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Abstract
Machine learning classification models are vulnerable to

adversarial examples—effective input-specific perturbations
that can manipulate the model’s output. Universal Adver-
sarial Perturbations (UAPs), which identify noisy patterns
that generalize across the input space, allow the attacker to
greatly scale up the generation of these adversarial examples.
Although UAPs have been explored in application domains
beyond computer vision, little is known about their properties
and implications in the specific context of realizable attacks,
such as malware, where attackers must reason about satisfying
challenging problem-space constraints.

In this paper, we explore the challenges and strengths of
UAPs in the context of malware classification. We gener-
ate sequences of problem-space transformations that induce
UAPs in the corresponding feature-space embedding and eval-
uate their effectiveness across threat models that consider a
varying degree of realistic attacker knowledge. Addition-
ally, we propose adversarial training-based mitigations using
knowledge derived from the problem-space transformations,
and compare against alternative feature-space defenses. Our
experiments limit the effectiveness of a white box Android
evasion attack to ~20% at the cost of ~3% TPR at 1% FPR.
We additionally show how our method can be adapted to more
restrictive application domains such as Windows malware.

We observe that while adversarial training in the feature
space must deal with large and often unconstrained regions,
UAPs in the problem space identify specific vulnerabilities
that allow us to harden a classifier more effectively, shifting
the challenges and associated cost of identifying new universal
adversarial transformations back to the attacker.

1 Introduction

Universal Adversarial Perturbations (UAPs) [50] are a class of
adversarial perturbations in which the same UAP can be used
to induce errors in a Machine Learning (ML) classifier when
applied to many different inputs. UAPs have proven to be

very effective for crafting practical and physically realizable
attacks in computer vision [23, 40, 50, 52] as well as for NLP
tasks [72] and audio and speech classification [1, 54].

However, to the best of our knowledge, the study of uni-
versal perturbations in ML-based malware detection has not
yet been explored, likely due to the difficulty of modifying
real-world software while preserving malicious functional-
ity [58]. Despite this, UAP attacks represent a very tempt-
ing opportunity from an adversary’s perspective, as attack-
ers naturally gravitate towards using low-effort/high-reward
strategies to maximize profit [30, 31]. UAPs enable attackers
to cheaply reuse the same collection of predefined pertur-
bations to successfully evade detection with different types
of input malware with a high probability. As well as being
an attractive prospect for individual malware authors, UAPs
are promising for the Malware-as-a-Service (MaaS) business
model [38, 46, 74], in which service providers are interested
in producing cheap universal evasive transformations at scale.

In this paper, we analyze the impact of UAP attacks against
malware classifiers, revealing that they pose a significant
and real threat against ML-based malware detection systems.
First, we show the effectiveness of UAP attacks in the feature
space against linear and non-linear classifiers is comparable to
that of input-specific attacks, demonstrating the existence of
a systemic vulnerability in these malware detectors. Second,
our analyses in the problem space confirm this vulnerabil-
ity. Thus, we propose a methodology to produce functional
(real) adversarial malware that rely on UAPs. Specifically, we
propose a greedy algorithm that identifies a short sequence
of problem-space transformations that, when applied to a
malware object, evade detection with high probability while
preserving the malicious functionality.

We provide an extensive experimental evaluation across
the Android and Windows malware landscape, exploring lin-
ear and non-linear ML models, including Logistic Regres-
sion (LR), Support Vector Machines (SVMs), Deep Neural
Networks (DNNs), and Gradient Boosting Decision Trees
(GBDTs) [39]. Our results show that unprotected models
are brittle and vulnerable to our UAP attacks, even when the
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attacker’s knowledge about the target classifier is limited.
To defend against this threat we propose a novel method to

perform adversarial training using adversarial examples cre-
ated in the problem space. Adversarial training [32, 48] has
proven to be one of the most promising approaches for defend-
ing against adversarial examples, however protecting against
multiple types of perturbations is challenging [68]. Thus, we
propose a method to perform adversarial training with UAPs
by learning feature-space perturbations induced by the prob-
lem space transformations. Our approach allows us to protect
against a set of manipulations used by an attacker to produce
the adversarial malware, with a small decrease in the detec-
tion rate of non-adversarial malware. On the other side, our
method reduces the number of adversarial examples needed
to be crafted in the problem space to perform the adversarial
training. We also show that, in comparison, feature-space
adversarial training is not as robust against problem-space
UAP attacks.

We note that we do not provide robustness against all pos-
sible adversarial ML attacks. Conversely, our defense focuses
on “patching” those pockets of vulnerabilities that allow ad-
versaries to craft realizable attacks using a predefined toolkit
of transformations. While defending against unknown un-
knowns remains an open challenge, our methodology can be
realistically applied to harden ML-based malware detection
models against known vulnerabilities (i.e., transformations
attackers rely on to evade detection). This raises the cost of
creating evasive malware, as adversaries must either identify
a new set of problem-space transformations or focus on input-
specific attacks that may require using longer transformation
chains, increasing the risk of corrupting the malware [45].

In summary, this paper makes the following contributions:

• We first demonstrate that ML malware classifiers are es-
pecially vulnerable to UAP attacks in the feature space,
and we empirically show that they achieve similar effec-
tiveness compared to input-specific attacks (§3).

• We then propose a novel attack methodology to find
weaknesses in ML-based malware classifiers using
UAPs. This methodology allows attackers to modify
real malware in the problem space while preserving mali-
cious semantics and plausibility (§4). We experimentally
demonstrate the effectiveness of our approach by gen-
erating highly evasive Windows and Android malware
variants using UAP attacks.

• We propose a novel defense to mitigate this threat based
on adversarial training, using the knowledge from the
evasive malware generated using our UAP attack. Our
defense raises the cost for attackers and disincentives the
use of powerful UAPs (§5).

We release our implementation of the attacks and the de-
fense to the community (§8) which is designed in a modular
fashion in order to better foster future research.

2 Background

We introduce major notation and pertinent background on
feature-space and problem-space evasion attacks, UAPs,
and adversarial training. In particular, we borrow notation
from Biggio and Roli [16] and Pierazzi et al. [58].

2.1 Adversarial Evasion Attacks
In the malware domain, evasion attacks occur when an at-
tacker modifies an object at test time to evade detection. The
object can be represented in two ways: feature-space objects
are the abstract numerical representation fed to the machine
learning algorithm, whereas problem-space objects represent
the input space, i.e., real software applications.

The feature space, label space, and problem space are de-
noted by X , Y , and Z, respectively. Each input object z ∈ Z
is associated with a ground-truth label y ∈ Y . A classifier
g : X −→ Y produces a label prediction ŷ = g(x). In order to
be processed by a classifier, we must use a feature mapping
function to convert it to the feature-space representation such
that ϕ : Z −→ X ⊆ Rn. In the software domain, the feature
mapping function is not invertible nor differentiable, meaning
it is not easy to find a problem-space attack with traditional
gradient-based methods; moreover, with respect to the feature
space, we must take into consideration several additional con-
straints to generate realistic, inconspicuous problem-space
objects that preserve the attacker-defined semantics.

Feature-space attacks. The goal of the adversary is to
transform an object x ∈ X into an object x′ ∈ X in which
g(x′) = t ∈ Y where t 6= y. Hence, the adversary forces the
model g to predict the wrong class for the object x′. In the
malware context, we consider the case in which a malicious
object is misclassified as benign.

Feature-space constraints. A set of constraints is thereby
defined as Ω and consists of possible transformations in the
feature-space. For example, limiting the lower and upper
bounds of the features such that δlb � δ� δub or limiting the
number of features that can be modified.

Problem-space attacks. The goal of the adversary in the
problem-space is to find a sequence T : Tn ◦ Tn−1 ◦ ... ◦ T1
where each transformation T : Z −→ Z mutates the object z
such that g(T(z)) = t ∈ Y where t 6= y, while satisfying all
problem-space constraints defined by the attacker.

Problem-space constraints. Problem-space attacks must
satisfy additional constraints [58]: available transformations,
preserved semantics, robustness to preprocessing, plausibil-
ity. For example, transformations in the problem-space are
typically limited to addition, since removal or modification
can lead to file corruption. For machine learning classifiers
relying on static analysis, this is often achieved by injecting
instructions that will not be executed or modifying parameters
that do not affect the integrity of the file.
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2.2 Universal Adversarial Perturbations

UAPs are a class of adversarial perturbations where a single
perturbation applied to a large set of inputs produces errors
in the target machine learning model for a large fraction of
these inputs [50]. UAPs reveal systemic vulnerabilities in the
target models and expose a significant risk, as they reduce the
effort for the attacker to create adversarial examples, enabling
practical and realistic attacks across different applications
as, for example, in computer vision or object detection [19,
28, 47, 64], perceptual ad-blocking [69] or LiDAR-based
object detection [20, 70]. As UAPs find patterns the target
models are especially sensitive to, attackers can also use UAP
attacks to craft successful and very query-efficient black-box
attacks [23]. So far, UAP attacks have not been explored in
the context of machine learning malware classifiers.

In our experiments, we measure the effectiveness of UAP
attacks in terms of the Universal Evasion Rate (UER), com-
puted over a set of inputs X and defined as:

UER =
|{x ∈ X : argmaxg(x+δ) 6= y ∈ Y }|

|X |
(1)

That is, UER denotes the fraction of inputs in X for which
the classifier outputs an error when the UAP δ is added.

2.3 Adversarial Training

Adversarial training is one of the most successful and
promising approaches for defending against adversarial exam-
ples [32, 48]. It involves training a model using adversarial
examples crafted for each class so that the model becomes
more robust to these types of inputs. The robustness gained de-
pends on the strength and type of examples generated. Shafahi
et al. [62] also proposed using UAP adversarial training to
defend against UAP attacks in computer vision tasks.

However, adversarial training suffers from some limita-
tions. When using standard adversarial training techniques,
such as Projected Gradient Descent (PGD) or multi-step PGD,
the cost of generating adversarial examples is very high, mak-
ing them impractical for large-scale datasets—although some
more specialized techniques can be used to alleviate the com-
putational burden [61]. On the other hand, defending against
multiple perturbations is challenging [68] and making the
model robust to certain perturbations can facilitate evasion
attacks that use different perturbations the defender did not
consider during training.

3 Feature-Space UAPs for Malware

In this section, we present a motivational experiment to
demonstrate that malware classifiers are especially vulner-
able to UAPs crafted in the feature space—that is, without

considering the set of problem-space constraints which re-
strict how the attacker can mutate an input object. Although
in a domain such as malware feature-space attacks may be
unrealistic from a practical perspective [58], this analysis ex-
poses the systemic risk of malware classifiers to universal
attacks and the importance of understanding this threat in the
problem space, as we describe in the subsequent sections. To
the best of our knowledge, this is the first study of the impact
of UAP attacks for malware detection.

We perform an empirical evaluation of feature-space UAP
attacks using two well-known malware datasets: i) SLEIP-
NIR [4] for Windows malware and ii) DREBIN20 [10, 58] for
Android malware. SLEIPNIR consists of 34,995 malicious
and 19,696 benign PE files and uses a binary feature space
where each feature corresponds to a unique Windows API
call, with 1 and 0 indicating presence and absence of the call,
respectively. Each vector (i.e., PE representation) consists
of 22,761 API calls. The DREBIN20 dataset, also a binary
feature space, is presented in detail in §4.1.

For both datasets we create a random split with 60% of
examples used for training and 40% for testing. Note that,
without loss of generality, here we consider SLEIPNIR as a
Windows representative out of simplicity, given its convenient
binary feature space, although the remainder of the paper will
consider a more comprehensive dataset: EMBER [6], which
also includes continuous features (§4.1).

For both datasets we train a Logistic Regression (LR) clas-
sifier and a Deep Neural Network (DNN) with the following
architecture: n f × 1,024× 512× 1, where n f = 22,761 for
SLEIPNIR and 5,000 for DREBIN20. For the DNNs we use
Leaky ReLU activation functions for the hidden layers (with
negative slope equal to 0.1) and a sigmoid activation function
for the output layer. We use the Adam optimizer [41] with
learning rate equal to 10−3, for both the LR and the DNN,
and include Dropout to reduce overfitting.

We test the robustness of the LR and the DNN classifiers
against input-specific and UAP attacks under perfect knowl-
edge white box settings. For the input-specific attacks we
use the attack proposed by Grosse et al. [34], which relies
on the recursive computation of the Jacobian, searching at
each step for the feature that maximizes the change in out-
put in the desired direction (i.e., towards evasion). For the
UAP attack we propose a method where we select the most
salient features computed by the Jacobian averaged over the
malware examples in the test set. We define the attacker’s
feature-space constraints in terms of the L0-norm, i.e., the
number of features that the attacker can modify, exploring
values from L0 = 1 to 20. As in Grosse et al. [34], we further
assume that the attacker can only add features, in order to
preserve malicious functionality, i.e., the attacker can only
change features from 0 to 1 but not from 1 to 0. For the UAP
attack, the effective change in the number of features that are
set to 1 after the attack is at most L0 for each input, i.e., some
of the features for these inputs may already be set to 1, and
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Figure 1: Android malware (DREBIN): Input-specific vs
UAP white-box attacks against LR and DNN.
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Figure 2: Windows Malware (SLEIPNIR): Input-specific vs
UAP white-box attacks against LR and DNN.

thus, the UAP does not change their value.
The computation of the attacks against the LR can be sim-

plified: for the UAP attack, we select the features with the
most negative weights, i.e., we select the top-L0 features that
are most indicative of goodware. For the input-specific at-
tacks, for each input, we also select the top-L0 features that
are most indicative of goodware and that have value 0 for that
specific input.

Figures 1 and 2 show the results for the DREBIN20 and
SLEIPNIR datasets, reporting the classification error of the
adversarial malware at different attack strengths (including
when the malware is not manipulated, i.e., L0 = 0). We
observe that for L0 = 20, the effectiveness of both UAP and
input-specific attacks is above 95% in all cases, achieving in
some cases effectiveness close or equal to 100%. In other
words, just by modifying 0.09% and 0.4% of the features
used by SLEIPNIR and DREBIN20 classifiers respectively,
we can achieve very successful attacks.

Most importantly, we observe that the effectiveness of the
UAP attacks is comparable to those of the input-specific at-
tacks, especially for the linear classifiers, where the results
are almost identical. The reason is that, in the case of the
LR, the features associated with the most negative weights
(i.e., those indicative of goodware) are rarely present in the
malware examples. Thus both UAP and input-specific attacks

modify the same features in most cases.
For lower values of the L0-norm we observe that the DNN

is more robust than the LR, and that for DREBIN20, the effec-
tiveness of the UAP attack against the DNN is slightly lower
compared to input-specific attacks. However, as previously
mentioned, given the very low percentage of features the at-
tacker needs to modify to craft very successful attacks, our
results show that both LR and DNN are very brittle and can
be easily evaded, which is consistent with previous work [34].

For unprotected models, the extra capacity of the DNN
compared to the linear classifier provides only marginal im-
provements in robustness that are not relevant from a practical
perspective. Most importantly, our results show the impor-
tance of UAP attacks against malware classifiers: they achieve
comparable effectiveness compared to their input-specific
counterparts, but pose a significantly higher risk, as the same
perturbation generalizes across many malware examples.

Our results suggest that there are systemic vulnerabilities in
machine learning malware classifiers that attackers can lever-
age to craft very effective UAPs capable of evading detection
regardless of the malware they are applied to. This reduces
the cost for the attacker to generate adversarial malware ex-
amples at scale. These results justify the attack methodology
considered in the following sections, where we show it is
also possible to generate very effective UAP attacks in the
problem space, which pose a significant and real threat.

4 Problem-Space UAPs for Malware

Motivated by the results of feature-space UAP attacks in §3,
here we show the feasibility of generating problem-space
UAPs to realize real-world evasive malware. We aim to an-
swer the following research questions:

RQ1. Is it possible to generate UAPs that are effective at
evading malware classifiers? (§4.3)

RQ2. Is it possible to find effective UAPs when the attacker
has only limited knowledge? (§4.4)

To this end, we consider two different experimental set-
tings (§4.1): first we consider an attack against an An-
droid classifier in which the attacker is relatively uncon-
strained (§4.3), and secondly, an attack against a Windows
malware classifier in which the attacker is more constrained,
with limited knowledge and a more opaque set of available
transformations (§4.4). An overview of the methodology for
generation of problem-space UAPs is discussed in §4.2.

These different settings help us explore the nuances of phys-
ically transforming binaries with UAPs, as well as helping
us gauge how realistic the threat of UAPs really are—across
different domains.
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4.1 Experimental Setting
Here we outline the threat model and datasets we consider
which act as a foundation for the domain-specific attacks
in §4.3 and §4.4.

4.1.1 Attack Scope and Objectives

While recent work has shown that feature-space UAPs can
be employed in attacks at training time, such as backdoor
poisoning attacks [77], here we focus solely on the test phase
of the machine learning pipeline. Specifically, we focus on
evasion attacks (§2.1) in which the attacker modifies objects
at test-time in order to induce targeted misclassifications.

We envision a profit-motivated adversary such as a
Malware-as-a-Service (MaaS) provider [38, 46, 74] with two
objectives:

O1. They aim to maximize the amount of malware that can
be made undetectable, increasing revenue.

O2. They aim to minimize the cost of making a single mal-
ware undetectable, reducing expenditure.

From these objectives it is clear why UAPs are a natural
choice: UAPs are scalable, amortizing the cost of generating
a perturbation over the total number of evasive malware that it
produces. To quantify the success of these objectives, we use
the Universal Evasion Rate (UER) to measure the universality
of each perturbation as defined in Equation (1).

4.1.2 Attacker Knowledge

We consider two different levels of attacker knowledge. Fol-
lowing Biggio and Roli [16] and Carlini et al. [21] we define
knowledge in terms of training data D, feature set X , algo-
rithm g, and parameters/hyperparameters www.

Perfect Knowledge (PK). In this setting θPK =
{D,X ,g,www}, the attacker has full knowledge of the learner
and its hyperparameters, or otherwise, the ability to uncondi-
tionally query the target model and receive soft labels. This
setting facilitates the strong attack in §4.3 that uses a greedy
algorithm to generate the strongest possible UAP.

Limited Knowledge (LK). In this setting θLK = {D̂ }, the
attacker is able to approximate the input data distribution in
order to validate the strength of generated UAPs and choose
the strongest of them to apply during the test-time attack. Here
we assume that the attacker is also able to query the target
model to receive soft labels as in past black box attacks [23].
Alternatively, queries can be made to a surrogate learner if the
attacker has additional knowledge of the learning algorithm
and feature set, i.e., θLK = {D̂, X̂ , ĝ, ŵww}.

When considering a Malware-as-a-Service scenario and
UAPs, the Android ecosystem is naturally appropriate to use
as a perfect knowledge setting, especially as the attacker has

access to bytecode, on which they can perform more de-
tailed injections at scale. Conversely, the Windows domain is
more interesting to evaluate as a limited knowledge setting
in which a service provider would only have access to bina-
ries and where it may be difficult even to discern symbols
and sections [56]. Hence, we focus on the Android domain
for the Perfect Knowledge setting, whereas for the Limited
Knowledge setting we focus on Windows while presenting
some results on Android as well.

4.1.3 Attacker Capabilities

Generally we assume the attacker is able to add, remove, or
modify features arbitrarily, so long as the resulting pertur-
bations correspond to a realizable, functioning input object.
However, we do not assume the attacker has access to the
original source code, as they may be a third-party operating
on behalf of the malware author (e.g., a MaaS provider).

Otherwise, capabilities are domain specific, largely relating
to the set of available transformations that the attacker has
access to. In our Android attack, the attacker knows which
feature-space perturbations will be induced by which problem-
space transformations, giving the adversary greater control
over how to mutate the binary effectively. In our Windows
attack, the attacker is more constrained as the effect a certain
transformation (e.g., ‘UPX pack’) will have on the input
binary cannot be calculated a priori. We refer to §4.3 and
§4.4 for the details of capabilities assumed by our Android
and Windows attacks, respectively.

We do not put hard limits on the size of the perturbation in
terms of Lp norm, as these have been shown to be inappropri-
ate for formulating problem-space attacks [58]—however, we
note that larger perturbations often correspond to larger trans-
formation sequences which increase the risk of corrupting the
input malware.

4.1.4 Target Models

To avoid coming to conclusions which are only specific to a
particular domain, we explore attacks against malware detec-
tors for both Windows and Android.

DREBIN Classifier. We consider DREBIN [10], an Android
malware detector which can achieve state-of-the-art perfor-
mance in the presence of concept drift if retrained with incre-
mental retraining [57]. DREBIN [10] uses a linear Support
Vector Machine (SVM) as the underlying classifier. For the
SVM regularization hyperparameter we use C = 1.

EMBER Classifier. We consider a state-of-the-art Windows
malware detector proposed by Anderson and Roth [6] which
uses Gradient Boosting Decision Trees (GBDT) trained using
the LightGBM library [39] and default hyperparameters of
100 trees with 31 leaves each.
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4.1.5 Datasets

We present the main characteristics of the two datasets from
related work that we use in our experiments.

DREBIN20. This Android malware dataset by Pierazzi et al.
[58] consists of 152,632 benign and 17,625 malicious apps
from AndroZoo [5], following the guidelines of TESSER-
ACT [57] to avoid spatial bias. The apps are dated between
Jan 2017 and Dec 2018 inclusive. The apps are embedded in
the DREBIN [10] feature space abstraction, i.e., a binary fea-
ture space in which Android components (activities, permis-
sions, URLs, services, etc) are represented as either present
or absent. The apps have been labeled using a common crite-
ria [49, 57] in which apps are labeled as malicious if they are
detected by 4+ VirusTotal AV engines and benign if they are
completely undetected.

EMBER. This Windows malware dataset by Anderson and
Roth [6] consists of features extracted from 400,000 benign
and 400,000 malicious PE files (as well as 300,000 unlabeled
examples which we discard). The remaining apps are mostly
dated between Jan 2017 and Dec 2017 inclusive with ~4% pre-
dating 2017. The examples have been labeled as malicious if
they are detected by 40+ VirusTotal AV engines and benign
if they are completely undetected. We augment the original
EMBER dataset with 1,100 binaries, classified as malicious
by the target model, to which we can apply problem-space
transformations. The EMBER feature space has three broad
types of features related to parsed features (e.g., file size,
header information), format-agnostic histograms (e.g., byte-
value/entropy histograms), and printable strings (e.g., charac-
ter histograms, average length, URL frequency). Note that
unlike DREBIN20, EMBER includes continuous features.

After explaining our methodology in §4.2, we discuss the
dataset splits used in our experiments for DREBIN20 [58]
and EMBER [6] in §4.3.2 and §4.4.2, respectively.

Moreover, we note that while the original labeling crite-
ria [6, 58] discard ‘difficult to classify’ grayware with be-
tween 1 and 3 (Android) and 1 and 39 (Windows) AV detec-
tions, which could result in sampling bias [11], this would
only be to the advantage of the classifiers under attack (i.e.,,
it is harder for an attacker to evade this classifier). This is
also true for the potential spatial bias present in the original
EMBER dataset [6]. While the overall performance of the
classifiers as reported in their respective original works could
be inflated, in this work we are focused on the relative degra-
dation in performance, before and after attacks or defenses
are applied, which are unaffected.

4.2 Methodology for Generating UAPs
Generating UAPs that can be used with real-world malware
is significantly more challenging than generating UAPs in
the feature space (§3). In order for a UAP to be successfully
applied to real-world malware, there must exist some inverse

mapping from the UAP feature vector back to the “problem
space”; i.e., there must exist some chain of real-world trans-
formations which is capable of inducing the feature-space
change in the chosen object. While the complexity of soft-
ware means that how these real-world transformation chains
are found is largely specific to the given domain, here we
outline a number of common components that make up our
overall methodology.

Available transformations. We augment the given threat
model with the available transformations problem-space con-
straint (§7). This represents the specific toolbox that the
attacker has access to, e.g., a set of gadgets to inject (§4.3) or
a tool for performing binary mutations (§4.4). Formally we
define it as a set of domain-specific problem-space transfor-
mations where each transformation is a function T : Z→ Z
that mutates a problem-space object z ∈ Z into z′ ∈ Z. This
set is analogous to an action space in reinforcement learn-
ing [73]. The specific transformations are different between
the Android and Windows domain, and are discussed more in
detail in the appropriate experimental sections.

UAP search. Next, we perform a greedy search for a chain
of transformations T = Tn ◦Tn−1 ◦ . . .◦T1 which can be uni-
versally applied to a set of true positive malware in order to
flip their labels to benign—this chain is the problem-space
equivalent of a UAP. The chain is constructed such that each
new transformation aims to maximize UER, however whether
this search can be feature/gradient-driven or problem-driven
depends on the set of transformations itself. In order to avoid
experimental bias (e.g., data snooping) we conduct this search
on an exploration set, a partition of the training data [11].
Note that we avoid splitting the dataset temporally [57] in
order to evaluate the attacks in the absence of concept drift, as
performance degradation induced by the evolution of malware
over time may lead us to overestimate the UAP success rate.

Feature space analysis. Finally we evaluate the effective-
ness of the discovered UAPs on a separate test set in terms of
the UER. To understand the effect that the UAPs have on the
target classifier—and better understand systemic weaknesses
in the model—we analyze the feature-space perturbations
induced by the problem-space UAPs.

4.3 Perfect Knowledge Setting

Here we aim to answer RQ1: given a strong attacker, can
UAPs be produced that are effective against a malware clas-
sifier? For this we consider the PK threat model (§4.1) and
build on the state-of-the-art, problem-space attack proposed
by Pierazzi et al. [58] that targets Android malware detectors.

4.3.1 Available Transformations for Android

We adapt the procedure from Pierazzi et al. [58] which builds
on automated software transplantation [14]: code gadgets
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are first extracted from a corpus of benign apps and then
injected into a host malware until evasion occurs. Gadgets
are extracted recursively to preserve dependencies up to a
certain distance to improve plausibility. Although this induces
side-effect features—extra features which may help or harm
the evasion effort—it ensures that the injected gadgets are
less conspicuous than, for example, no-op API calls [60] or
unused permissions [34]. We extract 1,395 problem-space
gadgets, based on features considered important with respect
to benign examples in our exploration set, to obtain the final
set of available transformations T = { t0, . . . , t1394 }, where ti
denotes the injection of gadget i into a given malware. Note
that none of the transformations are capable of removal, only
addition (i.e., setting a feature value to 1).

4.3.2 Target DREBIN Model Baseline

The target DREBIN model is trained using DREBIN20 (§4.1).
We use a random stratified split with 33% hold out for testing,
partitioning the dataset into 101,596 and 50,041 examples for
training and test, respectively.

We aim to to discover UAPs which are effective against
the test data without overfitting, so we further divide the
training set to use 90% of the examples (91,436) for the actual
training and 10% (10,160) as the exploration set, set aside for
the UAP search. This also simulates our MaaS scenario in
which an adversary is interested in reusing UAPs on future
examples which they may not yet have access to. As our
adversarial test set, we consider all true positive malware
examples detected by the trained classifier (4,503 examples).
On the non-adversarial (clean) test data the model achieves
an AUC-ROC of 0.981 and 0.855 TPR at 1% FPR.

4.3.3 UAP Search

In Pierazzi et al. [58], gadgets are selected greedily based
on their total benign contribution (i.e., considering side ef-
fects) and added until the decision score of the host malware
is sufficiently benign. Here we alter the search strategy to
consider the UER across all true positive malware examples.
We iteratively apply all possible transformations, at each step
selecting the one maximizing UER across all true positive
malware in the exploration set, until either the maximum
length for the transformation sequence T is reached, 100%
UER is reached, or no remaining transformations can increase
UER. We consider a maximum sequence length of ten.

4.3.4 Results Analysis

The strongest UAPs that we discover using the exploration set
produces 4,413 evasive variants on the test set after a single
transformation (98% UER) and achieves 100% UER after two
transformations. As the attack seems very strong, achieving
100% UER long before the maximum chain length of 10 is
reached during exploration, we next investigate the strength
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Figure 3: Histogram of Universal Evasion Rates (UERs) in-
duced by each available individual problem-space transforma-
tion targeting the linear DREBIN Android malware detector.

Activity API Call API Perm. App Perm. Intent Interesting S + R URL

Feature type

0.00

0.25

0.50

0.75

1.00

In
ci

de
nc

e

Figure 4: Relative incidence of feature perturbations, grouped
by type, induced by the most effective individual transforma-
tions (UER ≥ 90%) targeting DREBIN.

of each transformation individually, as shown in Figure 3.
While 46% of the transformations achieve less than 10%
UER, 29% achieve UER of 50% or greater, with 5% of the
transformations being at least 90% effective.

We next examine the nature of the feature-space perturba-
tions induced by these strong transformations, to better un-
derstand the weaknesses of the classifier. Figure 4 shows the
relative incidence of features, grouped by feature type, across
the highly effective transformations (i.e., with UER ≥ 90%).
The most common feature types perturbed by the UAPs are
related to API calls, with API calls perturbed by all trans-
formations, API-related permissions perturbed by half, and
a special category of “interesting” API calls being the third
most common. However, the individual features which occur
consistently across all of the top transformations are Activ-
ities, such as activities::CloudAndWifiBaseActivity
(which is present in all but two of these transformations).

Although we reiterate that Lp norm constraints on the per-
turbation are not appropriate for problem-space attacks as
the object can be modified arbitrarily so long as the problem-
space constraints are not violated [58], it is still worth exam-
ining the size of the L0 distortion induced by each transfor-
mation given how strong they appear to be individually.

Figure 5 shows the distribution of L0 perturbation sizes,
with a mean and median of 18.5 and 19, respectively. To pro-
vide perspective, the L0 perturbation induced by the strongest
transformation chain is 19; the mean and median L0 norms of
the DREBIN20 dataset are 50 and 49, respectively.
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Figure 5: Distribution of L0 norm perturbations (i.e., number
of changed binary features) induced by the most effective
individual transformations (UER ≥ 90%) targeting DREBIN.

4.4 Limited Knowledge Setting
After demonstrating the feasibility of problem-space UAPs in
the PK setting, here we look to see how effective UAPs might
be in a setting where the attacker is more constrained (RQ2).
For this we consider the LK threat model (§4.1).

Figure 6 shows the results from a naive LK attack against
the Android classifier, in which T is constructed by selecting
gadgets at random. Each line depicts the UER produced by
one of 1,000 transformation chains, tested at each stage of
construction. The attack still appears to be extremely potent,
with chains at length 5 achieving a median UER above 90%.

While clearly effective, the Android domain is naturally
more amenable to powerful attacks. The attacker is able to
directly manipulate the bytecode, with established program
analysis tools such as Soot [71] and FlowDroid [12] making
specific alterations relatively straightforward. Additionally,
the toolkit of transformations in the Android attack simplifies
the search, as the UER is monotonic with respect to gadget
injection—there is no risk of a transformation reducing the
evasiveness of the transformation chain.

A more challenging domain is that of Windows PE bina-
ries, which are more prone to breaking runtime semantics
during problem-space transformation than Android apps, due
to lack of access to source code. Because of this fragility, a
common semantic-preserving attack is to simply append ran-
dom bytes to the end of the binary [43, 63]. However, these
transformations may be detected and removed before classifi-
cation. Conversely, using more sophisticated transformations
increases the risk of disrupting the original malicious seman-
tics and transformations that subtract malicious features (such
as packing or compression) may equally obfuscate benign
features. In the remainder, we borrow a variety of Windows
problem-space transformations from related work, and use
them to build problem-space UAPs attacks.

4.4.1 Available Transformations for Windows

We use the transformations proposed by Anderson et al. [7]
and implemented by Labaca-Castro et al. [44]. The transfor-
mations are byte-level modifications which can be divided
into three categories; i) inclusion: adding a new unused sec-
tion, appending bytes with random length to the space at end
of sections or end of the file, adding unused functions to the
import address table (similar to Hu and Tan [35]); ii) mod-
ification: renaming sections using alternatives parsed from
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Figure 6: Limited Knowledge (LK) attack against linear
DREBIN Android malware classifier. Universal Evasion
Rates (UER) for 1000 random transformation chains up to
length 10. Relatively few transformations are required to
achieve a high UER, highlighted by the median at each stage.

Table 1: Set of available transformations for Windows PEs.

ti EXPLANATION ti EXPLANATION

t0 Append overlay t5 Remove signature
t1 Append imports t6 Remove debug
t2 Rename section t7 UPX pack
t3 Add section t8 UPX unpack
t4 Append section t9 Break optional header

benign files, manipulating the checksum, debug, and signer
info in the header; iii) compression: packing or unpacking
files using UPX [67] with random compression rates. Table 1
summarizes the complete set of transformations.

4.4.2 Target EMBER Model Baseline

The target model is trained on the EMBER [6] dataset (§4.1)
using 300,000 malicious and 300,000 benign examples. The
remaining 100,000 malicious and 100,000 benign examples
comprise the clean (non-adversarial) test set. As the origi-
nal dataset contains only extracted features, we augment the
dataset with 1,100 malicious binaries downloaded from the
VirusTotal [33] and VirusShare [25] repositories, to facilitate
the problem-space attacks. All of these samples are success-
fully detected by the trained model. This set is partitioned in
two to obtain an exploration set of 100 samples used to search
for UAPs, and an adversarial test set of 1,000 samples used
to validate their effectiveness. On the clean (non-adversarial)
test data the model achieves an AUC-ROC of 0.999, with
0.981 TPR at 1% FPR.

4.4.3 UAP Search

To search for problem-space UAPs, we apply each of the
ten transformations to each of the samples in the exploration
set. After each transformation, we execute the malware in
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a sandbox to verify it has not been corrupted. To maximize
effectiveness of the UAP, we observe that a single transfor-
mation is unlikely to result in a large number of evasions
(compared to the strength of a single gadget injection in the
Android setting), so relying on hard labels to maximize UER
directly may not give enough information to guide the search
as UER is likely to be 0% for the first round. Given this,
we average the prediction confidence output by the model
across the modified examples. The transformation that min-
imizes the average confidence is selected, and fixed in the
first position of the transformation chain. In the subsequent
rounds, the same procedure is used to search for the next best
transformation, and so on. If soft labels are not available, the
cartesian product of transformation chains can be calculated
until a length is reached which produces a usable UER signal,
although the transformation cost would be exponential with
respect to the length of the chains. Failing this, sequences
could be sampled at random.

The number of search rounds r is a product of the size of
the exploration set E, desired transformation chain T, and
available transformations, T —i.e., r = |E| · |T| · |T |.

This process continues until the maximum length of T is
reached. As per Labaca-Castro et al. [45] we stop at length 4
since minimal mutations are desired to ensure plausibility.

4.4.4 Results Analysis

Here we analyze the effectiveness of the most successful
candidate UAP chains after applying them to the adversar-
ial test set. We examine six candidates: three of the top
scoring chains, two other high scoring chains with shorter
chain lengths, and a low scoring chain to investigate the less
successful sequences.

Figure 7 shows the success rates for the six chains. The
most successful chain (t7, t1, t6, t4) produced 298 evasive
variants from 992 1 files (30% UER). Chains (t7, t1, t6, t8)
and (t7, t1, t6) both produced 288 evasive variants each (29%
UER), yet the latter requires only three perturbations rather
than four. This indicates that in the first two chains, the final
transformation does not move the example toward the deci-
sion boundary much further than the initial three. An even
shorter chain, (t7, t1), also achieves a relatively high evasion
rate of 287 evasive variants (29%) using only two transfor-
mations. As the most common initial transformation, a sin-
gle application of t7 produces 270 evasive variants (27.2%),
which clearly indicates how susceptible the model is to UPX
packing. This is likely due to the model paying special at-
tention to the structure of the binary file and therefore being
more sensitive to the changes caused by high-compression
ratio packers. These results support prior work which found
that the distributions of header information for benign and
malicious samples packed with UPX are very similar [2].

1Eight files return either parsing errors or are not detected by the baseline
model and were therefore dismissed.

Figure 7: Reported best candidates for UAP chain in the vali-
dation set. The UAP (brown) is identified as (t7, t1, t6, t4) and
leads to successful adversarial examples in 298 files whereas
(t7, t1, t3) is used as control to show how specific transforma-
tions at the end of the chain can drastically increase corrupt
samples and hence limit the success of the chain.

On the other hand, successful initial transformations do not
guarantee a successful chain. For example, appending trans-
formation t3 to the highly effective vector (t7, t1) causes the
evasion rate to decrease by almost 40%. This is because the
combination (t7, t1, t3) produces almost 10 times more corrupt
examples than the alternatives, with 301 non-functional files
compared to an average of 33 across other chains.

The UAP search provides us with very useful insight about
how to bypass a classifier in the problem space using a limited
transformation toolkit. However, to better understand why
some transformations have such a good impact on decreasing
the confidence rate of the model, we analyze the feature-space
perturbations induced by the chains.

We observe that applying a single transformation results in
27.7% of features being modified, on average. This number
does not increase significantly given longer transformation
chains. While this may be caused by the analyzed candidate
chains being relatively similar (as the greedy search discards
most poor candidates), the most important features for the
classifier seem to be perturbed regardless of the chain length.

Furthermore, we analyze the average value of the change
(‘delta variation’) for each feature, for each of the selected
candidate chains. As shown in Figure 8, despite the individual
success rates of each candidates, the features with high varia-
tion appear to be uniform across all chains. However, we do
see a distinct difference in the values of features 800 through
1,000 for the less effective candidate (t7, t1, t3). This feature
group relates to information about the binary’s sections, such
as names and sizes, which appear to correspond to the final
transformation t3, ‘add section’.

5 Evaluating Robustness to UAPs

After demonstrating the brittleness of ML malware classifiers
against feature- and problem-space UAPs, we now evaluate
strategies to improve the resilience of machine learning mod-
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Figure 8: Average of delta variation for malware in the explo-
ration set after being injected with each transformation chain.
The first five chains (from left to right) are the best candidates
for UAP whereas the less effective chain, (t7, t1, t3), shows
visible differences within its features. The Y-Axis represents
the mapping of the feature-space for each malware example.

els against such perturbations. In this section, we extend our
previous research questions to include:

RQ3. Can we mitigate the strength of UAPs against malware
classifiers?(§5.2)

RQ4. Can we utilize problem-space knowledge to harden
different types of classifiers against UAPs? (§5.3)

We introduce our approach to improve defenses, leveraging
the UAP attacks in scenarios with limited and perfect knowl-
edge as described in §4. By measuring the effectiveness of
new adaptive attacks after the models have been hardened,
we determine how each one of the strategies contribute to the
robustness of the classifier.

5.1 Adversarial Training with UAPs
A promising mitigation against adversarial examples is ad-
versarial training [32, 48]: introducing evasive examples into
the training process which adjusts the decision boundary to
cover pockets of adversarial space close to legitimate exam-
ples. However, uniformly applying adversarial training to
all regions close to the decision boundary can greatly alter
the classifier, such that performance suffers on goodware or
previously correctly detected malware. Moreover, effort is
wasted in securing regions of the feature space which do not
intersect with the feasible problem-space region of realizable
attacks [58].

Note that in a typical binary classification security detec-
tion setting, we only need to protect the model against one
type of attacks (e.g., attackers trying to force malware to be
misclassified as goodware). Thus, only one class needs to be
‘protected’ against adversarial examples (compared to multi-
class image classification, where each and every class needs to
be ‘protected’). This means that for adversarially training ML
malware detection models, we only need to craft adversarial
examples for the malicious class. However, a peculiarity of

doing adversarial training considering only adversarial mal-
ware is that, when using the standard settings, i.e., computing
adversarial counterparts for all the malware examples during
training, the TPR of the classifier can be affected significantly.
This is because the model learns to accurately detect adver-
sarial malware but not genuine malware, as the model did not
see any genuine malware examples during training at all. To
avoid this issue, during training we interleave genuine and
adversarial malware with a 50/50 ratio. We refer to this as
mixed adversarial training. In our experiments we also com-
pare against the standard adversarial training, where all the
malware examples are adversarial. We refer to this as pure
adversarial training.

While different ML algorithms necessitate specific adjust-
ments, our process can broadly be defined as follows. i)
Generate problem-space UAPs using a greedy search on the
exploration set to calculate the strongest transformation chain,
using the toolkit of transformations available, to quantify the
model’s intial robustness. ii) Adversarially train the model,
either by directly introducing newly generated UAPs to the
training process (§5.2) or by using synthetic examples de-
rived from the statistical distribution of examples in the first
step (§5.3). iii) Evaluate the robust models considering an
adaptive attacker, by performing a fresh search for UAP at-
tacks. We focus on the effectiveness of the UAP attack in
terms of UER, and the performance loss incurred on clean
data in terms of AUC-ROC and TPR at a fixed FPR of 1%.

5.2 Hardening DREBIN against UAPs
To harden DREBIN against problem-space UAPs and answer
RQ3, here we instantiate our adversarial training-based de-
fense on the Android malware classifiers. We hypothesize
that the linear DREBIN model will not be receptive to adver-
sarial training, as the linear hyperplane will not be flexible
enough to adapt to the adversarial inputs, i.e., it will begin to
‘forget’ patterns of adversarial inputs seen earlier in the train-
ing process [42]. To test this, we apply our defense to both the
linear model from §4.3, and the non-linear model originally
described in §3 which we refer to here as DREBIN-DNN.
Both models are implemented using PyTorch [55].

We perform the following steps during each of the the last
N epochs of the training procedure. At the start of each mini-
batch, we apply our attack procedure to the partially trained
model and search for the most effective UAP transformation
chain, i.e., the UAP that maximizes UER across all true posi-
tive examples in the minibatch. Next, this UAP is applied to
50% of the minibatch malware examples—retaining 50% of
the clean examples in order to avoid overfitting to the adver-
sarial inputs.

Results. We repeat the PK attack from §4.3 against the non-
linear model to act as a baseline (Table 2). For complete-
ness, we also run the LK attack against DREBIN-DNN (Ap-
pendix A)—interestingly this model seems to be slightly more
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Figure 9: Adaptive attacks against DREBIN-DNN classi-
fiers showing increasing Universal Evasion Rates (UER) at
each stage of the transformation chain. Corresponding perfor-
mance on clean data is shown in Table 2.

robust to the PK attack, but is generally more vulnerable to
the LK attack. We also compare against a number of defenses
obtained by generating adversarial examples in the feature
space instead of the problem-space. These defenses take two
parameters: the L0 constraint on the perturbation size and
the percentage of adversarial examples to include during the
adversarial training procedure. For these we consider L0 con-
straints of 20 and 40, and adversarial proportions of 50% and
100% (‘mixed’ and ‘pure’).

Table 2 shows the results of this procedure applied to the
linear DREBIN classifier as well as the non-linear DREBIN-
DNN, for the last N = 1, 3, and 5 epochs of training, as well
as the UER of the adaptive white-box attacks (also depicted
in Figure 9). The close results for N = 3 and N = 5 appear to
show an upper bound in the robustness gained, so it is likely
that further epochs will result in diminishing returns. The
results also confirm our hypothesis that the linear model is not
as amenable to adversarial training as the non-linear model.
The linear DREBIN model shows a larger performance loss
on the clean examples compared to the other models (except
for L0 = 40 Pure), and while the robustness is improved for
small chains, UER for the chains of length 10 is > 80%.

Overall, the defense that provides the largest improvement
in robustness is L0 = 40 Pure, which is the most aggressive
feature-space defense we consider, however it comes with a
significant performance degradation on non-adversarial ex-
amples. L0 = 40 Mixed offers a better trade-off with a fairly
large increase in robustness without the performance loss.
The other feature-space defenses retain their performance on
the non-adversarial examples, but do not show a significant
gain in robustness. However, our approach demonstrates an
even greater trade-off than L0 = 40 Mixed, with a similarly
small performance loss on clean data, but far greater gains in
robustness, reducing the maximum UER of length 10 chains
from 99.5% to ~20%.

Figure 10: Adversarial examples from previously identified
and new adaptive UAP attacks are both unsuccessful in the
hardened model either by detection or by forcing the binary to
mutate until corruption. Both (t3, t3, t0) and (t3, t3, t4, t8), are
properly detected, making UER close to zero. The remain-
ing transformation chain, (t7, t1, t6, t4), is the UAP identified
against the baseline model and is also correctly detected.

5.3 Hardening EMBER against UAPs

As an answer to RQ4, we want to explore how the concept of
introducing problem-space information to adversarial training
can be adapted and extended beyond neural networks and
applied to different machine learning models. Hence, we
have adjusted the process to make state-of-the-art classifiers
in the Windows domain more resilient to such attacks.

For Windows PE binaries, GBDT classifiers have proved to
be highly accurate for malware classification in this domain [6,
7]. However, generating adversarial examples in the problem
space is significantly more expensive than in the feature space
for Windows than it is for Android. Additionally, while the
non-linearity of the GBDT should be receptive to adversarial
training, the model is not trained in batches across multiple
epochs as is the DNN.

To overcome this limitation, we generate an approximation
of the feature-space perturbations induced by the problem-
space toolkit. For this we create a statistical model where, for
each feature, we compute the probability of the feature being
modified as a result of the problem-space UAP attack. At
training time, we generate adversarial malware in the feature
space by sampling random perturbations using this statistical
model. This allows us to significantly reduce the number of
problem-space adversarial objects that need to be generated.
Note that our approximation does not take into account pos-
sible interactions between features in the feature space, i.e.,
the statistical model assumes independence across features,
and although this is likely not always the case, our empirical
results show that even this simple statistical model allows us
to harden the ML models against adaptive UAP attacks.

Results. We perform adversarial training using both strate-
gies: pure and mixed. As expected, the former model incurs
a heavy cost in clean detection performance, with AUC-ROC
of .624, while the latter retains better performance at .797.
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Figure 11: Universal Evasion Rates (UER) between baseline
model and models trained with mixed datasets (including
clean and adversarial malware examples). After hardening,
the best UAP transformation chains are not able to bypass the
model.

As such, we continue with the mixed model only.
Following best practices, we perform a fresh adaptive at-

tack against the hardened model. The most effective trans-
formation chains found, (t3, t3, t0) and (t3, t3, t4, t8), are still
successfully detected by the model as shown in Figure 10
and do not represent meaningful threats. Furthermore, we
observe in Figure 11 that the model becomes much better at
identifying false negatives, as shown by the decrease in UER
compared to the baseline. In fact, 99.8% of the attempts are
successfully detected. Despite the capacity of the new model
to successfully detect most adversarial examples, compared
to the DNN models used for DREBIN, in this case the GBDT
offers less flexibility to adapt the UAPs during training, which
has a negative impact on the detection of genuine malware,
i.e., the TPR evaluated on genuine malware decreases.

6 Discussion

Modeling the attacker’s constraints. Unlike in computer
vision applications, the generation of adversarial examples
in the malware domain is subject to specific problem-space
constraints that limit how input objects can be modified, to
generate realistic working software that preserves malicious
functionality [e.g., 26, 45]. Hence, analyzing feature-space
robustness of ML models to certain adversarial examples
provides an unrealistic view of the models’ vulnerabilities. On
one hand, many of the attacks available in the feature space are
possibly infeasible in the problem space. On the other hand,
it can be difficult to model appropriate attacker constraints
in the feature space. For example, EMBER contains a mix
of discrete and continuous features, making it difficult to
model comprehensive feature-space constraints (e.g., using a
combination of Lp-norms), even when ignoring some of the
problem-space constraints.

UAP attacks. Our experimental results in §4 show that UAP
attacks represent an important and practical threat against
ML-based malware detectors. However, our results report a

disparity on the effectiveness of the attacks for Windows and
Android malware. For DREBIN we can craft very successful
UAP attacks that, in some cases achieve 100% UER. In
contrast, for EMBER the UER of the attacks is approximately
30%. The reason is that for Windows malware we start with a
more limited set of transformations to manipulate the malware
and, at the same time, the application of these transformations
produces non-functional malware in some cases, limiting the
capacity of the adversary to create problem-space adversarial
objects. In contrast, the set of Android code gadgets that
can be used to generate adversarial malware is larger, and
the addition of these gadgets does not have as significant an
impact on malware functionality.

Defenses. We show that our methodology for adversarially
training the models allows us to harden the model against
UAP attacks generated with the considered transformation
set. However, we cannot guarantee robustness against other
possible transformations that could become available for the
attackers, i.e., we cannot guarantee robustness against un-
known unknowns. Compared to adversarial training in the
feature space, our methodology focuses on “patching” those
UAP vulnerabilities that are more relevant from a practical
perspective, without having a significant negative impact on
the detection of clean malware, in particular for DNNs. Al-
though in our work we consider some LK attacks, we did not
consider transfer attacks, which can provide a more compre-
hensive view on the robustness of these models. Additionally,
it would be interesting to analyse if the application of this or
a similar methodology can be appropriate to mitigate input-
specific attacks. These last two points are left as future work.

7 Related Work

Adversarial Examples for Malware. The vulnerabilities
of machine learning systems to different threats, both at
training and test time, have been investigated for almost 15
years [15, 16, 36], attracting a higher attention in the research
community since Szegedy et al. [66] and Biggio et al. [17]
showed the existence and weakness of machine learning al-
gorithms to adversarial examples. Although the literature in
adversarial machine learning has put the focus on computer
vision applications, the security community has also started
to evaluate the problem on different malware variants, includ-
ing (but not limited to) Android malware [27, 34, 58, 76],
Windows malware [26, 43, 44, 45, 59], PDFs [17, 65, 75],
NIDS [8, 9, 24], and malicious Javascript [29]. It is important
to observe that one peculiarity of the malware domain is that
feature mapping functions are generally not invertible and
not differentiable. This implies that translating an adversarial
feature vector in the feature space to an actual malware in
the problem space is significantly more complex. To support
this challenge, Pierazzi et al. [58] propose a general frame-
work for problem-space attacks which also clarifies which
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Table 2: Comparison of our problem-space defenses against a set of feature-space defenses and undefended models, showing
performance on clean examples (AUC-ROC, TPR) and robustness against an adaptive attacker (UER at |T| of 1, 4, and 10).

MODEL AUC-ROC TPR at 1% FPR UER1 UER4 UER10

Undefended DREBIN 0.981 0.855 98.7% 100% 100%
DREBIN-DNN 0.992 0.900 78.8% 97.3% 99.5%

Feature-space defenses

DREBIN-DNN L0 = 20 Pure 0.989 0.843 27.6% 85.1% 96.1%
DREBIN-DNN L0 = 40 Pure 0.903 0.347 3.6% 3.6% 3.6%
DREBIN-DNN L0 = 20 Mixed 0.990 0.872 46.9% 75.3% 89.2%
DREBIN-DNN L0 = 40 Mixed 0.990 0.877 18.4% 38.0% 66.6%

Problem-space defenses

DREBIN Iter N = 1 0.978 0.775 23.0% 70.4% 95.7%
DREBIN Iter N = 3 0.978 0.766 21.0% 47.0% 87.0%
DREBIN Iter N = 5 0.978 0.761 17.4% 35.1% 82.6%

DREBIN-DNN Iter N = 1 0.990 0.874 5.3% 17.9% 53.5%
DREBIN-DNN Iter N = 3 0.990 0.871 1.6% 7.7% 19.7%
DREBIN-DNN Iter N = 5 0.990 0.872 1.7% 9.3% 20.4%

Undefended EMBER LightGBM 0.999 0.982 3.8% 34.6% —

Problem-space defense EMBER LightGBM w/ Adv Tr 0.988 0.797 0.0% 0.1% —

constraints need to be defined when considering attacks that
handle problem-space objects. In our study, we are interested
in studying problem-space attacks, and refer to this framework
to define our threat model and constraints.

Universal Adversarial Perturbations. Moosavi-Dezfooli
et al. [51] showed the existence of UAPs, where a single
adversarial perturbation applied over a large set of inputs
can cause the target model to misclassify a large fraction of
those inputs. UAPs expose the systemic vulnerabilities of the
model that can be exploited regardless of the input [23, 37].
UAP attacks are the basis of many practical and physically
realizable attacks across different application domains, such
as image classification [13, 19, 23, 40, 52], object detec-
tion [28, 47, 64], perceptual ad-blocking [69], LiDAR-based
object detection [20, 70], NLP tasks [72], and audio or speech
classification [1, 54]. However, to the best of our knowledge,
UAP attacks have not been explored in the context of ML-
based malware detection.

Different defenses have been proposed to mitigate UAP
attacks, most of them only explored in the context of computer
vision applications. Some of these defenses aim to detect UAP
attacks by trying to denoise the inputs [3, 18] or, in the case
of SentiNet [22] aiming to detect adversarial patches in image
classification. Other sets of defense aim to harden the model
by performing universal adversarial training [53, 62].

8 Availability

We release upon request our UAP attacks and defenses for
malware as a library, GAME-UP, to foster future research in
the community.

9 Conclusion

After demonstrating that UAPs and input-specific attacks have
similar effectiveness in the feature space, we systematically
generate and evaluate problem-space adversarial malware
using UAPs in both perfect and limited knowledge settings.
We build on the results to propose a defense: a new variant of
adversarial training, also highlighting that non-linear models
such as DNNs are more appropriate than linear classifiers as
robust models against problem-space malware UAP attacks.
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Figure 12: Limited Knowledge (LK) attack against a non-
linear DREBIN Android malware classifier.
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APPENDIX

A Additional Android Result

Figure 12 reports Limited Knowledge (LK) attack against a
non-linear DREBIN Android malware classifier, implemented
as a DNN with 2 hidden layers. Universal Evasion Rates
(UER) are shown for 1,000 random transformation chains up
to length 10. Relatively few transformations are required to
achieve a high UER, highlighted by the median at each stage.
Compared to the linear model ( fig. 6), the non-linear model
seems even more susceptible to the LK attack, however the
flexibility of the model enables us to devise a defense which
is better able to adapt to the attacker’s set of transformations.

17

https://www.webroot.com/blog/2016/03/31/malware-service-easy-gets/
https://www.webroot.com/blog/2016/03/31/malware-service-easy-gets/

	1 Introduction
	2 Background
	2.1 Adversarial Evasion Attacks
	2.2 Universal Adversarial Perturbations
	2.3 Adversarial Training

	3 Feature-Space UAPs for Malware
	4 Problem-Space UAPs for Malware
	4.1 Experimental Setting
	4.1.1 Attack Scope and Objectives
	4.1.2 Attacker Knowledge
	4.1.3 Attacker Capabilities
	4.1.4 Target Models
	4.1.5 Datasets

	4.2 Methodology for Generating UAPs
	4.3 Perfect Knowledge Setting
	4.3.1 Available Transformations for Android
	4.3.2 Target DREBIN Model Baseline
	4.3.3 UAP Search
	4.3.4 Results Analysis

	4.4 Limited Knowledge Setting
	4.4.1 Available Transformations for Windows
	4.4.2 Target EMBER Model Baseline
	4.4.3 UAP Search
	4.4.4 Results Analysis


	5 Evaluating Robustness to UAPs
	5.1 Adversarial Training with UAPs
	5.2 Hardening DREBIN against UAPs
	5.3 Hardening EMBER against UAPs

	6 Discussion
	7 Related Work
	8 Availability
	9 Conclusion
	A Additional Android Result

