ∊ex then  
λrel←λ  
λ←λ + α  

else 
λex←λ  

end if 
until δex > ∊ex  

if λex ∕= 0 then  
repeat 

λ←
λrel + λex

2  
Run CBF 
Compute δex  

if δex > ∊ex then  
λrel←λ  

else 
λex←λ  

end if 
until λex − λrel > ∊opt  

end if   

4. Numerical results and discussion 

4.1. Test cases and setup 

The numerical results were performed on several real distribution 
networks in Croatia as well as two modified test cases (33bus and 69bus) 

from [30,31] respectfully. The test cases are of different voltage level 
which implies varying degree of complexity. The total number of nodes, 
transformers, capacitor banks and generators are shown in Table 2 and 
Table 3 for each test case provided. The total number of variables and 
constraints for different formulations of a CA problem are shown in 
Table 4 for each test case. Note that CA and SD problem differ only in a 
small number of variables and constraints overall. 

The power lines are represented as a standard π model. The trans
formers are modeled in the same manner, except that here, the shunt 
admittance is comprised of iron losses (gc) and magnetizing susceptance 
(bc), calculated from transformer nameplate. They are equipped with 
OLTCs, with ±10 steps and 1.5%voltage change per step in all cases. 
Each capacitor bank is assumed to have six steps in all test cases. 

The real and reactive power consumption data are based on 24 h 
time interval measurements for real distribution networks while for 
IEEE test cases, the consumption data provided serves as a baseline on 
top of which data for all 24 h is generated based on typical load profile 
for a distribution network in Croatia. The data is provided for one day, in 
one hour time interval. The capability curves are estimated separately, 
so there are no time coupling constraints. 

We assume that the network is observable up to a required degree, 
that the coefficients of the exponential model are determined in advance 
for each substation. The voltage constraints are all set to ±10% of the 
nominal voltage. The effectiveness of demand increase or reduction 
greatly depends on proper determination of voltage upper and lower 
bounds and should be carefully predetermined, as in [32]. Exponential 
coefficients np and nq are set to 1.1 and 3 respectively. In order to 
provide a fair result comparison, the voltage demand correlation is only 
approximately modeled as in (33) in all formulations. An exact voltage- 
demand correlation in CBF cannot be directly introduced to the 
formulation, however, given that these are only approximately deter
mined, this presents only a minor issue. The distribution networks used 
in this paper are operated radially. The CBF formulation used here is not 
guaranteed to provide physically meaningful solutions when dealing 
with mesh topology, even when penalization approach is applied. 
However, more tight SOC relaxations do exist like the one in [33] which 
is effective for meshed transmission networks. 

Regarding the setup of the Algorithm 1, we set ∊ex = 10− 3,∊opt = 0.1 
and α = 0.5. Note here that the changes in daily load profiles result in 
only minor changes in penalization parameters, therefore, once the 
appropriate parameters are found, the number of subsequent iterations 
in the next time step, needed for determining the parameter, is signifi
cantly reduced. This is achieved by setting the initial λ values to values 
already determined from the previous time step. The justification for the 
selected maximum cone residual tolerance (parameter ∊ex) is based on 
the results of an analysis as shown in Fig. 4. We first calculated the DG 
set point values, OLTC and capacitor bank positions with CBF formu
lation variant of a CA problem with different cone residual tolerances 
and then used the aforementioned decision variables as inputs for simple 

Table 2 
Test cases description.  

Test case Nodes Lines Trafo Voltage lvl. OLTCs Cap. 

case kpc 18 8 9 35 kV 9 5 
case durd 9 4 4 35 kV 4 3 

IEEE 33bus 33 34 1 12.66 kV 1 - 
IEEE 69bus 69 72 1 12.66 kV 1 - 

case bjel 20 9 11 35 kV 8 3 
case jag 60 22 37 20 kV 1 4 
case sok 165 119 60 20 kV 3 5 

case kop1 466 456 9 20 kV 9 8  

Table 3 
Generators active/reactive power limits [MW/MVAr]  

Test case DGs Pmin  Pmax  Qmin  Qmax  

case kpc 2 0 1 − 0.7 0.7 
case durd 1 0 10 − 5 5 

IEEE 33bus 6 0.1 1 − 0.2 0.1 
IEEE 69bus 2 0.1 1 − 0.2 0.1 

case bjel 3 0 1/2/10 − 0.5/-1/-6.2 0.5/1/6.2 
case jag 1 0 1 − 0.5 0.5 
case sok 3 0 1.5 − 0.75 0.75 

case kop1 6 0 1 − 0.75 0.75  

Table 4 
Number of variables and constraints.   

CBF Rectangular 

Test case # Variables # Constraints # Variables # Constraints 

case kpc 599 1076 89 151 
case durd 282 503 44 74 

IEEE 33bus 358 465 145 263 
IEEE 69bus 674 861 281 551 

case bjel 553 970 96 168 
case jag 627 849 246 600 
case sok 1672 2234 673 1578 

case kop1 4675 6070 1892 3735  

Fig. 4. Cumulative voltage error change for smaller test cases with varying 
degree of allowable cone residual. 
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power flow calculation. We then calculated the sum of all the differences 
between the node voltages provided by the power flow calculation and 
their respective upper or lower voltage bound if the resulting node 
voltage violates that bound. As shown in Fig. 4, this cumulative voltage 
error is almost negligible for a selected tolerance of 10− 3. 

For CA problem the ϕ, aP and aQ parameters are set in order to 
generate 20 points of the capability area around a base point which is 
generated as a result of a variant of OPF that minimizes the overall 
network losses. In total, 480 runs are conducted per test case. For SD 
problem, between 60 and 70 setpoints have been generated, for each 
time step, depending on the size of capability curve, which implies 
around 1440 runs per test case have been conducted. 

Experiments are carried out on PC with Intel i5-3470 CPU and 6 GB 
memory. Optimization problems are coded in MATLAB with YALMIP 
toolbox [34]. The CBF fomulation is solved using CPLEX v.12.9. [35], 
rectangular formulation is solved using KNITRO v.12.1. [36] and EBF is 
solved using SCIP v5.01 solver[37]. Maximum time of 600 s for calcu
lating SD or CA problem for each point of a capability area is set for all 
solvers. Computational times reported for CBF are calculated by adding 
times for all iterations of Algorithm 1 needed to obtain adequate solu
tion. Finally, a note on solver setup. In order to more accurately compare 
the effort of the solvers used, the available options for KNITRO solver 
were modified, to the best of authors knowledge, to match the default 
ones in CPLEX. Furthermore, on test cases with a large number of integer 
variables, KNITRO solver is not able to close the gap between a relaxed 
solution and current one with tolerances already set to match CPLEX 
default ones. In these cases, a tolerance for aforementioned relative gap 
is set to 1% for both solvers. This modification makes KNITRO compu
tational effort comparable to CPLEX without incurring substantial sub
optimality when considering real life application. Given the difference 
in solver tolerance settings, for cases with a large number of integer 
variables, the results presented do not necessarily reflect problems dif
ficulty. With these adjustments in solver settings we try to ensure there is 
minimum bias in solutions provided, regardless of the solver selected. 

4.2. Computational effort – capability area problem 

The distribution of the computational times needed for creating 
capability area for one time step, per test case, for all three formulations 
is presented in Fig. 5. by using standard MATLAB box-and-whiskers plot 
where the central mark indicates the median, and the bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively. 
The whiskers extend to the most extreme data points not considered 
outliers, and the outliers are plotted individually using the ’+’ symbol. 

The method proposed performs well on smaller test cases even with 
relatively high number of discrete decision variables. However, already 
on a medium sized test case (case sok) both EBF and rectangular 
formulation fail to provide results within set time limitation in most 
instances. The CBF formulation is able to provide results within 1200 s. 
However, on a large test case (case kop1) all of the methods are unable 

to find optimal result within the time limitation. On smaller test cases, 
the CBF formulation, in terms of tractability, outperforms EBF and 
rectangular formulations overall, on some test cases by the factor of 9. 
Because of the way the Algorithm 1 is designed, most of the calculation 
time for the CBF formulation is spent in the first time step in order to find 
an appropriate penalization parameter for the specific test case. Once 
found, there is only a small difference in penalization parameter for 
different time steps, usually only reflecting the change in load for every 
segment. If the load does not change drastically from adjacent time 
steps, Algorithm 1 requires only 2–3 iterations in order to converge. The 
CBF is also the most consistent one of the three, which is reflected in 
small difference between minimum and maximum values and relatively 
small number of outliers. This is contrary to rectangular formulation 
which performs well on average, but can have problems with certain 
time steps, hitting the specified time limit. These differences cannot be 
observed when dealing with test cases that do not provide time varying 
load data, which could lead to false interpretation of the results. These 
results also expose the shortcomings of testing on relatively simple test 
cases derived from literature as rectangular formulation performs well 
on these cases, but shows poorer performance on real life and more 
demanding test cases. The scalability issues motivate a development of a 
method that is able to provide meaningful results in a realistic time 
frame and is presented in Section 5. 

Somewhat surprising is the performance of EBF formulation, which 
is on most of the smaller cases comparable or better then the rectangular 
one and is outperforming the rectangular formulation up to factor of 4 
on JAG test case. A global MINLP solver is able to certify most of the 
results as the globally optimal ones, while still providing feasible solu
tions in cases where a global optimal solution is not reached. The use of 
of-the-shelf global optimization solvers for OPF problems, to the best of 
our knowledge, has not been studied extensively. However, as discussed 
in [38–40], global optimization solvers could benefit greatly from 
reformulations, strengthening variable bounds and adding valid in
equalities to the original problem which is in line with results presented 

Fig. 5. Distribution of computational effort for creation of one hour time step 
capability area. 

Fig. 6. Relative Euclidean distance of solutions provided by rectangular 
formulation and CBF compared to EBF. 

Fig. 7. An example of capability area with noticeable differences between 
different formulations. 
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here. Still, the CBF approach outperforms EBF by up to a factor of 9 in 
33bus test case. 

4.3. Solution quality – capability area problem 

The results representing the quality of solutions provided by CBF and 
rectangular formulation are presented in Fig. 6. The results are reported 
only for those test cases where all the formulations are able to provide 
solutions within the set time limit. Each plot summarizes the distribution 
of 480 values for each of the two formulations. The quality of solution is 
expressed in percentage, measured as a relative Euclidean distance of a 
real and reactive power exchange in TSO-DSO connection node pro
duced by CBF and rectangular formulation compared to optimal solution 
produced by EBF. The greater the distance, the more conservative the 
area produced by specific formulation is, example of which is shown in 
Fig. 7. Both CBF and rectangular formulation provide negligible sub
optimality on test cases with smaller number of OLTCs. Rectangular 
formulation exhibits poorer results already on DURD test case with the 
maximum distance of around 17%. The maximum distance provided by 
rectangular formulation on KPC test case is 8%, but with a notable 
number of outliers. On BJEL test case the suboptimality reaches 17% for 
rectangular formulation. However, the median values are satisfactory 
overall, reaching just 4% for rectangular formulation on BJEL test case. 
The CBF formulation performs almost the same as EBF with maximum 
outlier of only 9% on BJEL test case. 

4.4. Computational effort – setpoint distance problem 

The distribution of computational time needed for each formulation 
to minimize the distance to each specific setpoint is provided by Fig. 8. 
CBF outperforms the EBF and rectangular one, usually requiring only 
two iterations in finding the appropriate penalization parameter that 
satisfies the cone residual threshold. Contrary to previous problem 

analyzed, in this case the computational times do not exhibit substantial 
difference making all of them applicable even when considering real 
time applications. 

4.5. Solution quality – setpoint distance problem 

The distribution of relative setpoint distance for each formulation is 
provided by Fig. 9. All of the setpoints generated are achieved within a 
fraction of percent in all test cases. Because of the approximation 
approach needed, the CBF provides the greatest distances, but these are 
negligible in any case. An important note here is that all of the formu
lations were able to achieve all the desired setpoints which were 
generated within the least conservative capability curves, the ones 
produced by EBF in previous problem. This shows that although CBF and 
rectangular formulations could not find solutions through capability 
area problem, they were able to provide solutions through setpoint 
distance problems for setpoints that were outside their respective 
capability areas. 

5. Method for solving large test cases 

As numerical test show, on smaller test cases, even when the number 
of discrete variables is substantial, all tested formulations produce re
sults within reasonable time frame. However, rectangular and EBF 
formulation are, in most instances, unable even to provide a result 
already on medium size test case and the same can be observed for CBF 
on a large test case. In this section we present a method that is able to 
solve the CA problem on large instances based on observations made in 
previous sections. As it can be seen, the computational effort for SD 
problem is substantially lower then for CA problem on all test cases. We 
therefore propose a two step method to solve the original CA problem 
where we first relax the discrete variables and solve the original CA 
problem more efficiently and then use the obtained solution as a setpoint 
around which, within some reasonable tolerance, we find a feasible 
solution. 

Let us define new variants of CA and SD problem. We denote CA-R a 
variant of CA problem as defined in Table 1 but here we relax binary 
variables ai from (34) and (35) which can now take any value from 0 to 
1. We denote SD-F a variant of SD problem as defined by Table 1 but 
without an objective function and with the following additional 
constraint: 

(pg
sl − pstp)

2
+(qg

sl − qstp)
2⩽∊dist (43)  

where ∊dist denotes a tolerance, agreed upon between TSO and DSO, 
with regards to the desired values of real and reactive power at inter
connection node. 

The method developed is illustrated by Algorithm 2. First, we solve a 
CBF variant of CA-R problem. In order to ensure the exactness of the CA- 
R problem, we have to employ an Algorithm 1 in the same manner as 
when dealing with the original CA problem. The outputs of CA-R 
problem are values of real and reactive power at the TSO-DSO connec
tion node for predefined number of outermost points of a capability 
area. In the second part, we use the outputs from the previous compu
tation which now enter a SD-F problem as parameters pstp and qstp. 

Algorithm 2. Solving large test cases   
Input: ∊ex ,∊opt ,α, λ = 0  
Run CBF variant of CA-R problem with Algorithm 1 
Output: pg

sl,q
g
sl  

pstp←pg
sl  

qstp←qg
sl  

Input: ∊dist ,pstp ,qstp  

Run Rectangular variant of SD-F problem  

The increase in computational efficiency is achieved by two major 
changes with regards to the original CA and SD problems. Since we have 

Fig. 8. Distribution of computational times for minimizing the distance to a 
specific setpoint. 

Fig. 9. Distribution of relative distance of solutions provided by each formu
lation to the desired setpoint value. 
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relaxed all binary variables, CA-R is now a SOCP problem which is less 
computational demanding than the original MISOCP problem. In SD-F, 
the variables regarding OLTC and capacitor bank position remain 
discrete, but here we only solve a feasibility problem, meaning we only 
want to obtain one feasible solution where the constraint (43) ensures 
obtaining a satisfactory solution. In this case, the solver used can be set 
to stop at first feasible solution which results in significant reduction of 
computation time. We apply the proposed method to a medium size 
(case sok) and a large size test case (kop1). The computational effi
ciency of the proposed method is shown by Fig. 10. As expected, the CBF 
formulation on a relaxed CA problem is efficient and is able to generate 
the one hour capability curve in less then 20 s on sok test case and less 
then 40 s on kop1 test case. For a feasibility problem, MINLP solver 
requires less then 150 s on a medium size test case and less then 450 s for 
a large sized one. Overall, the proposed method is able to generate a one 
hour capability curve in less then 500 s overall for a demanding, large 
size test case with a substantial number of discrete variables. 

6. Conclusion and future work 

This paper formulates two OPF based problems - the problem of 
determining the capability area for distribution network flexibility 
provision at one hand, and the ability to set the available controlling 
devices, in order to achieve desired setpoint within the aforementioned 
curve. The two problems encompass voltage dependent loads, OLTC and 
capacitor bank positions which makes them computationally 
demanding. This motivates the development of the proposed convex 
approximation approach as well as a more detailed study of a known 
branch flow reformulation. Within the established framework, the 
comparison of three different formulations is conducted with compu
tational effort and quality of solution as metrics. Based on results on 
smaller to medium sized networks, we develop and asses a method that 
can effectively solve large test case instances. 

As our results indicate, when applied to the problem at hand, the 
classical optimization approach would require a development of a 
specially tailored algorithms that exploit the specific problem structure 
or an in depth knowledge of a certain solver in order to be applicable in 
realistic scenarios. With the classical approach, the use of of-the-shelf 
solvers on large instances, with a substantial number of discrete vari
ables is rather optimistic. The CBF formulation, combined with a novel 
algorithm, outperforms other formulations, in some cases by several 
orders of magnitude, while still providing solutions with relatively small 
suboptimality. 

Finally, the convex approximation approach developed shows it is 
able to provide feasible solutions, usually with negligible gaps, when 
compared to globally optimal ones, even when applied to objectives for 
which a similar convex relaxation would inevitably lead to infeasible 
results. This paper shows, along several other ones, that approximation 

approaches significantly broaden the applicability of convex reformu
lation of the original OPF, far more than theoretically suggested. 
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