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Abstract—This paper presents a measurement-based analysis
of the Received Signal Strength (RSS) of Bluetooth Low Energy
(BLE) signals, under Line-of-Sight (LOS) and Non-Line-of-Sight
(NLOS) scenarios, performed in tandem at two universities in
Tampere, Finland, and Bucharest, Romania. We adopted the
same hardware and methodology for measurements in both
places, and paid particular attention to the impact of RSS on
various environmental factors, such as LOS and NLOS scenarios
and interference in 2.4 GHz band. In addition, we considered
the receiver orientation and the different frequencies of BLE
advertising channels. We show that snapshot RSS measurements
typically have high variability, not easily explainable by classical
path-loss models. A snapshot recording is defined here as
one continuous recording at fixed device locations in a static
setup. Our observations also show that aggregated RSS data
(i.e., considering several snapshot measurements together) is
more informative from a statistical point of view and more
in agreement with current theoretical path-loss models than
snapshot measurements. However, in BLE applications such as
contact tracing and proximity detection, the receivers typically
have access only to snapshot measurements (e.g., taken over
a short duration of 10-20 minutes or less), so the accuracy
of contact-tracing and proximity detection can be highly
affected by RSS instabilities. In addition to presenting the
measurement-based BLE RSS analysis in a comprehensive
and well-documented format, our paper also emphasizes open
challenges when BLE RSS is used for contact tracing, ranging,
and positioning applications.

I. INTRODUCTION AND MOTIVATION

Proximity-based applications have become increasingly
popular in recent years. Estimating the distance between two
devices can be used to find lost objects, to share files between
nearby devices, to enable smart homes to react to owners’
location, or to fight against a pandemic. In the past year, digital
contact-tracing applications (shortly called apps) have received
increasing attention to prevent the spread of COVID-19 and
many countries have developed such digital apps. Detailed
overviews of existing contact-tracing apps can be found in
our previous works [1], [2] and in other recent works [3]-[7].

The most popular technologies that enable proximity-based
applications are Wi-Fi, Bluetooth Low-Energy (BLE), Ultra-
Wideband, and Global Navigation Satellite Systems (GNSS).
BLE is the most promising candidate of them since it

* The first two authors had equal contribution to this paper.

offers the lowest power consumption and is supported by
most mobile devices and operating systems [8]. While BLE-
based positioning can reach meter-level accuracy when both
angle-of-arrival (AOA) and received signal strength (RSS)
information are combined [9], most consumer devices such as
mobile phones and wearables are not equipped with direction-
finding capabilities and they rely only on RSS measurements
for proximity detection. RSS measurements from any wireless
signal (BLE, Wi-Fi, cellular, etc.) are known to fluctuate due to
the presence and movement of people in the signal’s path [10],
the presence of multipath [11], the switches between carrier
frequencies of sub-channels used in the transmitted signal [11],
the antenna polarization [12], the orientation of the transmitter
(TX) and receiver (RX) [13], and the chipset model [14].

While there are currently many studies about the RSS
variability in Wi-Fi signals, e.g., [15]-[19], most such studies
focus only on one source of fluctuations or investigate the
aggregated effect of multiple error sources. In contrast, this
paper documents the (in)stability of the BLE RSS over
time, over space (with different multipath characteristics),
with different hardware, on different advertising channels,
at different distances, with different device orientations, and
with different type of obstructions between device pairs. We
isolated these factors and evaluated their impact individually.
In addition, we documented a new error source, namely
the influence on Wi-Fi-BLE combo chipsets on the RSS.
Based on an extensive measurement campaign, we provide
recommendations that can partly mitigate BLE fluctuations
caused by these factors.

We also provide open-access data that accompanies this
study in order to aid future research. During the COVID-
19 pandemic, open-access BLE RSS data sets have proven
essential for the research community. However, most such
data sets, e.g., [20]-[22], have limited documentation or
do not analyze the behavior of the BLE RSS with all
the aforementioned instability sources. Therefore, a more
thorough investigation on BLE RSS instabilities documented
by open-source data is still needed.

This paper offers a comprehensive analysis of BLE
RSS instabilities, fluctuations, and challenges in BLE-based
proximity detection and contact tracing. We based the
analysis on two extensive measurement campaigns performed



in parallel at Tampere University (TAU) in Tampere,
Finland and at University Politehnica of Bucharest (UPB)
in Bucharest, Romania between January—March 2021. The
tandem measurements were conducted with exactly the
same type of devices to eliminate the possible fluctuations
coming from different hardware models as well as possible
calibration issues. Our measurements will be available, upon
the paper publication, in open-access at the A-WEAR research
community on Zenodo'.
The main contributions and findings of this paper are:

o Offering an extensive measurement-based analysis of
BLE RSS fluctuations and showing that current single-
slope path-loss models from the literature do not capture
these effects.

o Comparing snapshot (or single recording) measurements
with aggregated recordings and showing that, when
enough RSS data is aggregated, the statistics converge
to stable models;

o Analyzing the effect of BLE advertising channels on RSS
fluctuations and showing that the aggregated RSS from
all BLE advertising channels has significantly higher
fluctuations than on individual BLE channels. This is
an important challenge in current BLE-based proximity
apps, where channel information is usually not available;

o Analyzing the effect of non-line-of-sight (NLOS)
propagation on the BLE RSS;

« Analyzing the effect of relative orientations between the
transmitter and the receiver on the RSS;

o Analyzing the same-chip Wi-Fi interference with BLE.

Based on our state-of-the-art review (Section II), we
believe that these high BLE RSS fluctuations have not yet
been reported and documented to their full extent in the
current literature and that there are still several challenges
to be overcome when dealing with snapshot BLE RSS
measurements, as those used in contact-tracing and proximity
detection applications. Therefore, this paper documents BLE
RSS fluctuations and raises several research questions about
the applicability of classical path-loss models in the line-of-
sight (LOS) and NLOS propagation of BLE signals.

II. STATE-OF-THE-ART OVERVIEW

In Section II-A we provide an overview of the state-of-
the-art in digital contact tracing and proximity detection apps
based on BLE signals, which are increasingly relevant in our
times. In Section II-B we discuss the main factors that cause
BLE RSS variability and the most important studies that have
investigated them. In Section II-C we summarize the findings
and state the key points that differentiate our work from past
research.

A. BLE-based Contact Tracing and Proximity Detection
Principles

Digital contact tracing is a particular case of proximity
detection, used as an identification and follow-up solution

Uhttps://doi.org/10.5281/zenodo.4643668
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Fig. 1. An illustration of the contact-tracing chain with users A and B
exchanging BLE signals at a distance of at most 2m and interacting with
the cloud server to receive the anonymized reports for crossing paths with
infected users.

aiming to break the transmission chains of airborne infections
within communities.

In a digital contact-tracing chain such as in Fig. 1,
smartphones and wearables are commonly assigned with
permanent and temporary identifiers generated by each
device for privacy-preserving purposes. The server owns the
complete list of the users reporting their confirmed cases of
infection, which includes both permanent and ephemeral IDs.
Periodically, the user devices receive anonymized data with
user reports of confirmed test results from the server, such as
the case of the user A in Fig. 1, and then locally estimate the
risk of having been exposed to the infection.

A device equipped with a BLE chipset starts to log the
ephemeral IDs and timestamps of other users when these are
nearby (within a distance d) for a certain time window (e.g.,
typical thresholds used in many apps nowadays are 15min
time widow and d = 2 m distance, which is currently deemed
a safe distance). The infection risk is computed based on the
time spent in proximity with a confirmed case.

By nature, BLE signals are susceptible to the environment
and therefore require calibration and averaging. When the
range is estimated with a certain error, there is a higher risk
of generating false positives, when a user appears to be closer
than in reality, or false negatives, when the actual distance is
less than the estimated one. These errors could also appear
if a wall or a door blocks the space between the devices,
leading to NLOS propagation, when in fact the infection risk
is low. Therefore, it is crucial to accurately estimate the range
between two users. When the estimation fully relies on BLE
RSS measurements, it is therefore important to understand the
various causes of BLE RSS fluctuations.

B. Related Studies on BLE RSS Variability

BLE was primarily designed for communication purposes
and its use as a ranging technology has appeared only
recently. As any wireless signal, BLE signals are susceptible
to environment dynamics such as multipath, signal scattering,
shadowing, refraction, or attenuation. In addition, the difficulty
of evaluating the exact distance between two persons might
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Fig. 2. An illustration of the 2.4GHz ISM band channels. Advertising
channels 37, 38, and 39 are scattered deliberately to avoid interference with
Wi-Fi.

be exacerbated by noisy measurements, faulty BLE chipsets,
low transmit power, low received signal strength, or infrequent
scanning intervals [2].

One of the key challenges of digital contact tracing, which
is the scope of on-going research, is the high false positive
rate. This occurred, for example, when experts from The
Alan Turing Institute used the GAEN system to build the
National Health Service (NHS) COVID-19 app [23]. The
authors reported a problem of high false positive rates in
detecting distances between users staying apart from 2 to
4m; in other words, 2m distance proved to be a reliable
threshold both for epidemiological safety measures and for
BLE performance specifications. Another critical goal for
contact tracing is accurate LOS and NLOS detection, yet many
factors are still unknown regarding BLE signal propagation.
In the following, we outline some of the most important
challenges in proximity detection based on BLE RSS and the
state-of-the-art concerning them.

1) Advertising on different carrier frequencies: BLE uses
40 radio frequency (RF) channels, 2 MHz wide each and
assigned with a unique index illustrated in Fig. 2. BLE
channels are divided into two groups: advertisement channels
(indexed 37, 38, and 39) and data channels (indexed from 0 to
36). In BLE, the three advertisement channels indexed 37, 38,
and 39 with center frequencies at 2.402, 2.426, and 2.48 GHz,
respectively, are scattered over the 2.4 GHz band to avoid
interference with other devices operating in the Industrial,
Scientific, and Medical (ISM) band. Based on the analysis
and modeling of these advertising channels in [24], channel 39
was deemed the most reliable, since it is further away from the
center frequency of a main Wi-Fi channel, whereas channels
37 and 38 overlap with one, respectively two Wi-Fi channels.

The impact of advertising channels on the RSS is
twofold. First, according to path-loss models, the RSS
is inversely proportional to the squared carrier frequency.
Second, embedded antennas usually do not have a flat
response over the entire bandwidth, resulting in different gains
depending on the frequency [25]. The difference between RSS
values acquired at the same location on different channels was
found to be as high as 15dB in [11] or almost 6 dB in [25],
therefore decreasing the RSS-based ranging accuracy.

Knowing the channel on which a beacon was transmitted

can improve distance estimates [11], [26], but this information
is often obfuscated by the driver at the receiver, unless the
transmitter explicitly includes this information in the beacon’s
payload (which is rarely done). As a result, most receivers
cannot recover the advertising channel index on which a
beacon was transmitted. Smartphones usually switch between
all three advertising channels, resulting in RSS fluctuations.
In [11], the authors proposed a method for identifying the
advertising channel at the receiver by exploiting the pattern
with which some smartphone models switch between the
advertising channels.

2) Multipath propagation: Multipath propagation causes
radio signals to arrive at the receiving antenna via multiple
paths due to reflection, refraction, or scattering [37]. Signal
components arriving through different paths can add up
constructively or destructively, the latter resulting in multipath
fading. The channel-dependent multipath fading of BLE
signals was studied in [25]. Channels experience deep fades at
different locations due to their different center frequencies. The
effect of multipath fading was eliminated in a training phase
by averaging the RSS in a window. In that case, window sizes
of 0.5s to 2s mitigate fading effects for walking speed at a
BLE packet reception rate of 25 Hz. However, in practice, such
a high advertising rate is uncommon as it increases the energy
consumption, so observation windows need to be longer to
mitigate multipath fading.

The authors in [28] noticed RSS fluctuations on the order
of 6dB at the same transmitter—receiver (TX—RX) distance
due to the presence of multipath and Wi-Fi interference. The
authors in [29] also noticed fluctuations as large as 25 dBm
over short periods of time, in particular for channels 38 and
39 due to channel-dependent fast fading.

In [34], the authors studied RSS fluctuations at various
TX-RX locations and noticed that the average RSS is not
always decreasing with distance, as predicted by path-loss
models [27], but they observed that the average RSS at
2.5m was consistently higher than the average RSS at 2m,
also when measurements were done with different BLE
transmitters. They also observed signal fluctuations as high as
20 dB at constant TX-RX locations, due to human movement
around the BLE transmitters.

3) Orientation: The way people are holding their mobile
devices (e.g., inside front of back pockets, in hand, inside
a bag, etc.) influences the relative orientation between
transmitter and receiver antennas. These orientation changes
can, in turn, cause RSS fluctuations. Fluctuations of up to
30 dB between maximum and minimum RSS at constant TX-
RX distances were observed in [31] when RSS data acquired
with different device orientations was aggregated.

The authors in [13] found that different device orientations
can affect the RSS with differences of up to 3dB at exactly
the same TX-RX distance, and that an RSS at 3m TX-RX
distance can be higher (with few dBs) than the RSS at 1m
TX-RX distance, if different receiver orientations are used.

4) Transmit power: The RSS also depends on the
transmission power, the RF front-end characteristics, and the
antenna gain. Because these factors depend on the hardware or
implemented firmware, the observed RSS from devices from



TABLE I

OVERVIEW OF STATE-OF-THE-ART: MEASUREMENT-BASED BLE RSS STUDIES AND DATASETS.

BLE RSS Measurement devices
Reference Year provided in . id Studied effects related to RSS
open access? (transmitter side)
[27] 2015 No StickNFind (SNF) beacons RSS fluctuations based on TX-RX distance.
[28] 2016 No RN4020 PPDB board with | RSS fluctuations based on TX-RX distance and BLE channels 1,
RN4020 BLE chipsets 10, 20, and 30 (non-advertising channels).
RSS fluctuations based on multiple carrier frequencies on
. advertising channels (i.e., channels 37,38, and 39); orientation
(29] 2018 No iBKS105 BLE beacons effects are also discussed but directly in the context of positioning,
not as effects on RSS.
[24] 2018 No giif?gig)wueless System on Adbvertising channels characterization in the BLE standard.
A smartphone and Estimotes RSS fluctuations based on different TX power levels, device
[13] 2018 No P orientations, advertising intervals, LOS/NLOS cases, density of the
BLE beacons
; devices.
Gimbal SEres 10 BLE One-month megsqremept campaign generated from ‘10 _ BLE
[30] 2018 Yes . beacons transmitting signal and carried by people inside a
iBeacons . X S . L 8
university building, reporting a realistic scenario.
. RSS fluctuations based on receiver orientation, transmit power, and
[31] 2019 No Raspberry Pi 3 (Model B) TX_RX distance.
[32] 2019 Yes Accent Systems’ IBKS 105 with | None (database was used to study BLE-based positioning, but RSS
i Nordic nRF51822 BLE chipset | fluctuations are not studied separately).
[11] 2020 No 8 Android mobile phones and | RSS fluctuations based on multiple carrier frequencies on
one iPhone 6 advertising channels and on the TX-RX distance.
Nokia 8.1 with Android 10, . . .
[33] 2020 Yes HTC M9 with Android 7.0 RSS ﬂuctuatlops basc?d on the TX-RX distance with respect to
Nougat various transmitter orientations/placements on the body.
RSS fluctuations based on the TX-RX distance, on the presence of
. . .| human bodies (and their orientation) around TX and RX devices,
341 2020 No 3 Android mobile phone models on a NLOS scenario due to wall presence, and on mobility of
persons carrying the mobile phones.
Three scenarios of different room sizes and with the use of Zigbee,
. BLE, and WiFi are documented. The authors reported different
331 2020 Yes Raspberry Pi 3 (Model B) techniques for precise and accurate location estimates, where K-
Nearest Neighbor (KNN) was chosen as an optimal solution.
[20] 2020 Yes iPhone 10, Ubertooth One, | RSSI dataset collected in different environments, with various
’ nRF52 eval board device orientations and body placements.
[21] 2020 Yes Raspberry Pi Zero W, Raspberry | p gy gata collected at different distances via GAEN.
Pi 3, and Raspberry Pi 4
[22] 2020 Yes Samsung Galaxy S7, iPhone 7, | Data set of measurements collected in the university environment,
iPhone 11 Pro interchanging device pairs used as TX and RX.
Android smartphones: Nokia | Report of RSSI fluctuations with different device placements on
[36] 2021 Yes 8.1 with Android 10, HTC M9 | human bodies; described the effect of window size on the accuracy
with Android 7.0 Nougat of the estimates.
RSS fluctuations based on LOS/NLOS scenarios, NLOS cases
with different obstacles, receiver orientations, multiple carrier
This article ) Yes Raspberry Pi 4 (Model B+, | frequencies on BLE advertising channels, on-chip BLE and Wi-
Cypress CYW43455) Fi interference in 2.4GHz band, hardware instabilities, and the
TX-RX distance; also the test-retest reliability of measurements
is addressed here.




different manufacturers can vary even when the environmental
conditions are identical. This behavior was documented in [38]
where, even though transmitters from different vendors had
different TX powers, the RSS was within the same range.
In [39] it was shown that the transmission power influences
the localization accuracy and the authors proposed machine
learning models to identify the individual TX power of the
deployed beacons that maximize the localization accuracy.

One way to solve this issue is to compute RSS correction
factors at the transmitter and the receiver [40]. The calibrated
TX power can be measured for a particular model of
transmitter at a known distance (e.g., 1 m for the iBeacon
standard and Om for EddyStone) and sent in the payload
of the advertising beacon. For instance, if a transmitter has
a calibrated TX power of —45dBm at 1m, an RSS of
—55dBm will indicate that the receiver is at more than 1 m
away from the transmitter, whereas for another device model
—55dB might be the calibrated TX power. Similarly, each
receiver should have a correction coefficient that reflects the
receiver efficiency, or with how much its RSS deviates from a
reference value. Ideally, there should be a database with RSS
correction factors for each mobile device. However, such a task
is intractable because of the sheer number of mobile devices on
the market. A 2015 report counted more than 24,000 Android
devices made by almost 1300 companies [41]. Moreover, as
we will show in Section IV-C, this does not account for
RSS variations between devices from the same model. To the
best of the authors’ knowledge, the RSS variability within
devices from the same vendor has not been documented in
the literature.

5) Non-line-of-sight between the devices: RF signals
propagate at a different speed through the air than through
obstacles such as walls, furniture, or the human body.
Therefore, obstructions between the transmitter and the
receiver will typically cause fluctuations in the RSS. There
are several research works [26], [42], [43] that investigated
the effect of shadowing on the BLE RSS with applications
in proximity detection or localization. [26] proposed artificial
neural network (ANN) models for detecting human-body
shadowing and compensating RSS values to improve distance
measurements or localization based on the BLE RSS. In the
best case, the ANN can correctly detect the obstacle more
than 87 % of the time. The method leverages measurements
acquired on individual channels, so knowledge of the
advertising channel is also required, as well as a training phase
for the ANN.

In [43], the authors proposed a NLOS detection method
based on the variance of the BLE RSS. The algorithm is able to
detect when a concrete wall is blocking the direct path between
the transmitter and the receiver with an accuracy of 76.25 %
based on a fixed threshold of the RSS variance, below which
the signal is classified as being acquired in NLOS. The same
method could not be applied on NLOS with plasterboards,
since the standard deviation was inconsistent. The effect of
several obstacles (wooden door, iron door, window, hand,
paper) on the BLE RSS was studied in [38]. The mean
RSS values obtained with these obstructions varied between
—50dBm to —90dBm at a TX-RX distance of 2m. The

strongest attenuation was caused when a hand covered the
transmitter and when the LOS was blocked by an iron door.
These results show that different NLOS obstacles can have
a different impact on the RSS and that the topic should be
further explored.

In [34], a NLOS case was analyzed with two types of walls
between the TX and RX: a stud partition and a blockwork
wall. No differences between LOS and NLOS scenarios
were observed for the stud partition, while the blockwork
wall introduced attenuations of up to 20dB in the received
signal strength compared to LOS case. The main conclusions
in [34] are similar to the ones in our measurement-based
analysis, that BLE signals have high fluctuations and their
RSS does not necessarily follow classical path-loss models.
Therefore, developing accurate BLE RSS-based proximity-
detection methods remains a challenging topic.

Changes caused by the human body in wireless signal
propagation in the 2.4 GHz band have also been documented
in [44]-[46].

6) Interference in ISM band at 2.4 GHz: As the ISM band
is heavily used by many wireless systems, fluctuations in
the BLE RSS are also caused by RF interference, especially
coming from shared antennas between Wi-Fi and BLE
modules coexisting on the same chipset (as it is the case
with most mobile phones). The authors in [28] noticed RSS
fluctuations on the order of 6 dB at the same TX-RX distance
due to multipath fading and interferences from Wi-Fi.

The authors in [38] performed an experiment in which a
BLE TX was placed directly under a Wi-Fi access point (AP)
and the RSS was recorded, in turns, when the AP was on and
off. When the Wi-Fi AP was on, the reception rate dropped
to 75% and the RSS decreased with 10dB in 50 % of the
measurements compared to the case in which the AP was
turned off. We further explore this topic in Section IV-G.

C. State-of-the-art Summary

The work in [34] can be seen as the closest to our
work from the BLE RSS literature (as summarized also
in Table I). However, our work focuses only on indoor
scenarios in a more systematic approach, by duplicating BLE
RSS measurements in two different locations (Tampere and
Bucharest), by performing extensive and repetitive tests at
distances relevant to contact-tracing apps (i.e., 1 to 3m), and
by investigating the effects of Wi-Fi interference and the three
BLE advertising channels.

The main reason we focused on indoor scenarios is that
outdoor proximity detection can be be achieved with high-
accuracy GNSS receivers. For indoor proximity detection,
however, there are more viable candidates, out of which BLE
is the most promising but also perhaps the most challenging
one. In addition, in digital contact tracing apps, infectiousness
levels are lower outdoors than indoors [47], [48].

Our paper offers a comprehensive survey of various causes
of BLE RSS variability as well as of the related works in the
literature. The state-of-the-art main studies on BLE RSS are
summarized in Table I and the last row shows the contributions
of this article at a glance.
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Fig. 3. Raspberry Pi 4 Model B devices are used in our experiments as TX
and RX.

Other works in similar spirit but for Wi-Fi, found variations
across channels, time scales, interfaces used for SGHz Wi-
Fi [49], and across direction, device manufacturer, sampling
period, presence of humans and of other radio devices [50].

For IEEE 802.15.4, that also uses 2.4GHz ISM band, but
lower power, [51] finds that the main variability sources when
measuring RSS are antenna orientation, hardware sample, and
link asymmetry.

ITI. MEASUREMENT-BASED BLE DATA COLLECTION

In all our experiments, we used Raspberry Pi 4 Model
B devices, as illustrated in Fig. 3. The internal 2.4 GHz
antenna is located in the left upper corner, next to the Cypress
CYW43455 combo Wi-Fi and BLE module. The devices have
a 1.5 GHz 64-bit Quad-Core Cortex-A72 CPU in the middle
of the Raspberry Pi. The Gigabit Ethernet, two USB 3.0 and
two USB 2.0 ports are located on the right, which might cause
signal degradation in some TX-RX orientations (which will
be discussed in Section IV-F). One advantage of using this
hardware is that we can configure the advertising channel
and payload, an option that not many open-source smartphone
applications offer.

We acquired a database of BLE RSS measurements between
devices placed at 1, 2, and 3m in several LOS and NLOS
scenarios with obstructions caused by walls (with and without
a whiteboard on it), human body, plexiglass panels, and doors,
shown in Fig. 4. We conducted two measurement campaigns
in parallel at UPB and TAU. The different locations enabled
us to compare and validate measurements acquired with the
same hardware models but in different settings.

We define a measurement as the process of collecting
data in a specific manner. Measurements can be grouped in
recordings (or snapshot measurements), when data is collected
continuously from a start time to an end time, in a static
setup and without modifying the devices in any way, and in
scenarios (or aggregated measurements), which are collections
of recordings according to a pre-defined criterion. For instance,
a scenario can be a collection of recordings acquired in LOS,
with a TX-RX distance of 1 m, on channel 37.

We configured the transmitter to send non-connectable
un-directed advertisements (ADV_NONCONN_IND) with a
period of 100 ms, which satisfies the broadcasting interval

(b) LOS at UPB

P

(d) NLOS with wall at UPB

(e) NLOS with plexiglass at UPB

!

— i
(g) NLOS with door at UPB

(h) NLOS with wall and whiteboard
at UPB

Fig. 4. The pictures of the receiver and transmitter in LOS and NLOS with
wall acquired at UPB and TAU (Fig. 4a to 4d). Fig. 4e to 4h show NLOS
scenarios with a plexiglass panel, human body, a door, and a wall with a
whiteboard at UPB.

recommendation of 200ms to 270ms of the Bluetooth
protocol for contact tracing developed by Apple and
Google [52]. The same specification suggests a scanning
period (at the receiver) of at least 5min, although this is
likely to vary depending on the application. For instance, in
the GAEN API the scanning period was found to be between
2.5 and 4 min [53]. Since a higher scanning rate provides more
RSS samples and the devices are not energy-constrained, we
chose a scanning frequency of 1 Hz.

The recording time ranged from 3 minutes to 3 days.
In some cases, we were interested in the stability of RSS
measurements over a longer period of time, case in which the
recording time spanned several days, whereas in other cases
we were interested in the variability of RSS measurements
at different locations with constant TX-RX distances, case
in which shorter recording times of several minutes were
more convenient. Fig. 4 shows examples of LOS and NLOS
scenarios in which data was acquired at TAU and UPB.

IV. MEASUREMENT-BASED BLE RSS
CHARACTERIZATION

This section provides an overview of the results acquired
during our experiments and describes the challenges discussed
in Section II-B.

In order to compare in a comprehensive manner the RSS
distributions in different scenarios, throughout this section we
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Fig. 6. The effect of the time evolution on the RSS distribution in LOS on
a single channel (37), recorded at UPB.

represent the data using standardized box plots such as the one
in Fig. 5, as they give information at-a-glance about the mean,
median and spread of the RSS. The box shows where most
of the RSS values are found, namely the data from the first
quartile (Q1 or the 25" percentile) to the third quartile (Q3
or the 75" percentile), also known as the interquartile range
(IQR). The lines extending from the box are called whiskers
and cover the range from a £ Q1 —1.5%(Q3—Q1) to b = Q3+
1.5%(Q3— Q1) (corresponding to Tukey’s original definition of
box plots). The red vertical line inside the box plot denotes the
median. In some plots, we also added via a diamond marker,
the mean of the data. The circle markers to the right (can also
appear to the left) of the whiskers are outliers. Occasionally,
the outliers or the mean value are omitted in our plots to
preserve a good readability of the plot. In some cases, the
RSS is stable enough that the IQR contains only the median
value and therefore the box is not shown.

A. The (In)stability of BLE RSS Measurements Over Time

We first investigate the stability of BLE RSS measurements
in a particular setting over time. Fig. 6 shows the boxplots
of the BLE RSS distribution in windows of 2min up to
10h acquired in LOS, on channel 37, at a distance of 1 m
between the transmitter and the receiver. The measurements
were acquired in a locked room during the weekend, so there
was no human activity around the devices during the recording.
Although the median RSS changes with up to 3dB over the
course of the recording, the mean RSS varies with less than
1dB with different window lengths.

It can be seen from Fig. 6 that, if we are interested only in
the mean RSS, then a recording time of 2 min is sufficient to
obtain the mean RSS that best captures the characteristics of
the particular setting in which measurements are acquired. If
we are also interested in the shape of the distribution, a longer
recording time of at least 30 min is necessary. In general,
the RSS during each snapshot recording was stable over time
with the exception of some random fluctuations that sometimes
appeared at the beginning of a recording and which will be
discussed in Section IV-G.

B. The (In)stability of BLE RSS Measurements Over Space or
Test—Retest Reliability Studies

Next, we study the stability of the BLE RSS under LOS
scenarios, at a fixed distance of 1 m between the same TX-—
RX pair, and using only the advertising channel 37 in order
to eliminate frequency-dependent fluctuations. We acquired
measurements at TAU and UPB, in different rooms or with
the TX and RX placed in different spots in the same room,
while maintaining a distance between the two devices of 1 m.
Fig. 7 compares the RSS distribution in 15 recordings when
taking a fixed number of 326 random measurements from
each recording (the fixed number was selected based on the
minimum length among all 15 recordings).

We expected to get similar RSS measurements in
different snapshot recordings, given that the multipath fading
is mitigated by averaging samples over several minutes.
However, even after multiple test-retest measurements
performed at UPB and TAU, results (see Fig. 7) indicate
fluctuations of the median RSS of up to 40dB between
snapshot recordings even though the TX-RX distance was
constant. Moreover, the median RSS can vary even in the
same location between two recordings taken in different
days, even though results in Section IV-A suggested that
RSS measurements are very stable over time. For instance,
recordings with indices 3, 4, and 5 were acquired at the
exact same locations over multiple days but the mean RSS
of recording number 4 is higher with 15dB than the other
two recordings. Such a large variability might be caused
by the chipset warm-up after a reboot, interference in the
ISM band, or other environmental factors such as the room
temperature. Although we used the same model of devices
for the measurements, the TAU data set from Fig. 7b had a
smaller (but still significant) spread than the UPB data set from
Fig. 7a, of 20dB compared to 40 dB, respectively.

When aggregating data from multiple recordings, however,
for at least 4 recordings the mean RSS converges to
approximately —49dBm and —55dBm for UPB and TAU,
respectively, as shown in Fig. 8. It is important to note that,
although a relatively small number of recordings is necessary
to capture the variability of the mean RSS between two devices
across different locations, the shape of the distribution (and
hence its spread) stabilizes only after 12-13 recordings.

C. The Impact of Hardware on the BLE RSS

We evaluated the impact of the hardware choice on the RSS
when the same device model (Raspberry Pi 4 Model B) was
used on both the transmitter and the receiver side. The devices
were placed at the exact same location, with a fixed distance
between them of 2m, and the transmitter sent advertising
beacons only on channel 37. We used in total four different
Raspberry Pi boards, from exactly the same manufacturer and
same model type, labeled RPil to RPi4 which integrate a
Cypress CYW43455 BLE and Wi-Fi chipset.

Fig. 9 shows the RSS distribution of each pair of devices.
Pair 1 consisted of the TX-RX pair RP11-RPi2, pair 2
of RP11-RPi3, pair 3 of RPi1-RPi4, pair 4 of RPi2-
RPi4, and pair 5 of RPi3-RPi4. In other words, device
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Fig. 8. The impact of the number of snapshot recordings from a particular scenario on the RSS distribution. A total of 15 recordings were acquired in the
same scenario (LOS at 1 m on channel 37). This figure presents the RSS distribution when an equal number of samples (326, corresponding to approximately
5min) are taken from 1 to 15 recordings selected at random. The median, mean, and inter-quartile range (IQR) converge for more than 12—13 recordings.
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Fig. 9. The impact of hardware choice on the RSS in recordings acquired
with different device pairs placed at a distance of 2m at exactly the same
location. The median RSS varies with 5dB, even though the devices have
the same model.

pairs 1, 2, and 3 share the same transmitter, while device
pairs 3, 4, and 5 share the same receiver. The median RSS
varies with up to 5dB even between devices from the same
model. This experiment shows the difficulty of building a
database that documents the transmitter and receiver efficiency
of different brands of devices, since even devices that use the
same hardware have RSS variations of several dB.

D. The Impact of the Advertising Channel Index on the BLE
RSS

As mentioned earlier, BLE devices transmit beacons on
channels 37, 38, and 39 which correspond to frequencies of

2.402, 2.426, and 2.48 GHz, respectively. Fig. 10 illustrates
the impact of three advertising channels on the RSS, compared
with a recording where all 3 advertising channels were used.
The data was collected at the same location with the devices
2m apart and on the same day within a short time interval.
The same type of measurements were done in parallel at UPB
and TAU. By default, beacons are transmitted on all three
advertising channels. Therefore, a receiver cannot determine
the channel of the transmitted packets, resulting in a larger
variance of the samples and inaccurate distance estimates. At
both UPB and TAU we noticed variations of at least 5dB
between measurements acquired on different channels. Other
sources measured differences between BLE channels as high
as 15dB (Figure 2 in [54]).

E. The Impact of Transmitter-Receiver Distance on the BLE
RSS

Under the LOS assumption (i.e., no obstacle between the a
BLE transmitter and a receiver), one can start from the well-
known free-space path-loss (FSL) model:
4z f,

c

Pr = Pr — 20log1od — 20logqo( )+, (1

where Pr is the received signal strength in dB scale, Pr is
the apparent transmit power of the BLE transmitter computed
at Im away from the transmitter, d is the distance between
the transmitter and the receiver (i.e., between the two persons
under consideration in the digital contact-tracing app), f. is the
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Fig. 10. The channel impact on RSS values in a LOS scenario at 2 m distance,
based on measurements acquired at UPB and TAU. This plot illustrates the
RSS distributions (with an equal number of samples: 95 per snapshot) when
receiving beacons on all three channels and on individual channels.

carrier frequency of the transmitted BLE signal (i.e., the carrier
frequency on the used advertising channel or an average carrier
frequency when several advertising channels are used), ¢ is the
speed of light (i.e., about 3 % 108 m/s), and 7 is a noise factor
encompassing the shadowing effects in the wireless channel,
interference, and possible other noise sources. By virtue of
the central-limit theorem, 77 can be assumed to be Gaussian
distributed of variance o2. We also assume that 7 is a zero-
mean noise under LOS scenarios.

The FSL is rarely used as such in RSS modeling; instead,
most authors prefer the one-slope path-loss model below for
its simplicity [27], [55]-[57]:

Pr = PT(,, — 10nlogiod + n, )

where the apparent transmit power Pr, factor includes also
the frequency-dependent effects, in such a way that multi-
frequency effects, as those generated by RSS measurements
on multiple advertising channels can be lumped into a single
parameter, and n is a positive number modeling the path-loss
parameter. An n value below the FSL path-loss factor of 2
would signal the presence of some conductivity effects in the
building walls as well as multipath-enhanced propagation (e.g.,
multipath adding constructively). The lower n is, the flatter the
RSS curve is with the distance, and the harder would be to
differentiate between close distances (e.g., between 1m and
2 m or between 2 m and 3 m). Typically, in model-driven
RSS approaches (as opposed to data-driven approaches), the
purpose is to estimate the best-fit parameters Pr, and n of
an underlying path-loss model. This is usually done via a
least-square (LS) fit, where the unknown parameter vector
x £ [Pr, n] is estimated via % [55]:

x=(ATA)'ATD, (3)

with A € Npeqs X 2 being a matrix with i-th row equal
to [1 — 10log1od;i], i = 1,..., Npeas, and b € Npeas X 1
being a vector with the i-th element equal to the received
signal strength Ppr, observed in the i-th measurement at d;
distance between TX and RX. Above, N,,cqs 1S the number
of measurements (or observations) used in the LS fitting, and
encompassing various TX-RX distances d;. The shadowing

variance 63 is then computed as the error between the

measurements and the reconstructed data, namely:
1 NinEG.S

Nmeas

~2
Jn—

2
(PRi —Pr - 10ﬁloglo(di)> @
=1

When a NLOS obstacle such as a glass window, a wall, or
the body of another person is present between the transmitter
and receiver, we expect the NLOS apparent transmit power
Pr, to be smaller than the LOS Pr_, as it should incorporate
the additional absorption losses due to obstacles. However,
repeated measurements are both TAU and UPB showed that
this is not always the case.

Table II gives examples of the path-loss parameters
estimated from aggregated measurements on all three BLE
advertising channel, in four considered scenarios (two LOS
and two NLOS, with two of them from TAU and two from
UPB scenarios). In the NLOS scenarios, the obstruction was
caused by a wall between the TX and the RX. In order to have
a fair comparison also between long recordings, we extracted
326 samples from each available recording (which correspond
to a recording time of around 5min) and aggregated them.
Several Monte Carlo runs showed very similar parameter-
fit results from one run to another. For illustrative purposes,
Table II shows the results based on one random run in each
scenario.

The main conclusion is that there is not a one-size-fit-
all model with constant [Py, 7] vector estimate, but that
there are high fluctuations between the four shown scenarios,
and therefore a model-driven approach for BLE RSS-based
contact tracing will likely suffer from large errors. This is also
reflected in the high shadowing standard deviations &, shown
in Table II (around 6 dB for TAU data and around 9dB for
UPB data).

Indeed, other literature results have shown that the path-loss
parameters used in different works vary widely. For instance,
although a path-loss exponent between 2.4-2.6 is frequently
recommended [26], in [43] the path-loss exponent was set to
1.8 for LOS scenarios and 2.2 for NLOS ones. In the survey
part of [2], the path-loss exponents extracted from various
research papers varied between 0.63-2.32 and TABLE II
suggests that in some cases (NLOS, UPB) this value might
be even lower.

Instead of model-driven contact tracing, data-driven
approaches such as those based on large training data sets
and machine learning solutions (e.g., in [26]) could be
adopted, but they have high complexity and are impractical
at large scales. Other works [58], [59] propose online
path-loss estimation methods based on cooperating nodes
in wireless sensor networks. However, tens of nodes are
usually needed for an accurate estimation. Another solution
is to have a gateway that collects the RSS of surrounding
BLE beacons, tracks the fluctuations, and sends back RSS
correction factors to individual nodes in real time [24].
However, such an approach is not suitable for a peer-to-
peer and privacy-sensitive application like contact-tracing.
Therefore, the challenges of finding the right approach (model-
driven versus data-driven) and the right models (e.g., more



TABLE II
EXAMPLE OF PATH-LOSS PARAMETERS ESTIMATED FROM AGGREGATED
MEASUREMENTS.
. . Total number of

Environment [;glan} 7 [-] [g]%] measurements

atlm | at2m | at3m
LOS, TAU -55.35 0.76 6.01 5868 2608 1630
NLOS, TAU | -49.98 3.31 5.70 3586 2934 1956
LOS, UPB -44.07 1.60 8.73 5216 2608 2934
NLOS, UPB | -51.69 0.37 8.72 1630 1630 1630

sophisticated models than the simple single-slope path-loss
model of Eq. (2)) are still important challenges to be solved by
the research community dealing with BLE RSS-based contact
tracing or proximity detection.

F. The Impact of Transmitter and Receiver Orientation on the
BLE RSS

We considered the effect of the relative orientation between
the transmitter and the receiver on the BLE RSS. We analyzed
four poses depicted in Fig. 12, where the pose of the
transmitter is fixed and the receiver is rotated clock-wise with
90°, 180°, and 270° with respect to the “front” orientation
from Fig. 12a, resulting in the “left,” “right,” and “back” poses,
respectively. The radiation pattern (Fig. 11) for the frequency
of Bluetooth channel 37 shows a 2.7dB standard deviation
across all angles, but the maximum differences on each of the
three planes is of 10.1, 13, and 14.1dB.

Fig. 13 presents the RSS distribution in all poses, when
the devices are placed at distances of 1, 2, and 3m. The
devices were placed on tripods which were kept fixed at the
aforementioned distances, while only the receiver was rotated
around its center axis for each pose. Each recording had a
duration of approximately 10 min and was performed only on
channel 37. First, we notice the same inconsistencies with the
distance discussed in Section IV-E, in which the average RSS
at 1 m distance is lower than the one at 2 and 3 m. Second, the
RSS changes with the pose for a particular distance, although
the receiver was not moved but only rotated around its axis
and the transmitter’s position was the same in all recordings.
There is no orientation which results in a higher RSS at all
distances. However, the “back” pose has a lower median RSS
than the other poses at all distances, most likely because in
this pose, as can be seen from Fig. 12b, the metallic USB
and Ethernet ports of the receiver board are in the LOS of the
signal and attenuate it. While the median RSS in the “front,”
“left,” and “right” poses varies with about 5dB for the same
distance, the median RSS in the “back” pose can be with even
20 dB lower than in the other poses.

G. Random Fluctuations Caused by BLE-Wi-Fi Combo
Chipsets

The interference between Bluetooth and Wi-Fi is well
documented in literature, and IEEE has recommendations

(a) Plane XY

(b) Plane XZ (¢) Plane YZ

Fig. 11. Radiation pattern of Raspberry Pi 3B+ antenna plotted from anechoic
chamber measurement data [60]. It is a PCB antenna designed by Proant AB
present in many IoT devices operating in the 2.4GHz band.

(a) Front

(c) Left

(d) Right

Fig. 12. The four orientations of the receiver (device on the right) with respect
to the transmitter (device on the left) we considered in our experiment: (a)
front, (b) back, (c) left, and (d) right. In the back, left, and right poses the
receiver was rotated clock-wise with, respectively, 180°, 90°, and 270° with
respect to the front orientation.

[61] for the coexistence of the technologies operating in the
ISM bands. [62] has shown experimentally that Bluetooth
and ZigBee are affected by Wi-Fi, stating agreement with
previous studies. One way to tackle the coexistence is to use
specific algorithmic mitigations in the way each technology
is used [63], but some might require updates to the standards.
When both Wi-Fi and Bluetooth are implemented on the same
chipset, as is the case with most smartphones, [64] determined
through measurements that performance is degraded at the
application layer.

For the purpose of contact tracing however, only RSS
measurements and timestamps of the recordings are needed
and the question is whether the BLE measurements are
influenced by Wi-Fi activity on the same chipset. We turn the
Wi-Fi on and off simultaneously at both the transmitter and
the receiver every one hour and record the RSS. During the
time when the Wi-Fi is on, synthetic Wi-Fi traffic is generated
with 112kb/s. Fig. 14 shows that, on average, the mean RSS
when the Wi-Fi is on is 2.5 dB lower than during the time the
Wi-Fi is off. There is also a small difference in the standard
deviation: when the Wi-Fi is on, the standard deviation of the
RSS is 1.1dB compared to 0.83dB when the Wi-Fi is off.
Although Fig. 14 presents the results for 6 hours only, for
better visualization, the pattern remained consistent over two
days, during which there was no human activity around the
devices.

Wi-Fi scanning might occasionally cause even larger
differences in the BLE RSS than 2.5dB. We sometimes
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Fig. 13. The impact of orientation on the BLE RSS. The front, left, right,
and back orientations are shown in Fig. 12.
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Fig. 14. The impact of Wi-Fi and BLE combo chipsets: the Wi-Fi is turned
on and off every one hour at the indicated markers. On average, the mean
RSS with the Wi-Fi off is with 2.5 dB higher than with the Wi-Fi off.

noticed spurious measurements occurring only when the Wi-
Fi was on, usually at the beginning of a snapshot recording,
as shown in Fig. 15 around minute 100, when the signal
fluctuated for several minutes between —40, —55, and —90 dB.
The recordings with the settings of Wi-Fi on and off were
acquired during different times of the day; however, the
environment was static with no people moving inside the
room. We acquired results which show the mean RSS values
to be with 6.8dB higher with Wi-Fi off than with Wi-Fi
switched on. Overall, Fig. 15 illustrates the instabilities in
single recordings which might be caused by coexistence of
different signals within the 2.4 GHz frequency. A similar
pattern was observed also in [65], where Figures 6 and 7 reveal
a 20dB difference in BLE readings when Wi-Fi scanning is
active with a Samsung Galaxy S4 smartphone.

H. On the Difficulty of LOS/NLOS detection

In this section, we investigate the effect of different types
of obstructions on the BLE RSS. At both UPB and TAU
we acquired measurements in LOS and NLOS with wall
shadowing. In addition, at UPB, we tried more types of
obstructions: wall and whiteboard, door, human body, and
plexiglass panel. All the setups are shown in Fig. 4, where
for NLOS measurements we varied only the distance between
the devices, while in LOS we also tried different locations.

We consider a “scenario” a set of snapshot measurements
acquired at the same distance, on the same channel, in the same
LOS/NLOS setting. TABLE III presents the mean and the
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Fig. 15. The impact of Wi-Fi switched on and off, in LOS at 1m distance.
When the Wi-Fi is off, the mean RSS is higher with 6.8 dB than when the
Wi-Fi is on. When the Wi-Fi is on, we also notice RSS fluctuations of up to
30dB around minute 100.

standard deviation of the RSS computed in different scenarios
from measurements acquired at UPB. Because recordings in
the same scenarios have lengths from 5min to several days
and we do not want longer recordings to bias the statistics,
when there are multiple recordings in the same scenario we
chose an equal number of measurements at random from each
recording from that scenario and computed the mean and
standard deviation using only the subset of samples. Usually,
recordings within the same scenario were acquired at different
locations to capture the variability of the RSS across space
for the same TX-RX distance. As a result, when there are
multiple recordings in a scenario, the standard deviation of the
RSS is higher than in single-recording scenarios. The number
of recordings (“Nr. rec.”) and the number of samples in each
recording (“Nr. samples per rec.”) are specified in TABLE III
for each scenario, as well as the advertising channel(s) on
which measurements were acquired.

Comparing the statistics in LOS and NLOS when all
advertising channels are used, we note that the mean RSS
varies within a range of 20 dB, indicating that the attenuation
introduced by an obstacle depends on the type of obstacle. The
mean RSS in LOS is usually higher than the one in NLOS but
not always—the mean RSS in the “NLOS door” recording is
higher than the one in LOS. Note also that the human body
causes a higher standard deviation than the other obstructions.
This can be seen more clearly in Fig. 16, which shows the
distributions of selected NLOS measurements from TABLE III
and one recording acquired in LOS on all channels. The large
spread can be caused by slight movements of the body which,
by nature, cannot be perfectly immobile (breathing alone
causes a slight movement of the body). These characteristics
can make the human body more easily detectable than other
obstructions, as previous works showed [26]. However, other
obstructions might be more difficult to detect. For instance,
the mean RSS in the “NLOS plexiglass” case is similar to the
mean RSS in LOS on individual channels, while the highest
mean RSS was obtained in the “NLOS door” case.

The inconsistency can be also caused by the fact that most of
the NLOS statistics were computed based on a single recording
and, as we saw in Section IV-B, single recordings can deviate



from statistics computed on aggregated data with more than
10dB. Therefore, next we compare LOS and NLOS with a
wall distributions aggregated from all channels, at distances of
1, 2, and 3 m, acquired independently at UPB and TAU, shown
in Fig. 17. The distributions are plotted based on the same
data used in Section IV-E to estimate the path-loss parameters
from TABLE II. Each distribution was computed based on 5 to
18 recordings based on 326 measurements selected at random
from each recording. Based on the results in Section IV-B,
the mean computed based on 5 recordings should be within
several dB of the “stable” mean, but the standard deviation
can still fluctuate for less than 12—13 recordings.

Although the distributions in Fig. 17 mostly behave as
expected, i.e. the mean RSS should decrease with the distance
and the mean RSS should be lower in NLOS than in LOS
at the same distance, there are exceptions. The average RSS
in NLOS is higher than the one in LOS at 3m for the UPB
data set and at 1m for the TAU data set. Also, the NLOS
distributions have higher or equal spread than LOS ones in
most of the cases, even though the NLOS data sets contained
less recordings than the LOS ones. This result contradicts
observations in [43], where NLOS obstructions caused by
walls were identified when the standard deviation of RSS
measurements in a window was lower than a fixed threshold.
Although UPB and TAU data sets were acquired using the
same model of Raspberry Pis, measurements acquired at TAU
had a smaller spread than those from UPB even in LOS, which
points once more to the instability of RSS measurements.

In proximity-detection or RSS-based localization
applications, obstructions will most of the time lead to
inaccurate distance or location estimates. Therefore, multiple
solutions have been proposed to correct RSS-based ranges
by detecting the NLOS condition [26], [42], [43] with the
caveat that such solutions might not generalize easily, as
our measurements show, or that large data sets might be
necessary to extract features that improve classification. In
contact-tracing applications, such instabilities can lead to false
alarms or failures in detecting potentially unsafe interactions.
For instance, since human body shadowing sharply attenuates
the signal, the distance predicted by a standard path-loss
model can be larger than in reality, so people might not be
notified of risky encounters. On the contrary, if the RSS
reported when devices (or people) are separated by walls is
larger or equal than the average RSS in LOS, an alert might
be raised even if people staying in different rooms are safe
from each other. Therefore, LOS/NLOS detection is still a
highly relevant topic with room for improvement. Hybrid
solutions that combine BLE with UWB, cameras, or other
sensors might increase the reliability of NLOS detection.

V. DISCUSSION

One of the unexpected results of our measurement
campaigns—a result which has also not been emphasized
enough until now in the current literature—is the fact
that snapshot BLE RSS measurements are highly unstable
and fluctuating, and only by lumping together enough
measurements (i.e., by using aggregated data), the results

TABLE III
THE MEAN AND STANDARD DEVIATION OF THE BLE RSS IN DIFFERENT
SCENARIOS AT A TX-RX DISTANCE OF 2 m.

Scenario Ch. Nr. Nr. samples RSS
rec. per rec. @————————————

Mean Std.

[dBm] [dB]
LOS 37 7 326 —50.5 7.6
LOS 38 1 3215 —46.0 5.6
LOS 39 1 25607 —54.2 1.7
LOS all 5 736 —45.6 7.3
NLOS wall 37 3 1726 —55.4 6.0
NLOS wall all 1 1824 —58.2 2.0
NLOS human all 1 495 —60.0 4.3
NLOS plexiglass  all 1 1824 —50.7 2.9
NLOS door all 1 1808 —40.7 3.3

Channels 37, 38,39,d=2m
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Fig. 16. Comparison of selected RSS distributions acquired on all advertising
channels at 2m, in LOS, NLOS with a plexiglass panel, NLOS with a wall
and a whiteboard, and NLOS with human body shadowing.
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Fig. 17. Comparison of RSS distributions based on data acquired in LOS and
NLOS with a wall at UPB and TAU at distances of 1, 2, and 3 m, irrespective
of the advertisement channel.

seem to converge, to some extent, to the classical path-
loss models (e.g., average RSS decreasing with transmitter-
receiver distances, average RSS under LOS scenarios stronger
than the average RSS under NLOS scenarios). Nevertheless,
for fast proximity-detection or contact-tracing algorithms,
when the observation window can be as small as 15 min,
aggregated RSS data may be unavailable, and estimations
based on what we called snapshot recordings can suffer
from significant errors due to high RSS fluctuations. We also
provided guidelines for building data sets that best represent
the conditions in a particular scenario.



VI. CONCLUSIONS, AND OPEN ISSUES

This paper presented a detailed analysis of BLE RSS
fluctuations based on an extensive measurement campaign
performed in tandem in Tampere, Finland, and Bucharest,
Romania. We documented in detail the main sources of
high fluctuations (or instabilities) of BLE RSS measurements
occurring, surprisingly, in static scenarios and diverging from
the classical path-loss models, e.g., as given in Eqs. (1)
and (2). We defined controlled scenarios, such as fixing
the transmitter and receiver BLE models, fixing the BLE
advertising channel to have transmission on a single carrier
frequency, turning the Wi-Fi transmitter off in chipsets sharing
the 2.4 GHz antenna between BLE and Wi-Fi, and fixing the
transmitter-receiver distance.

We emphasized several challenges that still remain to be
addressed by the research community when standalone BLE
RSS measurements are used for contact tracing, proximity
detection, or positioning purposes, namely: the challenges of
NLOS scenarios with stronger average (and median) RSS than
LOS scenarios at the same distance, the challenge of increased
RSS fluctuations (or variance) when the measurements are
acquired on multiple BLE advertising channels (as it is
customary in contact-tracing applications) or with different
receiver-transmitter orientations (which again are highly
variable, as users can keep their mobile devices in various
positions: in hand, inside bags, inside front or back pockets,
etc.).

A possible solution to overcome the instability of snapshot
BLE RSS recordings is, for example, the hybridization of
BLE RSS measurements with other sensors, such as vision
sensors (to enable LOS/NLOS detection) or time-of-arrival
UWRB sensors (to enhance the range estimation). However, this
will increase the energy consumption of end-user devices, so
the trade-off between proximity detection accuracy and energy
consumption must also be considered. Collecting data from
additional sensors can also potentially decrease user privacy.
Another possibility would be to collect large training databases
in hotspot areas (e.g., shopping centers, commuting halls, etc.),
which could facilitate a baseline statistical modeling based on
both snapshot and aggregated training data, and to further use
machine-learning approaches to derive data-driven estimators
instead of the model-driven estimators which rely on path-loss
modeling.

The main goal of this paper is to shed additional light on
the challenges encountered in BLE-based contact tracing and
to raise awareness among the research community that several
challenges related to BLE RSS ranging and positioning are still
to be solved. One solution based on our measurements is to
use enough aggregated data, as, by virtue of the central-limit
theorem, this seems to remove the outliers and to converge
towards known path-loss models. Such a solution could be
sufficient for positioning purposes when training databases
can be based on large amounts of aggregated data, but it
may still be unfeasible for contact-tracing solutions in need
working with snapshot data. Another solution could envisage
more sophisticated path-loss modeling, such as by taking
waveguide effects [66] into account or using stochastic ray-

tracing modeling [67].

The measurement data will be made open-access at the
research community on Zenodo?, in order to enable the
reproducibility of the research and to provide benchmark data
for further investigations on BLE RSS-based contact tracing.
Future work also includes collecting data from more devices,
including various types of mobile phones, and looking into
more detail at the yet-unsolved research question of whether
NLOS situations can be separated with high accuracy from
LOS situations and under which conditions.
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