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Abstract

Rationale: Advanced algorithmic solutions are necessary to process the ever increasing amounts of mass spec-
trometry data that is being generated. Here we describe the falcon spectrum clustering tool for efficient cluster-
ing of millions of MS/MS spectra.
Methods: falcon succeeds in efficiently clustering large amounts of mass spectral data using advanced tech-
niques for fast spectrum similarity searching. First, high-resolution spectra are binned and converted to low-
dimensional vectors using feature hashing. Next, the spectrum vectors are used to construct nearest neighbor
indexes for fast similarity searching. The nearest neighbor indexes are used to efficiently compute a sparse
pairwise distance matrix without having to exhaustively perform all pairwise spectrum comparisons within
the relevant precursor mass tolerance. Finally, density-based clustering is performed to group similar spectra
into clusters.
Results: Several state-of-the-art spectrum clustering tools were evaluated using a large draft human proteome
dataset consisting of 25 million spectra, indicating that alternative tools produce clustering results with differ-
ent characteristics. Notably, falcon generates larger highly pure clusters than alternative tools, leading to a larger
reduction in data volume without the loss of relevant information for more efficient downstream processing.
Conclusions: falcon is a highly efficient spectrum clustering tool. It is publicly available as open source under
the permissive BSD license at https://github.com/bittremieux/falcon.

1 Introduction

To obtain a comprehensive view of an organism’s
proteome, modern shotgun proteomics experiments
generate thousands [21, 46] to tens of thousands [18,
19] of tandem mass spectrometry (MS/MS) runs,
with tens of thousands of MS/MS spectra acquired
during each individual run. Besides the significant
efforts to acquire such large amounts of spectral
data, processing these large data volumes poses a
computational challenge that requires efficient algo-
rithmic solutions.

Typically, the MS/MS spectra are processed using
a sequence database search engine to derive their
peptide and protein identities [35]. Alternatively,
rather than having to search all of the raw spectra,
as a preprocessing step spectrum clustering can be
used to reduce the data volume [9, 12, 13, 38, 40].
Spectrum clustering groups highly similar spectra,
after which each cluster can be represented by a sin-
gle consensus spectrum. In this fashion a data re-
duction can be achieved because only the cluster rep-
resentatives need to be processed. Additionally, be-
cause consensus spectra can have a higher signal-to-
noise ratio than the raw spectra and because low-
quality, unclustered spectra can be filtered out, the
clustering approach can boost the sensitivity of the
subsequent identification procedure. Furthermore,

repository-scale clustering can be used to automati-
cally generate comprehensive and high-quality spec-
tral libraries in a data-driven fashionwithout having
to rely on synthetic samples [12, 42], and the cluster-
ing results can be analyzed to gain deeper insights
into the nature of repeatedly observed yet unidenti-
fied spectra [13].

Several spectrum clustering tools have been intro-
duced, includingMS-Cluster [9], spectra-cluster [12,
13], MaRaCluster [38], and msCRUSH [40]. In
general, a clustering algorithm consists of several
components: (i) a similarity measure to perform
pairwise spectrum comparisons, (ii) a clustering
method to group similar spectra, and (iii) optional
optimizations to improve its computational effi-
ciency. MS-Cluster [9] uses the cosine similarity as
similarity measure. It obtains an approximate hier-
archical clustering result by merging spectra that ex-
ceed an iteratively decreasing similarity threshold
in a greedy fashion (rather than always merging
the most similar spectra, as in standard hierarchical
clustering). To avoid unnecessary similarity calcu-
lations only pairs of spectra that share at least one
peak among their five most intense peaks are com-
pared to each other. The spectra-cluster approach
was originally developed as a reimplementation of
MS-Cluster, with some refinements to improve the
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cluster quality [12]. A highly parallel implementa-
tion was subsequently developed [13] to efficiently
cluster large amounts of public data available in the
PRoteomics IDEntifications (PRIDE) database [31].
Similar to MS-Cluster, spectra-cluster uses an itera-
tive greedy approach to merge similar spectra. In
contrast, instead of the cosine similarity a proba-
bilistic scoring scheme [7] was adopted as similar-
ity measure [13]. MaRaCluster [38] uses a special-
ized similarity measure that relies on the rarity of
fragment peaks to compare MS/MS spectra. Based
on the intuition that peaks shared by only a few
spectra offer more evidence than peaks shared by
a large number of spectra, relative to a background
frequency of fragment peaks with specific m/z val-
ues, matches of highly frequent fragment peaks con-
tribute less to the spectrum similarity than matches
of rare peaks. Next, MaRaCluster uses hierarchical
clustering with complete linkage to group similar
spectra in clusters. Finally, msCRUSH [40] is a fast
spectrum clustering tool based on locality-sensitive
hashing [11]. By efficiently hashing similar spectra
to identical buckets, unnecessary pairwise spectrum
comparisons can be avoided. Next, within each
bucket a similar greedy spectrum merging strat-
egy is performed as employed by MS-Cluster and
spectra-cluster.

Because each of these spectrum clustering tools
use different spectrum similarity measures, clus-
tering methods, and computational optimizations,
their clustering results and computational perfor-
mance will exhibit different characteristics. Here
we introduce falcon, a fast spectrum clustering ap-
proach. By making use of advanced algorith-
mic techniques, falcon is optimized for highly ef-
ficient spectrum clustering. It uses feature hash-
ing to convert high-resolution MS/MS spectra to
low-dimensional vectors [4], in combination with
efficient nearest neighbor searching in the vector
metric space using the cosine similarity [5]. Next,
spectra are grouped into clusters by density-based
clustering [8]. We compare falcon to the state-of-
the-art clustering tools MaRaCluster, MS-Cluster,
msCRUSH, and spectra-cluster in terms of cluster-
ing quality and runtime, and show that it succeeds
in efficiently clustering large amounts of spectral
data. falcon is freely available as open source under
the permissive BSD license at https://github.com/
bittremieux/falcon.

2 Methods

2.1 Spectrum preprocessing

The spectra are preprocessed by removing peaks cor-
responding to the precursor ion and low-intensity
noise peaks, and, if applicable, spectra are further re-
stricted to their 50 most intense peaks. Low-quality
spectra that have fewer than five peaks remaining
or with a mass range between their minimum and
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Figure 1: falcon spectrum clustering workflow.
(A) High-resolution MS/MS spectra are converted
to low-dimensional vectors using feature hashing.
(B) Vectors are split into intervals based on the
precursor m/z of the corresponding spectra to con-
struct nearest neighbor indexes for highly efficient
spectrum comparison. (C) A sparse pairwise dis-
tance matrix is computed by retrieving similarities
to neighboring spectra using the nearest neighbor in-
dexes. (D) Density-based clustering using the pair-
wise distance matrix is performed to find spectrum
clusters.
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maximum peak less than 250Da after peak removal
are discarded. Finally, peak intensities are square
root transformed to de-emphasize overly dominant
peaks [25].

2.2 Feature hashing to convert
high-resolution spectra to
low-dimensional vectors

To build a nearest neighbor index for efficient spec-
trum similarity searching, spectra need to be vec-
torized to represent them as points in a multidi-
mensional space. MS/MS spectra typically con-
tain dozens to hundreds of peaks, whose m/z val-
ues are measured at a resolution in the order of
1/100m/z. As such, a straightforward approach to
convert spectra to vectors by dividing themass range
into small bins and assigning each peak’s intensity
to the corresponding bin would result in extremely
high-dimensional, sparse vectors that are not suit-
able for efficient nearest neighbor searching due to
the curse of dimensionality [2]. Alternatively, larger
mass bins can be used to reduce the vectors’ di-
mensionality and sparsity. However, because such
larger mass bins considerably exceed the fragment
mass tolerance when dealing with high-resolution
spectra, multiple distinct fragments can get merged
into the same mass bin. This merging leads to an
overestimation of the spectrum similaritywhen com-
paring two spectra to each other using their vector
representations due to spurious matches between
fragments.

Instead, a feature hashing scheme [45] is used
to convert high-resolution MS/MS spectra to low-
dimensional vectors while closely capturing their
fine-grained mass resolution. The following two-
step procedure is used to convert a high-resolution
MS/MS spectrum to a vector (figure 1A) [4]:

1. Convert the spectrum to a sparse vector us-
ing smallmass bins to tightly capture fragment
masses.

2. Hash the sparse, high-dimensional, vector to a
lower-dimensional vector by using a hash func-
tion to map the mass bins separately to a small
number of hash bins.

More precisely, let h : N → {1, . . . ,m} be a ran-
dom hash function. Then h can be used to convert a
vector x = ⟨x1, . . . , xn⟩ to a vector x′ = ⟨x′

1, . . . , x
′
m⟩,

with m ≪ n:

x′
i =

∑
j:h(j)=i

xj

As hash function h the 32-bit version of the
MurmurHash3 algorithm [1], a popular non-
cryptographic hash function, is used.

It can be proven that under moderate assump-
tions feature hashing approximately conserves the

Euclidean norm [10], and hence, the cosine simi-
larity between hashed vectors can be used to ap-
proximate the similarity between the original, high-
dimensional vectors and spectra.

Note that this feature hashing procedure operates
on each mass bin individually. In contrast, during
locality-sensitive hashing, for example, as employed
bymsCRUSH [40], entire spectra are hashed as a sin-
gle entity.

2.3 Efficient density-based clustering
using nearest neighbor searching

Nearest neighbor searching is used to process large
search spaces for efficient spectrum clustering [5].
Per precursor charge the MS/MS spectra are parti-
tioned into 1m/z buckets based on their precursor
mass and converted to vectors as described previ-
ously. Next, the spectrum vectors in each bucket are
partitioned into data subspaces to create a Voronoi
diagram (figure 1B). The Voronoi diagram is en-
coded by an inverted index, with each Voronoi
cell defined by a single vector, determined using k-
means clustering to find a user-specified number of
representative vectors, and all vectors are assigned
to their nearest representative vector. This inverted
index can then be used for efficient similarity search-
ing. Instead of having to compare all spectrum vec-
tors to all other vectors in the bucket to find their
nearest neighbors, after mapping the vectors to their
Voronoi cells they only need to be compared to the
limited number of vectors therein.

The accuracy and speed of similarity searching is
governed by two hyperparameters: the number of
Voronoi cells to use during construction of the in-
verted index and the number of neighboring cells to
explore during searching. Using a greater number
of Voronoi cells achieves a more fine-grained parti-
tioning of the data space, and exploring more cells
during searching decreases the chance of missing a
nearest neighbor in the high-dimensional space. In
practice, form/z buckets that contain fewer than 100
spectra a brute-force search is used. For larger m/z
buckets the number of Voronoi cells is dynamically
set based on the number of spectra in the bucket N .
For buckets that consist of up to one million spec-
tra 2⌊log2

N
39 ⌋ Voronoi cells are used, for buckets that

consist of up to ten million spectra 216 Voronoi cells
are used, for buckets that consist of up to one hun-
dred million spectra 218 Voronoi cells are used, and
for larger buckets 220 Voronoi cells are used. During
searching maximum 32 neighboring Voronoi cells
per query vector are explored.

This efficient similarity searching is used to con-
struct a sparse pairwise distance matrix that con-
tains the cosine distances between each spectrum
and a limited number of its nearest neighbors, ad-
ditionally filtered using a precursor mass tolerance
(figure 1C). Besides being able to retrieve the near-
est neighbors highly efficiently, only having to com-
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pute and store pairwise similarities to a fixed num-
ber of neighbors also avoids extreme memory re-
quirements.

Next, the pairwise distance matrix is used to
cluster the data using the DBSCAN algorithm (fig-
ure 1D) [8, 33]. Briefly, if a given number of spec-
tra are close to each other and form a dense data
subspace, with closeness defined relative to a user-
specified distance threshold, they will be grouped
in clusters. An important advantage of DBSCAN
is that the number of clusters is not required to
be known in advance. Instead, it is able to find
clusters in dense regions, whereas spectra in low-
density regions, without a sufficient number of close
neighbors, will be marked as noise. Additionally,
DBSCAN is scalable: using a sparse pairwise dis-
tance matrix as input it can effortlessly process mil-
lions to billions of data points.

A disadvantage of this clustering approach, how-
ever, is that despite using a precursor mass filter
during construction of the pairwise distance matrix,
spectra within a single cluster can still exceed the
precursor mass tolerance if they are connected by
another spectrum with an intermediate precursor
mass [33]. To avoid such false positives, the clus-
ters reported by DBSCAN are postprocessed by hi-
erarchical clustering with maximum linkage of the
cluster members’ precursor masses. In this fashion,
some clusters are split into smaller, coherent clusters
so that none of the spectra in a single cluster have a
pairwise precursor mass difference that exceeds the
precursor mass tolerance.

2.4 Data

Spectrum clustering was performed on the human
draft proteome dataset by Kim et al. [21]. This
dataset aims to cover the whole human proteome
and consists of 30 human samples in 2212 raw files,
corresponding to 25millionMS/MS spectra. For full
details on the sample preparation and acquisition
see the original publication by Kim et al. [21]. Raw
files were downloaded from PRIDE [31] (project
PXD000561) and converted to MGF files using Ther-
moRawFileParser (version 1.2.3) [16].

Spectrum identifications were downloaded
from MassIVE reanalysis RMSV000000091.3.
These identifications were obtained via auto-
matic reanalysis of public data on MassIVE using
MS-GF+ [22]. Spectra were searched against the
UniProtKB/Swiss-Prot human reference proteome
(downloaded 2016/05/23) [6] augmented with
common contaminants. Search settings included
a 50ppm precursor mass tolerance, trypsin cleav-
age with maximum one non-enzymatic peptide
terminus, and cysteine carbamidomethylation as a
static modification. Methionine oxidation, forma-
tion of pyroglutamate from N-terminal glutamine,
N-terminal carbamylation, N-terminal acetylation,
and deamidation of asparagine and glutamine were
specified as variable modifications, with maximum

one modification per peptide. Peptide-spectrum
matches (PSMs) were filtered at 1% false discovery
rate, resulting in 10 487 235 spectrum identifications.

All clustering results are available on Zenodo at
doi:10.5281/zenodo.4721496.

2.5 Clustering evaluation

For evaluation purposes, only MS/MS spectra with
the common precursor charges 2 and 3 are con-
sidered. Valid clusters are required to consist of
minimum two spectra. falcon explicitly designates
non-clustered spectra as noise points with cluster
label “-1”. In contrast, MaRaCluster, MS-Cluster,
msCRUSH, and spectra-cluster report singleton clus-
ters consisting of single spectra with unique cluster
labels. To evaluate the cluster quality in a consistent
fashion, such clusters are postprocessed and labeled
as noise as well.

The following evaluation measures are used to as-
sess cluster quality:

Clustered spectra The number of spectra in non-
noise clusters divided by the total number of
spectra.

Incorrectly clustered spectra The number of incor-
rectly clustered spectra in non-noise clusters
divided by the total number of identified spec-
tra in non-noise clusters. Spectra are consid-
ered incorrectly clustered if their peptide la-
bels deviate from the most frequent peptide la-
bel in their clusters, with unidentified spectra
not considered.

Completeness Completeness measures the frag-
mentation of spectra corresponding to the
same peptide across multiple clusters and is
based on the notion of entropy in information
theory. A clustering result that perfectly sat-
isfies the completeness criterium (value “1”)
assigns all PSMs with an identical peptide la-
bel to a single cluster. Completeness is com-
puted as one minus the conditional entropy of
the cluster distribution given the peptide as-
signments divided by themaximum reduction
in entropy the peptide assignments could pro-
vide [34].

Runtime measurements were acquired on a sin-
gle compute node with two 14-core Intel E5-2680v4
CPUs and 128GB memory. All tools were al-
lowed to use all available processor cores, except
MS-Cluster, which does not have multithreaded ca-
pabilities. Memory measurements reflect the peak
memory consumption reported by the Moab job
scheduler. For programming languages with auto-
matic garbage collection, such as Python and Java,
this might overestimate the actual required mem-
ory.

https://www.ebi.ac.uk/pride/archive/projects/PXD000561
https://massive.ucsd.edu/ProteoSAFe/reanalysis.jsp?task=c0dbbca90b1141d3aeff4a4a3ab3c1ea
https://doi.org/10.5281/zenodo.4721496
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2.6 Clustering configuration

2.6.1 falcon

Spectrum preprocessing was performed as de-
scribed in section 2.1. Peaks with intensity below
10% of the base peak intensity were considered as
noise peaks. To convert the spectra to vectors, first
virtual vectors with bin width 0.05m/z were cre-
ated. Next, these vectors were converted to vectors
of length 800 using feature hashing.

To match spectra to each other they were first par-
titioned into 1m/z buckets based on their precur-
sor mass. Next, for each bucket a Voronoi diagram
was created consisting of up to 65 536 cells, depend-
ing on the number of spectra in the bucket. Dur-
ing querying, at most 32 cells per query were ex-
plored. For each spectrum, its 128 nearest neighbors
were retrieved via similarity searching. Neighbors
whose precursor mass tolerance exceeded 20ppm
were omitted, after which for each spectrum the co-
sine distances to the maximum 64 nearest neighbors
were stored in the sparse pairwise distance matrix.

During DBSCAN clustering dense regions were
defined as having minimum two spectra with a co-
sine distance below 0.05, 0.10, 0.15, 0.20, or 0.25.
Clusterswere split in a postprocessing step to ensure
that pairwise precursor mass differences between
cluster members did not exceed 20ppm.

The clustering result with approximately 1% in-
correctly clustered spectra was obtained with a co-
sine distance threshold of 0.05.

For the scaling evaluation, subsets of 10, 50, 100,
500, 1000, 1500, 2000, and 2212 randomly selected
peak files were used.

2.6.2 MaRaCluster

MaRaCluster (version 1.01.1) [38] was run with a
precursor mass tolerance of 20 ppm, and with iden-
tical p-value and clustering thresholds −3.0, −5.0,
−10.0, −15.0, −20.0, −25.0, or −30.0. Other options
were kept at their default values.

The clustering result with approximately 1% in-
correctly clustered spectra was obtained with a p-
value and clustering threshold of −30.0.

2.6.3 MS-Cluster

MS-Cluster (version 2.00) [9] was run using its
“LTQ_TRYP” model for three rounds of cluster-
ing with mixture probability 0.000 01, 0.0001, 0.001,
0.005, 0.01, 0.05, or 0.1. The fragment mass toler-
ance and precursor mass tolerance were 0.05Da and
20ppm, respectively, and precursor charges were
read from the input files. Other options were kept
at their default values.

The clustering result with approximately 1% in-
correctly clustered spectra was obtained with a mix-
ture probability threshold of 0.000 01.

2.6.4 msCRUSH

msCRUSH (version August 26, 2020) [40] was run
using 100 clustering iterations, 15 hash functions per
hash table, and cosine similarity threshold 0.3, 0.4,
0.5, 0.6, 0.7, or 0.8. Other options were kept at their
default values.

The clustering result with approximately 1% in-
correctly clustered spectra was obtained with a sim-
ilarity threshold of 0.8.

2.6.5 spectra-cluster

spectra-cluster (version 1.1.2) [12, 13] was run in its
“fastmode” for three rounds of clusteringwith the fi-
nal clustering threshold 0.999 99, 0.9999, 0.999, 0.99,
0.95, 0.9, or 0.8. The fragment mass tolerance and
precursor mass tolerance were 0.05Da and 20ppm,
respectively, and MGF comment strings were ig-
nored. Other options were kept at their default val-
ues.

The clustering result with approximately 1% in-
correctly clustered spectra was obtained with a sim-
ilarity threshold of 0.999 99.

2.7 Code availability

falcon was implemented in Python 3.8. Pyteomics
(version 4.4.2) [24] was used to read MS/MS
spectra in the mzML [26], mzXML, and MGF
format. spectrum_utils (version 0.3.5) [3] was
used for spectrum preprocessing. Faiss (ver-
sion 1.7.0) [20] was used for efficient similarity
searching. Scikit-Learn (version 0.24.1) [30] was
used for DBSCAN clustering, and fastcluster (ver-
sion 1.1.28) [29] was used for hierarchical clus-
tering. Additional scientific computing was done
using NumPy (version 1.20.2) [14], SciPy (ver-
sion 1.6.2) [36], Numba (version 0.53.1) [23], and
Pandas (version 1.2.3) [28]. Data analysis and
visualization were performed using Jupyter Note-
books [39], matplotlib (version 3.4.1) [17], and
Seaborn (version 0.11.1) [43].

All code is available as open source under the
permissive BSD license at https://github.com/
bittremieux/falcon. Code used to compare vari-
ous spectrum clustering tools and to generate the fig-
ures presented here is available on GitHub (https:
//github.com/bittremieux/falcon_notebooks).

3 Results

An ideal clustering result groups MS/MS spectra
corresponding to distinct peptides in individual, dis-
joint clusters. The main aspects that influence clus-
tering quality are the spectrum similarity measure
and the algorithm that is used to group similar
spectra. As various spectrum clustering tools dif-
fer in these choices, even when processing identical
MS/MS data they will produce cluster assignments

https://github.com/bittremieux/falcon
https://github.com/bittremieux/falcon
https://github.com/bittremieux/falcon_notebooks
https://github.com/bittremieux/falcon_notebooks
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with different characteristics. Additionally, the clus-
tering algorithms should exhibit a good computa-
tional efficiency to be able to process large amounts
of mass spectral data.

The comparison between the different clustering
tools in terms of their clustering quality shows that
MaRaCluster and spectra-cluster succeed in cluster-
ing the highest number of spectra at a compara-
ble rate of incorrectly clustered spectra, while fal-
con, MS-Cluster, and msCRUSH achieve a similar,
slightly lower, performance (figure 2A). Notably,
the latter tools use the cosine similarity as their spec-
trum similarity measure. In contrast, MaRaCluster
uses a specialized fragment rarity metric to deter-
mine spectral similarity [38], while Griss et al. [13]
report that replacing the cosine similarity with a
probabilistic scoring approach in an updated ver-
sion of spectra-cluster helped to improve its cluster-
ing accuracy.

Besides generating pure clusters containing spec-
tra corresponding to a single peptide, clusters
should also be as complete as possible, i.e. all spec-
tra corresponding to a specific peptide should be
grouped in a single cluster. Because each cluster
can be represented by a consensus spectrum for sub-
sequent downstream processing, a more complete
clustering will result in an increased data reduction
by minimizing the generation of redundant cluster
representatives. At a low number of incorrectly clus-
tered spectra, falcon andmsCRUSH achieve the high-
est completeness, while MaRaCluster outperforms
the other clustering tools in terms of completeness
at slightly higher numbers of incorrectly clustered
spectra (figure 2B). In contrast, spectra-cluster con-
sistently achieves a lower completeness and fails to
improve its completeness at increasing numbers of
incorrectly clustered spectra.

For clustering results with approximately 1% in-
correctly clustered spectra and minimum cluster
size 2 (table 1), MaRaCluster and spectra-cluster
predominantly produce small clusters consisting of
maximum 100 spectra each (figure 2C). In contrast,
falcon, msCRUSH, and, to a lesser extent, MS-Cluster
produce several larger clusters consisting of 1000 to
10 000 spectra as well. Consequently, even though
MaRaCluster and spectra-cluster manage to cluster
the highest number of spectra, they produce more
small clusters than the alternative tools. Hence, their
clustering results will be more fragmented as they
do not group all observations of repeatedly occur-
ring peptides together but instead split these spectra
across multiple smaller clusters.

To better understand the observed differences in
completeness of the various clustering approaches,
we investigated some clusters manually. For ex-
ample, VATVSIPR/2, which is part of the pig
trypsin contaminant protein P00761, is the most fre-
quently identified peptide in the dataset (observed
18 657 times, figure 2D). Spectra for this peptide
are split over 2192 and 1688 separate clusters in
the MaRaCluster and spectra-cluster results respec- To
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Figure 2: Clustering comparison between falcon, MaRaCluster, MS-Cluster, msCRUSH, and spectra-cluster.
(A)MaRaCluster and spectra-cluster succeed in clustering more spectra than alternative tools at a comparable
rate of incorrectly clustered spectra. (B) falcon, msCRUSH, and MaRaCluster produce a more complete clus-
tering at different rates of incorrectly clustered spectra, grouping spectra corresponding to specific peptides
in single clusters. (C) Complementary empirical cumulative distribution of the cluster sizes for the clustering
results reported in table 1. Although MaRaCluster and spectra-cluster successfully cluster more spectra (less
noise points), they predominantly generate clusters consisting of fewer than 100 spectra. In contrast, falcon and
msCRUSH produce the largest clusters. (D) Cluster sizes for the frequently occurring peptide VATVSIPR/2.
MaRaCluster and spectra-cluster split spectra corresponding to this peptide into a large number of small clus-
ters consisting of less than 100 spectra each, whereas falcon and msCRUSH produce a few large clusters that
contain thousands of spectra instead.

tively, and the largest of these clusters only consist of
262 (MaRaCluster) and 121 (spectra-cluster) spec-
tra. In contrast, MS-Cluster groups these spectra
into 705 unique clusters, with the largest cluster con-
sisting of 4225 spectra. Finally, falcon andmsCRUSH
split spectra corresponding to this peptide into only
269 and 201 unique clusters respectively, of which
the largest cluster produced by both tools alone con-
tains over ten thousand spectra.

As current shotgun proteomics datasets grow
ever larger, clustering algorithms need to be scal-
able to be able to process larger data volumes.
For all five clustering tools, settings that are opti-
mized for speed were used to ensure a fair com-
parison in terms of runtime. For MS-Cluster and
spectra-cluster only three rounds of their iterative
cluster refinement procedure were used. Addition-
ally, spectra-cluster’s “fast mode” was enabled. For
falcon a limited number of Voronoi cells per query
were examined. For msCRUSH the recommended
number of iterations (100) and hash functions (15)
for large datasets were used. Runtime measure-
ments include both spectrum clustering and the

generation of representative spectra for each clus-
ter. Whereas falcon and MS-Cluster can perform
the latter functionality directly during clustering,
MaRaCluster, msCRUSH, and spectra-cluster re-
quire a postprocessing step to export cluster repre-
sentatives.

msCRUSHexhibited the shortest runtime andwas
able to process the full dataset consisting of 25 mil-
lion spectra in only four hours (table 1). Mean-
while, falcon processed this data in five hours. Both
msCRUSHand falconuse advanced algorithmic tech-
niques to reduce the number of pairwise spectrum
comparisons that need to be performed. For ex-
ample, when computing all pairwise spectrum sim-
ilarities in a brute-force fashion, on average each
spectrum in the dataset has to be compared to 1908
other spectra when using a precursor mass toler-
ance of 20 ppm. In contrast, using its advanced
nearest neighbor searching approach, falcon on av-
erage only had to perform 47 spectrum–spectrum
comparisons for each spectrum. Furthermore, the
number of neighbors to consider during nearest
neighbor searching can be tuned to obtain the de-
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Figure 3: The falcon runtime for an increasing num-
ber of spectra to be clustered shows linear scalability
in terms of the input size.

sired performance–precision trade-off. Addition-
ally, evaluating different hyperparameters of the
density-based clustering step to obtain stricter or
looser clusters can be done in only a matter of min-
utes using a precomputed pairwise distance matrix.
In contrast, althoughMaRaCluster, MS-Cluster, and
spectra-cluster use a few simple strategies to avoid
having to consider all possible spectrum pairs, such
as heuristics based on the number of shared peaks or
greedy spectrum merging strategies, depending on
their settings, these tools can be considerably slower.

To further test how the falcon runtime scales
in terms of its input data, subsets of the human
draft proteome dataset consisting of 10 to 2212 ran-
domly selected peak files were clustered (figure 3).
Whereas theoretically the number of pairwise spec-
trum comparisons scales quadratically in terms of
the number of processed spectra, the falcon runtime
exhibits optimal linear scaling. Consequently, its ob-
served runtime difference with msCRUSH (table 1)
can likely be attributed to implementation differ-
ences. Notably, falcon is implemented in Python,
whereas msCRUSH is implemented in C++. Be-
cause Python is an interpreted programming lan-
guage, it can be orders of magnitude slower for sev-
eral general tasks than a compiled programming lan-
guage, such as C++. The optimal computational effi-
ciency demonstrated by falcon is an essential require-
ment to be able to expediently process the ever in-
creasing data volumes generated during mass spec-
trometry proteomics experiments, and it indicates
that clustering of large data volumes in public data
repositories can be feasible.

4 Conclusion

Here we have introduced the falcon spectrum clus-
tering tool. falcon uses various advanced algorith-
mic approaches, such as feature hashing to vector-
ize high-dimensional spectra and fast nearest neigh-
bor searching. It exhibits a high computational ef-
ficiency and outperforms most alternative spectrum

clustering tools in terms of runtimewhile generating
clusters of a comparable quality. As such, falcon is
ideally suited to process the ever increasing amounts
of mass spectral data generated during mass spec-
trometry experiments.

Although falcon succeeds in clustering a similar
number of spectra as MS-Cluster and msCRUSH
at a comparable rate of incorrectly clustered spec-
tra, these three clustering tools are outperformed
by MaRaCluster and spectra-cluster in terms of
the number of clustered spectra. Notably, fal-
con, MS-Cluster, and msCRUSH compare spectra
to each other using the cosine similarity, whereas
MaRaCluster and spectra-cluster use more ad-
vanced scoring approaches. The cosine similarity
is a commonly used similarity measure [37]. Some
of its advantages are that it can accurately capture
spectrum similarity, it is easy to implement and in-
terpret, and it is fast to evaluate. Consequently, the
cosine similarity is a highly competitive and ubiq-
uitous baseline method. However, alternative spec-
trum similarity methods, such as spectra-cluster’s
probabilistic score [13], MaRaCluster’s fragment rar-
ity score [38], or similarity measures derived from
machine learning [15, 27] might be able to more sen-
sitively capture spectrum similarity. Additionally, it
is important to evaluate how MS/MS spectrum pre-
processing [32] influences various similarity mea-
sures.

We have evaluated several state-of-the-art spec-
trum clustering tools based on characteristics of the
clusters they produce, such as the number of incor-
rectly clustered spectra, cluster completeness, and
cluster size, rather than indirectly evaluating their
performance on a downstream task. Myriad appli-
cations of spectrum clustering exists, such as the
compilation of spectral libraries [12, 42], molecular
networking [41, 44], and as a data reduction tech-
nique prior to computationally intensive analyses,
such as open modification searching [5]. The per-
formance of these applications does not only depend
on the spectrum clustering quality, but also the strat-
egy used to form cluster representatives (e.g., se-
lecting the medoid spectrum with minimum aver-
age distance to all cluster members, compiling a con-
sensus spectrum by merging all cluster members in
a specific fashion, or alternative methods) and the
settings of other tools in the bioinformatics work-
flow. As demonstrated in our evaluation of five spec-
trum clustering tools, alternative tools exhibit differ-
ent performance characteristics. As such, the opti-
mal tool to use will likely depend on the practition-
ers’ downstream task.

Among the five clustering tools evaluated, at a low
number of incorrectly clustered spectra, falcon gener-
ates a highly complete clustering result. As such, it
will achieve a large reduction in data volume when
representing the clustered data by their consensus
spectra, which can be especially relevant when spec-
trum clustering is used as a preprocessing step prior
to a subsequent computationally intensive analysis.
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Additionally, the reduction of redundant informa-
tion can facilitate downstream interpretation, for ex-
ample, by avoiding uninformative nodes and edges
during molecular networking.

A complicating factor for the evaluation of spec-
trum clustering tools is how chimeric spectra are
handled. As these spectra contain fragments of
multiple distinct ions, they cannot be unambigu-
ously assigned to only a single cluster. Additionally,
chimeric spectra can potentially bridge clusters cor-
responding to different peptides, incorrectly produc-
ing a single, heterogeneous, cluster. Although falcon
does not explicitly guard against this event, its com-
petitive performance compared to alternative spec-
trum clustering tools in terms of correctly clustered
spectra indicates that it does not unduly suffer from
the presence of chimeric spectra and is able to han-
dle them in a robust fashion. Nevertheless, the full
extent of the effect of chimeric spectra on spectrum
clustering and identification currently still remains
an important open research question.
falcon is freely available as open source under

the permissive BSD license. The source code and
instructions can be found at https://github.com/
bittremieux/falcon.
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