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This paper presents an experimental evaluation of network protocols for control and management of op-
tical networks and optical network equipment as seen in current trends. This paper presents the YANG
data modelling language and its associated RESTCONF/NETCONF protocols. Later, it details multiple
data models used in optical networks, such as IETF TEAS, ONF Transport API, OpenROADM and Open-
Config. It also presents multiple protocols for telemetry (i.e., YANG PUSH,gRPC and gNMI). Later, a
zero touch SDN controller architecture for multiple Standard Defining Organizations (SDO) is presented,
in order to support the usage of multiple protocols in a zero touch optical network. Finally, the presented
protocols implementations are experimentally evaluated and compared in terms of latency and overhead.
The paper explores the usage of these protocols (e.g., in research, demonstrations and open-Source optical
networking projects) and provides results and recommendations for their integration in novel equipment
and networks. © 2021 Optical Society of America
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1. INTRODUCTION

Software Defined Network (SDN) introduced the logical de-
coupling of control and data planes, by providing a logically
centralized architecture to dynamically control (multiple) net-
works. Since its definition, SDN incorporated several key con-
cepts such as standardized management interfaces, and open
interfaces. OpenFlow was the first SDN protocol, which was
early extended for optical networks [1].

Optical network control and management has evolved, and
nowadays it allows to understand the proper monitored data
and it is able to implement automated troubleshooting, leading
to what is known as zero touch optical networking. This has
been reached thanks to many innovations. Multiple Standard
Defining Organizations (SDO) have contributed with data mod-
eling languages and the corresponding data models to describe
a device capabilities, attributes, operations and notifications to
be performed or received from a device or system. The Internet
Engineering Task Force (IETF) has proposed Yet Another Next
Generation (YANG) data model language [2]. This introduction
has eased evolution of SDN networks thanks to the associated
tools and protocols enabling complex models with complex

semantics, flexible, supporting extensions and augmentations.
Later, the introduction of Protocol Buffers [3] has signified a new
step in data model definition. In this paper, we will present and
identified how both data modeling languages have succeeded
in the definition of open optical network standards, although it
is hard to reach consensus.

The proposed data modeling languages have an associated
transport protocol, which provides primitives to view and ma-
nipulate the data, providing a suitable encoding as defined by
the data-model. Ideally, data models should be protocol inde-
pendent. Each proposed transport protocol shall provide an
architecture for remote configuration and control based on client
/ server. It should support multiple clients, provide access lists,
include transactional semantics, and deploy roll-back function-
alities in case of error. The Network Configuration Protocol
(NETCONF) [4] was the first protocol developed specifically
for YANG data models. Later, the RESTCONF protocol [5] has
been presented as a feasible solution to provide the benefits of
NETCONF using Representational State Transfer (REST) with
Hypertext Transfer Protocol (HTTP). In the last years, a new
breed of protocols for network configuration that are able to deal
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with protocol buffers have been proposed, such as gRPC [6] and
gNMI [7].

On the other hand, SDN-enabled applications are being de-
veloped e.g., on top of Open-Source based SDN controllers that
are responsible for the logically centralized control of the op-
tical network. These optical SDN controllers provide the nec-
essary network simplification through abstraction and virtual-
ization. These are provided using multiple services, such as:
topology, provisioning, path computation, virtualization, and
inter-domain connectivity. Several protocols have been defined
for NorthBound interfaces of an optical SDN controller. The
Open Networking Foundation (ONF) proposed the set of func-
tional requirements and information model(s) for the Transport
API (T-API) [8]. In parallel, the IETF working group Traffic Engi-
neering Architecture and Signaling (TEAS) has worked in data
models for Traffic Engineering (TE) topology description [9] and
for Traffic Engineering connectivity provisioning [10].

As SouthBound Interfaces (SBI), optical SDN controllers have
started to introduce the following data models with regard to
control and management of network equipment: OpenROADM
[11] and OpenConfig [12]. OpenROADM is a multi-source agree-
ment between multiple manufacturers to make reconfigurable
optical add/drop multiplexers (ROADMs) compatible across
vendors. OpenConfig is an informal working group of network
operators adopting SDN principles such as model-driven man-
agement. It contains both protocol and data models definition.
It focuses on router and line card configuration.

Finally, network Operations require the continuous monitor-
ing of network data provided through streaming mechanisms,
which is known as telemetry. Telemetry has been using Simple
Network Management Protocol (SNMP) for the last decade, both
in synchronous and asynchronous monitoring. In order to intro-
duce more significant values and lower performance overheads,
several protocols are being proposed. These are YANG PUSH
[13], gRPC [6], and gNMI [7].

This paper extends [14]. It provides more depth in describing
the state of the art of the multiple protocols and data models
involved in controlling and monitoring optical networks and
elements. It also includes a description of an SDN controller
architecture that is able to handle multi-SDO interfaces. This
architecture has been generalized from current SDN controller
implementations. Later, the concept of zero touch optical net-
working is introduced, including its characteristics. Finally, this
paper also includes an experimental evaluation of the proposed
protocols using the same information model and scenarios. Al-
though all experimental results might not be comparable, this
evaluation provides some insights on the behaviour in terms of
payload length and related protocol efficiency.

The paper is organized as follows. Section 2 provides a de-
tailed overview of current protocols for control and monitoring
optical networks and equipment. Section 3 describes current
attempts for SDN Controllers to implement multiple standards
based interfaces, including the main characteristics of zero touch
optical networking and how the used telemetry can be applied
to automate optical networks. Section 4 evaluates the various
presented protocols and it provides detailed results with regard
to protocol bits usage and latency. Finally, Section 5 concludes.

2. CURRENT CONTROL AND MONITORING PROTO-
COLS FOR OPTICAL NETWORKS AND EQUIPMENT

In this section, we provide an state of the art of current data
models and protocols for: (a) YANG modelling language and

protocols; (b) control and management of optical networks and
equipment; and (c) telemetry mechanisms.

A. YANG modelling language and protocols
This section presents the YANG data modelling language and
the NETCONF/RESTCONF protocol. Both are used for defining
network control interfaces, usually available at thee NorthBound
Interface (NBI) of an SDN controller. The main concepts are
summarized in Table 1.

Table 1. NETCONF/RESTCONF Summary

NETCONF RESTCONF

Data Modelling

Language
YANG YANG

Transport

SSH, TLS,

BEEP/TLS,

SOAP/HTTP/TLS

HTTP

Encoding XML XML/JSON

Capability exchange
During Session

establishment

Retrieval of Yang

modules and

capability URIs

Multiple datastores YES YES

Datastore Locking YES NO

Security SSH TLS

A.1. YANG

YANG is a data modeling language [2]. It is used to define a com-
ponent configuration, state and notifications. YANG structures
data into data trees within the so called datastores, by means of
encapsulation of containers and lists, and to define constrained
data types. It allows the refinement of models by extending and
constraining existing models (by inheritance/augmentation),
resulting in a hierarchy of models. A YANG model includes a
header, imports, include statements, type definitions, configura-
tions and operational data declarations as well as actions (RPC)
and notifications.

Listing 1. Topology data model using YANG

1 module topology {
2 namespace "urn:topology";
3 prefix "topology";
4 organization "CTTC";
5 description "topology";
6 typedef layer -protocol -name {
7 type enumeration {
8 enum "ETH";
9 enum "OPTICAL";

10 }
11 }
12 grouping port {
13 leaf port -id {
14 type string;
15 }
16 leaf layer -protocol -name {
17 type layer -protocol -name;
18 }
19 }
20 grouping node {
21 leaf node -id {
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22 type string;
23 }
24 list port {
25 key "port -id"; uses port;
26 }
27 }
28 grouping link {
29 leaf link -id {
30 type string;
31 }
32 leaf source -node {
33 type leafref {
34 path "/topology/node/node -id";
35 }
36 }
37 leaf target -node {
38 type leafref {
39 path "/topology/node/node -id";
40 }
41 }
42 leaf source -port {
43 type leafref {
44 path "/topology/node/port/port -id";
45 }
46 }
47 leaf target -port {
48 type leafref {
49 path "/topology/node/port/port -id";
50 }
51 }
52 }
53 grouping topology {
54 list node {
55 key "node -id"; uses node;
56 }
57 list link {
58 key "link -id"; uses link;
59 }
60 }
61 container topology {
62 uses topology;
63 }
64 }

As an example, we present Listing 1 that shows a simplified
topology data model. It shows the definition of a module (topol-
ogy), which consists on a container (topology) that includes a list
of nodes (list node) and links (list link). Each list is ordered using
its identifier (node-id, link-id, respectively). A node includes
a node identifier (node-id) and a list of ports (list port). Each
port has its own identifier (port-id) and a specific layer (layer-
protocol-name). Each link includes a link identifier (link-id) and
references (leafref) to source and target node and port identifiers.

YANG has had a significant adoption as data modeling lan-
guage in Open Source projects and SDOs. There exists an on-
going significant effort to model constructs including optical
devices, such as transceivers, ROADMs. This has led to literally
hundreds of emerging standards across multiple SDO.

A.2. NETCONF

NETCONF is a control and management protocol that supports
the configuration of devices based on their known YANG-based
data models. It is based on the exchange of XML-encoded RPC
messages over a secure (commonly Secure Shell, SSH) connec-
tion.

NETCONF offers operation primitives to view and manip-
ulate data (e.g., <get-config>, <edit-config>). Data is arranged
into one or multiple configuration datastores. NETCONF de-
fines the existence of one or more datastores and allows con-
figuration operations on them. Only the running configuration
datastore is present in the base model [15].

NETCONF enabled devices include a NETCONF server,
while control and management applications include a NET-
CONF client. Firstly, they will establish a session over a secure

transport. After, both entities will send a hello message to an-
nounce their protocol capabilities, the supported data models,
and the server’s session identifier. Finally, when accessing con-
figuration or state data, with NETCONF operations, subtree
filter expressions can select subtrees.

One of the first evaluations of NETCONF in optical networks
was presented in [16]. The authors propose a YANG model to
describe a sliceable transponder to be deployed in an elastic op-
tical network with variable rate, code, modulation formats, and
monitoring capabilities. NETCONF is proposed to comply with
two use cases: a) transponder configuration; and b) notification
upon BER threshold exceed. The authors provide an overview
of the messaging of NETCONF between client and server, which
includes edit-config, subscription, and notification messages.

A.3. RESTCONF

RESTCONF is a protocol that provides an HTTP-based API to
access the data, modeled by YANG [5]. RESTCONF protocol
organizes the datastore using Uniform Resource Identifier (URI)
that reflect data hierarchy. HTTP REST operations such as Create,
Read, Update, Delete (CRUD) are applied to the defined URI.

State and Configuration data can be retrieved with the HTTP
GET action. Configuration data can be modified with the POST
(create), PUT (update) and DELETE methods. Data is encoded
with either XML or JSON.

Current SDN controllers implement their NBI using HTTP
servers. The introduction of RESTCONF to ONOS and Open-
DayLight has eased the adoption of novel data models, such as
the one presented in the following subsections.

B. Control and Management of Optical Networks and Equip-
ment

This section focuses on describing the most extended YANG
data models for control and management of optical network
s and equipment, which have been adopted in disaggregated
optical networks: IETF TEAS, ONF Transport API (T-API), Open-
ROADM and OpenConfig. IETF TEAS and ONF T-API use REST-
CONF, while OpenROADM and OpenConfig use intensively
the NETCONF protocol. Table 2 summarizes the presented
standards. Complexity refers to the number of YANG lines for
describing the data model. Maturity takes into consideration
the number of proof-of-concept and field-trial, where the data
model has been involved.

B.1. IETF TEAS

TEAS is an IETF Working Group (WG) that has proposed the
YANG Data Model for Traffic Engineering (TE) Topologies [9]
and for Traffic Engineering Tunnels and Interfaces [10]. The
proposed data models allow network traffic engineering and
they can be easily extended with optical parameters, such as in
Wavelength Switched Optical Networks (WSON) [17] or Flexi-
Grid networks [18]. These extensions are described in Common
Control and Measurement Plane (CCAMP) WG.

The authors in [19], present an analysis of different data mod-
els are compared, detailing their respective strengths and weak-
nesses and have shown their application areas by mapping them
to components of a generic optical network SDN controller.

IETF has also proposed Abstraction and Control of TE Net-
works (ACTN) framework as high-level abstractions, which
includes multi-technology and multi-domain transport network
services. It enables legacy heterogeneous transport network
control and management technologies. In order to achieve multi-
domain service coordination based on abstraction/virtualization
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Table 2. Standards Summary

Standards IETF TEAS T-API OpenROADM
OpenConfig

Data Model

Objective
NBI Transport

SDN controller

NBI Transport

SDN controller

Dissagregated

ROADM

Router and line

card configuration

Data Model YANG YANG YANG YANG

Complexity ++ + ++ +

Maturity + ++ ++ ++

SDO IETF ONF, OIF MSA MSA

is provided through a hierarchy of controllers. Customer net-
work controllers (CNC) are deployed on-demand by customers
in order to handle their own virtual and abstracted resources.
Multi-domain service coordinators (MDSC) are responsible to
offer resources to connected CNC. MDSC are responsible for
coordinating underlying physical network controllers (PNC).

In [20], the application of the ACTN architecture is demon-
strated for the control of a multi-domain flexi-grid optical net-
work. It adopts and extends the hierarchical active stateful Path
Computation Element (PCE) architecture to provide per link
partitioning of the optical spectrum based on variable-sized
allocated frequency slots enabling network sharing and virtual-
ization. MDSC can be mapped to parent PCE and PNC can be
mapped to child PCE. Another demonstration of ACTN appli-
cability is proposed in Cross Stratum Orchestration (CSO) as a
feasible solution for NFV points of presence interconnection[21].
In the paper, the demo architecture and the interfaces/APIs were
aligned with IETF ACTN.

In parallel to the IETF proposed data models, the ONF Trans-
port API (T-API) has proven a feasible solution for multi-vendor
SDN in transport networks[8]. Its usage in transport SDN con-
trollers is spreading due to several benefits: (a) Well-known
API; (b) extensible and open source software solutions; (c) tested
and deployed in multiple interoperability events; (d) provides
proper abstractions; (e) covers a multitude of use cases, such as
multi-layer; (f) supported by a great community of vendors.

Figure 1 introduces the main ONF Transport API concepts.
All interactions between an SDN controller and a T-API client
(e.g., application, or orchestrator) occur within a shared context,
which is defined by a set of Service Interface Points (SIP). SIPs
allow a T-API client to request a connectivity services between
them. An SDN controller may expose one or more abstract
topologies within a shared context. These topologies may or
may-not map 1-to-1 to a provider’s internal topology. They
are expressed in terms of nodes and links. On one side, nodes
aggregate Node Edge Points (NEP). On the other side, links
connect two or more nodes and they terminate on NEPs. These
NEPs may be mapped to 1 or more SIP.

A T-API client might request a Connectivity Service(CS) be-
tween two or more SIPs. In response to the requested CS, the
SDN controller creates one or more connections. The Connection
End Points (CEP) encapsulate the related connection information
regarding underlying node edge points.

B.2. ONF Transport API

The paper [22] demonstrated, for the first time, the deployment
and use of ONF Transport API. Topology and connectivity ser-

Fig. 1. Example of ONF Transport API context and main con-
cepts

vices were demonstrated as a feasible solution for multi-vendor
SDN in transport networks. Multiple authors have extended
T-API to support multiple novel technologies, such as Space Di-
vision Multiplexing (SDM). In the paper [23], the authors have
extended T-API for SDM networks and demonstrated the exten-
sions in an experimental NFV MANO framework for the control
of SDM/WDM-enabled fronthaul and packet-based transport
networks.

The ONOS SDN controller has demonstrated the recursive
usage of Transport API on the project Open and Disaggregated
Transport Network (ODTN) [24]. The aim of this project is to
provide support for Ethernet (connectivity service establishment
between client ports) and photonic layers (between transceiver
line ports). On the other hand, OpenDayLight includes Trans-
portPCE project, which also targets the photonic and OTN layers,
including the ability to configure OTN cross-connections and
interfaces. It includes a partial implementation of ONF T-API to
support the export of an abstracted view of the topology to an
SDN controller [25].

B.3. OpenROADM

OpenROADM is a Multi-Source Agreement (MSA) between
operators and vendors that defines inter-operability specifica-
tions for ROADM switches, transponders, and pluggable optics.
Specifications consist of both optical inter-operability as well as
YANG data models.

OpenROADM defines vendor-neutral model for configura-
tion and management for three network interfaces:

• common single-wave interface between transponders,
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• common multi-wave interface between ROADMs,

• common YANG models for all components.

The authors in [26] show end-to-end carrier Ethernet circuits
orchestration in a hierarchical control plane of ONOS SDN con-
trollers. New device drivers were developed for ONOS in order
to directly configure ROADMs using NETCONF and YANG
models defined by the OpenROADM project.

[27] presented the most complete OpenROADM demonstra-
tion. It provided novel functionalities for multi-layer use cases
using TransportPCE project of OpenDayLight. TransportPCE
communicates with the SDN orchestrator. The SDN orchestrator
provides unified control and management of the resources across
three domains (i.e, optical layer, Ethernet layer, and datacenter
compute nodes). Several use cases have been demonstrated,
such as datacenter backups and massive virtual machine live
migrations.

B.4. OpenConfig

OpenConfig is an informal working group of network operators
with the common objective of introducing to the networks more
programmability and dynamicity. A key driver for this objec-
tive is the adoption of SDN principles that include declarative
configuration and model-driven operations.

OpenConfig provides a set of vendor-neutral YANG data
models for a variety of network elements, from routers, switches
to optical transport. If we focus on optical-transport, it provides
a configuration and state model for:

• Terminal device: terminal optical devices within a DWDM
system, including both client- and line-side parameters.

• Wavelength router: configuration and operational state data
for an optical transport line system node, or ROADM (e.g.,
Colorless Directionless Contentionless (CDC) ROADMs,
Wavelength Selective Switches (WSS), Dynamic Gain Equal-
izer).

• Optical amplifier: configuration and operational state data
for optical amplifiers, deployed as part of a transport line
system.

• Channel monitor: operational state data for an optical chan-
nel monitor (OCM) for optical transport line system ele-
ments such as wavelength routers (ROADMs) and ampli-
fiers.

• Transport line protection: configuration and operational
state data for optical line protection elements, such as Au-
tomatic Protection Switch (APS). APS provides protection
using two dark fiber pairs to ensure the amplifiers can still
receive a signal if one of the two fiber pairs is broken.

The paper [28] presents extensions to the OpenConfig termi-
nal device data model that enable dynamic selection of trans-
mission parameters of 100G/400G transmitters with coherent
reception in a filter-less metro network.

The authors in [29] provide a demonstration of augmentation
of the OpenConfig data model of Wavelength router to demon-
strate network disaggregation, including various operations on
both degrees and media channels.

The ONOS ODTN project includes OpenConfig models over
NETCONF for transponder configuration. The reasons for se-
lecting these models were that OpenConfig is a well know API
that is supported already by many vendors; it provides proper

abstraction model for transponder devices capabilities and infor-
mation; it also defines capabilities at correct level for programma-
bility but also abstraction from physical details; it includes capa-
bility and flexibility to support vendor specific features; and it is
extensible and open source, among others.

OpenConfig and OpenROADM, although they try to provide
similar solutions for modelling optical networks and elements,
they are typically used for different purposes. For example,
ONOS ODTN project, as previously detailed uses OpenConfig
for transponder devices, but it uses OpenROADM for the OLS
[30].

C. Telemetry mechanisms in Optical Networks

Streaming of monitoring data is known as telemetry and it is
used in the context of network control and management, with
the objective to monitor and troubleshoot network status. SNMP
has been the most used protocol for this purpose [31]. Transac-
tion Language 1 (TL1) is also an existing widely used manage-
ment protocol. Several types of data are exposed and consumed
in transport networks, such as network state indicators, network
statistics, and critical infrastructure information. During the last
decade, new protocols (i.e., YANG PUSH, gRPC, gNMI) have
incorporated significant novel features that make them attractive
to network administrators:

• ability to do bulk retrievals;

• support of multi-tenancy of the monitored device (e.g.,
through multiple NMS);

• introduction of highly efficient protocol buffers (protobuf).

• novel subscription types are defined, with the introduction
of conditional telemetry, which refers to the establishment
of a push connection and forward targeted telemetry data
to a targeted recipient when certain criteria are met.

Table 3 provides a summary of gRPC and gNMI as protocols.
YANG PUSH mechanism uses NETCONF, which has previously
been detailed.

Table 3. Telemetry Summary

gRPC gNMI

Data Modelling

Language
Protocol Buffers

YANG,

(Protocol Buffers)

Transport HTTP/2 gRPC

Encoding byte JSON/byte

Capability exchange No
During Session

establishment

Multiple datastores NO
YES (Config/

State/Operational)

Datastore Locking NO NO

Security TLS TLS
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C.1. YANG PUSH

YANG-PUSH is a mechanism that allows applications to sub-
scribe to a customized stream of updates from any available
YANG datastore [13]. It is provided over NETCONF protocol. It
allows a client to monitor changes to a YANG datastore with noti-
fications instead of with NETCONF GET requests. This provides
lower resource consumption and ease of system integration.

Multiple datastores can be selected for subscription (e.g., run-
ning, candidate, operational). There are 2 kinds of datastore
subscriptions:

• Periodic subscriptions: The data is sent to the client every
specified time interval, even if the data is not modified.
Periodic subscriptions are similar to periodic NETCONF
GET requests, but they differ in the fact that the client does
not send any request.

• On-change subscriptions: The data is sent to the client only
when the data changes. This subscription method is much
more efficient than the periodic requests or subscription
approaches.

The work presented in [32] demonstrated for the first time the
implementation of YANG push notifications on an open terminal
based on OpenConfig models. Examples for both periodic and
on-change subscription are provided.

C.2. gRPC

Google Remote Procedure Calls (gRPC) [6] is a protocol based
on HTTP/2 as a transport protocol and it uses protocol buffers
encodings for transported messages. As it is based on HTTP/2
transport protocol and uses byte-oriented encoding, it intro-
duces low latency. gRPC has been used in highly scalable and
distributed systems.

Protocol Buffers are a language-neutral, platform-neutral ex-
tensible mechanism for serializing structured data [33]. They
allow to model the data structures in a similar manner as in
YANG. Its encoding in byte oriented messages increases the ef-
ficiency compared to XML/JSON encodings. An Open-Source
framework is provided to handle protocol buffers in multiple
languages, such as python, Go, C++, Java.

Listing 2 provides an example of the same topology informa-
tion model previously presented using YANG. In this example,
a topology service is described and it offers a GetTopology RPC
that provides a topology structure. Each structure is described
in message keyword. Topology message provides a list of node
messages (a list is declared using repeated keyword) and a list
of link messages. A node message includes an identifier and a
list of port messages. Port messages include a port identifier and
a layer protocol name. Link messages include a link identifier
and references to source and target nodes and ports.

The authors in [34] provide the first experimental demon-
stration of gRPC-based SDN control and telemetry architecture.
They apply gRPC to control and monitor spectral/spatial super-
channels with SDM/WDM transceivers monitored the BER to
detect soft-failures over an 11-km 6-mode 19-core fiber.

Listing 2. Topology service described using protocol buffers

1 // Example of topology
2 syntax = "proto3";
3 package topology;
4

5 import "google/protobuf/empty.proto";
6

7 service TopologyService {

8 rpc GetTopology (google.protobuf.Empty) returns (←↩
Topology) {}

9 }
10

11

12 message Link {
13 string link_id = 1;
14 string source_node = 2;
15 string target_node = 3;
16 string source_port = 4;
17 string target_port = 5;
18 }
19

20 message Node {
21 string node_id = 1;
22 repeated Port port = 2;
23 }
24

25 message Port {
26 string port_id = 1;
27 enum LayerProtocolName {
28 ETH = 0;
29 OPTICAL = 1;
30 }
31 LayerProtocolName layerProtocolName = 2;
32 }
33

34 message Topology {
35 repeated Node node = 1;
36 repeated Link link = 2;
37 }

C.3. gNMI

gRPC Network Management Interface (gNMI) [7] is a protocol
for configuration manipulation and state retrieval. It is built on
top of gRPC and it is described using protobuf and it can use
binary or JSON encoding for payload. This allows the usage of
YANG data models, allowing the integration of all efforts for
defining them in SDOs.

A gNMI target is the device which acts as the owner of the
data that is being manipulated or reported on. Typically this
will be a network device. A gNMI client is the device using the
protocol to query/modify data on the target. Typically this will
be a network management system.

gNMI telemetry makes use of the SubscribeRequest message.
It has been demonstrated to assess and retrieve transmission per-
formance and rapidly determine the most suitable operational
mode in [35].

The authors in [36] have demonstrated optical performance
monitoring data across the optical terminal and OADM devices.
These data is sent to an analysis collection platform. OpenConfig
usage with gNMI has been demonstrated by the authors in [37].
In this paper, real-time monitoring of optical transponders using
gNMI is demonstrated using a Transport SDN controller.

3. MULTI-SDO SDN CONTROLLER ARCHITECTURE
AND ZERO TOUCH OPTICAL NETWORKING

This sections presents a generalized architecture that is able to
handle multiple data models, as well as it later presents how
to use the presented architecture to provide zero touch optical
networking.

A comprehensive picture of Transport SDN is provided by
[38], where it is provided an analysis of the multiple SDN con-
trollers. Current SDN controllers, such as OpenDayLight or
ONOS, allow the interaction with other SDN controllers and
network equipment using multiple defined data models from
multiple SDOs. We refer to this kind of SDN controller as multi-
SDO SDN controller.

In this section we generalize the common functionalities that
provide current SDN Controllers to overcome with multiple
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Fig. 2. Multi-SDO optical SDN controller architecture.

data models and protocols. The multi-SDO SDN controller has
its internal data models. They define the main purposes and
activities of the SDN controller. The internal data model can be
based on a well known data models (in Figure 2 ONF Transport
API has been adopted as internal data model). Typical SDN con-
troller modules and thus data models, might include topology,
provisioning, path computation, virtual networks, inter-domain
connectivity and operations, administration and management
(OAM).

For the multi-SDO northbound interface, the NBI translator
is needed, as well as the multiple servers that offer multiple
protocols, such as NETCONF and RESTCONF. These servers
are responsible for offering the multiple data models that can be
obtained through NBI translator from the internal data models.
Figure 2 shows how ONF T-API and IETF TEAS are offered as
NBI using translation from internal data models.

Regarding southbound API, the mechanism is similar. Firstly,
multiple clients are provided for the proposed protocols (e.g.,
ONF T-API, IETF TEAS, OpenROADM, and OpenConfig). Also,
an SBI translator is needed to translate the required internal data
model actions, towards underlying networks and equipment.

Zero touch optical networking (ZTON) is related to two main
topics: a) sustain fast network growth automatically without
human intervention; and b) minimize human errors (and inter-
ventions) by minimizing associated outages [6]. Thus, ZTON
requires the proposed control and telemetry protocols for op-
tical network monitoring, in order to receive proper network
notifications and to interact with new configuration for network
elements.

Zero touch optical networking includes the following charac-
teristics:

• The only required operator step is the instantiating of intent.
Then all network operations are automated.

• Network-wide intents are decomposed into declarative and
vendor-neutral configuration for individual network ele-
ments.

• If unintended behaviour is detected, any network changes
are automatically halted and rolled-back.

• Operation violating network policies shall not be allowed
by the infrastructure.

Figure 3 shows the suggested state diagram [6] for providing
zero touch optical networking. It consists on a closed loop that
is fed with the proper monitoring data. This data is obtained
through the multiple mechanisms detailed in previous telemetry
section. The analysis of the data leads to error detection, which
triggers automated troubleshooting. This will lead to a repair

Fig. 3. Optical Zero Touch Networking state diagram.

action, which requires automated control of the optical network
and the declaration of novel intents for repairing it. Finally, the
repair will be verified.

4. EXPERIMENTAL EVALUATION

In this section, we propose a methodological approach to evalu-
ate the previously presented protocols that have been demon-
strated to be applied to optical networks: (a) NETCONF; (b)
RESTCONF; (c) gRPC; and (d) gNMI. To perform this evalua-
tion, two topologies have been defined in order to evaluate the
different protocols: a) National Science Foundation Network
(NSFNET) that includes 14 nodes and 21 links; and b) Euro-
pean Optical Network (EON) that includes 19 nodes and 38
links. Both topologies have been defined using a JSON file that
can be parsed by the multiple servers that we have created for
evaluation.

The previously presented topology data models, Listings 1
and 2, have been used in order to describe NSFNET and EON
scenarios. The defined data models include the same amount
of information. Listing 1 has been validated using PYANG
[39], while Listing 2 has been validated using Protobuf compiler
[33]. All measurements have been obtained using a Ubuntu
Linux Server with i7 10th Gen. CPU and 4GB RAM. Each of
the experiments has been repeated 10 times and mean value is
provided.

The purpose of this experiments is to evaluate numerically
the proposed protocols in terms of bit usage and latency. Bit
usage refers to the total amount of bits interchanged between
a client and a server to provide a complete request/response.
Latency refers to the required round-trip time since the issue of
a request action from the client and the necessary server time
to answer to that action. The authors believe that for simple
use cases, protocol overhead and latency might be enough for
comparison, but the results are presented individually for each
protocol, as each protocol provides unique features for specific
use cases.

A. NETCONF

In order to evaluate NETCONF performance, the NETCONF
server includes PYANGBIND [40] generated code, in order to
properly describe the selected topology using the defined YANG
data model (Listing 1). For NETCONF protocol, we have based
our server and client implementations on opensource library
NETCONF [15]. NETCONF protocol includes SSH secure con-
nection between client and server, thus results might not be
comparable with other protocols that include different security
layers, such as TLS.
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Figure 4 shows the results of bit usage in NETCONF get-
config operation for the described topology. This operation
requires 140000 bits for NSFNET topology, while it requires up
to 200640 bits for EON topology. The EON topology requires
more than 43% in comparison with NSFNET.

Fig. 4. Get-config NETCONF Topology evaluation. Measured
bits

Figure 5 provides the measured latency, results for NSFNET
and EON topologies are very similar, 6111 ms and 6172 ms,
respectively, with an insignificant difference of 0.9%. Latency
values are really high, due to the selected NETCONF library and
implementation. It can be observed that data is exchanged 5.10
seconds after SSH session has been established.

Fig. 5. Get-config NETCONF Topology evaluation. Measured
latency (ms)

B. RESTCONF
In order to evaluate RESTCONF, we have obtained the
RESTCONF-based Swagger API definition of the topology
YANG using the YANG2SWAGGER tool from ONF [41]. Once
the swagger API has been obtained, using Swagger Code gen-
erator [42], we have obtained the necessary RESTCONF server,
that provides NFSNET or EON topologies, depending on con-
figuration.

Figure 6 shows the results of bit usage in RESTCONF HTTP
GET operation for each proposed topology. This operation re-
quires 112000 bits for NSFNET topology, while it requires up to
196000 bits for EON topology. The EON topology requires more

than 75% in comparison with NSFNET. This difference can be ex-
plained by the difference also in the bit usage between NSFNET
and EON topologies. In Figure 6, we can also observe the results
for using RESTCONF with a TLS security layer. HTTPS GET
NSFNET topology requires 136000 bits, increasing the necessary
bits due to TLS by 21%. For EON topology, it requires 216000
bits, representing an increase of 10%.

Fig. 6. HTTP/HTTPS GET operation result evaluation. Mea-
sured bits

Figure 7 provides measured latency results. For NSFNET and
EON topologies results are very similar, 2.883 ms and 5.109 ms,
respectively, with a significant difference of 73%. If we compare
RESTCONF HTTPS latency results for NSFNET and EON are
similar, 6.855 ms and 7.517 ms, respectively. The increase of
latency due to TLS is of 137% and 47%, respectively.

Fig. 7. HTTP/HTTPS GET operation result evaluation. Mea-
sured latency (ms)

C. gRPC
With the purpose of evaluating gRPC protocol, we will use
the Listing 2 that includes the protocol buffer definition of the
topology service. The described service is equivalent to the
previously used YANG-based one. To compile the used protocol
buffer and provide client and server stubs, the tools in [43] have
been used. The same NSFNET and EON topologies have been
used for the evaluation of the protocol.

Figure 8 shows the results of bit usage in gRPC RPC Get-
Topology operation for each proposed topology. This operation
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requires 21600 bits for NSFNET topology, while it requires up
to 28000 bits for EON topology. It can be observed that protocol
buffer encoding reduces 81% and 86% bit usage in NSFNET and
EON topologies, respectively. In Figure 8, we can also observe
the results for using gRPC with a TLS security layer. gRPC with
TLS NSFNET GetTopology requires 44000 bits, increasing the
necessary bits due to TLS by 104%. For EON topology, it requires
50400 bits, representing an increase of 180% , in comparison with
EON topology with gRPC without TLS.

Fig. 8. gRPC RPC operation result evaluation to get topology.
Measured bits

Figure 9 described the measured latency results. For NSFNET
and EON topologies results are very similar, 1.159 ms and 1.430
ms, respectively. In comparison with RESTCONF protocol there
is a significant difference of 60% and 72%, respectively. Results
for gRPC with TLS in NSFNET and EON are similar, 26.47 ms
and 30.75 ms, respectively. The increase of latency due to TLS is
very significant, as it increases an order of magnitude.

Fig. 9. gRPC RPC operation result evaluation to get topology.
Measured latency (ms)

D. gNMI
Using YANG Go Tools (YGOT) [44], we generate the necessary
Go language bindings for the previously presented YANG topol-
ogy Listing 1. The proposed library uses JSON encoding. Once
obtained, gNMI target (server) is executed using the NSFNET
and EON topologies. GNMI Get client is used to retrieve the
topological information. Results might be different in gNMI

from obtained in gRPC, as different libraries and programming
languages have been used. We leave for further exploration to
evaluate gNMI using as basis gRPC python libraries.

Figure 10 shows the results of bit usage in gNMI GET opera-
tion for each proposed topology. This operation requires 48800
bits for NSFNET topology, while it requires up to 78400 bits
for EON topology. It can be observed that although JSON is
used for exchange, the introduction of gNMI protobuf reduces
both 60% bit usage in comparison with RESTCONF results in
NSFNET and EON topologies. In Figure 10, we can also observe
the results for using gNMI with a TLS security layer. gNMI GET
requires 78400 bits, increasing the necessary bits due to TLS by
60%. For EON topology, it requires 106400 bits, representing an
increase of 36%.

Fig. 10. gNMI GET RPC to retrieve topology. Measured bits

In Figure 11 results are shown for latency in NSFNET and
EON topologies are very similar, 2.795 ms and 3.277 ms, re-
spectively. In comparison with RESTCONF protocol there is a
decrease of 3% and 36%, respectively. Regarding gNMI with
TLS, latency results for NSFNET and EON are similar, 8.132 ms
and 8.550 ms, respectively. The increase of latency due to TLS is
of 190% and 161%, respectively, in comparison without TLS.

Fig. 11. gNMI GET RPC to retrieve topology. Measured la-
tency (ms)

E. Summary
Table 1 and Table 3 present an overview of the presented and
evaluated protocols. Firstly, they analyse the supported data
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modelling languages. NETCONF and RESTCONF protocols
support only YANG, while gRPC only supports protocol buffers.
gNMI is the only protocol able to handle both data models.
The tables also detail the transport protocol stack, which has
been detailed in the respective protocol subsections. Thirdly,
the message encoding is referenced. NETCONF supports XML
encoding, while RESTCONF uses both JSON and XML. gRPC
uses byte encoding and gNMI supports both JSON and byte en-
coding. Later, exchange of capabilities (supported data models)
is detailed. Another important feature is support for multiple
datastores (which allows to distinguish between config, state
or operational data). Datastore locking possibilities is a key
feature to allow multi-tenant support for devices, as well as
multi-access configuration. Unfortunately, this feature is only
supported (still) by NETCONF. Finally, the supported security
protocols are described. NETCONF uses always SSH, while the
rest support TLS as optional.

Table 2 shows a summary table regarding the presented data
models for control and management of optical networks and
equipment. ONF Transport API and IETF TEAS compete as
feasible solutions for NBI of a transport SDN controller. Open-
ROADM focuses on control and management of disaggregated
ROADMs (although in latest versions, it provides control for
optical network control and management) and OpenConfig fo-
cuses on router and line card configuration. All models are
described using YANG, thus we can deduce that it is widely
accepted for industry. Complexity of the model can be eval-
uated though the learning curve of the model, as well as the
documentation needed for adopting the selected data model,
including the length of the data model itself. Transport API and
OpenConfig provide simpler (and shorter) data models. Ma-
turity can be evaluated by the stage of implementation of the
data model, starting from demonstration, up to inter-operability
tests and production deployments. Finally, we detail the type
of agreement, if it is produced inside an SDO or a Multi-source
agreement (MSA).

5. CONCLUSION

This paper has justified the need for data models and protocols
in order to control and monitor optical networks and optical
network elements.

The authors have reviewed the current state of the art with
significant contributions to each of the proposed solutions. The
introduced protocols (NETCONF, RESTCONF, gRPC and gNMI)
have been evaluated with the same data models and under the
same scenarios in order to provide numerical insights for each
protocol in terms of payload length and latency. This informa-
tion is required in order to better propose optical networks and
equipment that shall be adapted to the necessary use cases and
scenarios.

The authors have also introduced the concept of multi-SDO
SDN controller, as well as presented the main characteristics of
zero touch optical networking.

For further study, further results can be obtained by having
some experiments on real optical networks and devices. These
results will help our understanding of the proposed protocols
performance when a real optical data plane is being used and
how the data plane can affect their performance.
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