
Effects of Unsteady Aerodynamics on Gliding Stability of a
Bio-Inspired UAV

Ernesto Sanchez-Laulhe1, Ramon Fernandez-Feria2, José Ángel Acosta1, and Anibal Ollero1

Abstract— This paper presents a longitudinal dynamic model
to be used in the control of new animal flight bio-inspired UAVs
designed to achieve better performance in terms of energy
consumption, flight endurance, and safety when comparing
with conventional multi-rotors. In order to control these UAVs,
simple models are needed to predict its dynamics in real time
by the on-board autopilots, which are very limited in term
of computational resources. To that end, the model presented
considers transitional aerodynamic unsteady effects, which
change significantly the evolution of the system. The physical
relevance of these aerodynamic unsteady terms in gliding flight
is validated by comparing with results when these new terms are
neglected. Finally, an analysis of dynamic stability is proposed
in order to characterize the transitional phases of gliding flight.

I. INTRODUCTION

Increasing flight endurance and the safety in the interaction
with humans and objects in the environment are two very
important topics in the evolution of small unmanned aerial
systems. Bio-inspiration can play an important role to deal
with these topics. Particularly, animal flight has been studied
in order to being able of increasing the efficiency [1]-[3]. In
fact, flight mechanics of birds and insects are the product of
an evolution process which have improved their techniques
into the most efficient ways of air travelling. Birds are able
to travel long distances without need of flapping their wings.
They just reach certain velocity and height, and then begin
to descend at a very low angle, maximizing the lift to drag
ratio [4], [5].

The idea is not new. For instance, [6] analyse the ap-
plications of insect flight aerodynamics for the design of
micro UAVs. However, insect-inspired approach does not
solve the autonomy problem for travelling long distances,
for which bird-based approach has more sense. Several works
have studied this kind of ornithopter, such as [7], and those
reviewed in [8], in addition to other tailless articulated wings
aircrafts [9], [10]. However, one of the main conclusions of
the present work is the relevance of a well designed tail to
control gliding.

In order to minimize energy consumption, optimizing
gliding gets a huge importance. As aforementioned, the
ability of travelling long distances with a minimal energetic
requirement is one of the key point for the interest on bio-
inspired vehicles. In this sense, there are several studies of
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the different flying behaviour of birds as a result of their
wing characteristics. In [11] and [12] it is possible to find
an exhaustive analysis of the differences between wings of
sea birds, which have evolved in order to being able to fly
long distances, and wings of birds of prey, which are ready
to make more aggressive manoeuvres. Other works, as [13]
and [14], focus on the lift generation from the aerodynamic
surfaces during gliding.

In addition to the design characteristics, it is important to
provide simple models in order to autonomously control the
flight of the UAV with minimal computational resources as
it is usually the case of the ornithopters. Numerical solutions
of the Navier-Stokes equations have been used [15], but it is
too expensive computationally for implementing it in real-
time. For that reason, analytical models which work in a wide
range of states result of much interest [16]. Other works are
focused in operations with a deep stall to perform perching,
as in [17],[18], although these models are defined for fixed
wing gliders more similar to conventional aircrafts. In this
sense, previous work in the present project [19] provided a
simple solution for the longitudinal steady gliding of a bio-
inspired UAV.

The contribution of this paper is to complement this work
by means of a study of the longitudinal stability of the
ornithopter gliding. In this sense, there are several works
about animal flight stability. [20] analyses the static stability
of birds from an aerodynamic point of view over a wide
range of species, reaching relevant conclusions, such that
flying a dihedral angle, even if it reduces the aerodynamic
performance of the wing, helps to provide both longitudinal
and lateral stability. This study also shows that tail is not
always necessary for birds in order to provide stability.
However, the recent study [21] finds that, unlike aircrafts,
birds can fly with an important lift contribution from the tail,
that also contributes to reduce drag in gliding flight. But, in
order to maintain stability, these techniques that birds apply
cannot be implemented for ornithopters with the current state
of technology. Other conclusion of [20] is the importance of
the position of the centre of gravity, as it happens also in
aircrafts.

For the case of UAV there are also some works of interest.
For instance, [22] uses bifurcation methods in order to ob-
tain the lateral-directional stability modes of a bird-inspired
design. [23] obtains flapping stability of an ornithopter by a
study of limit cycles. The approach of this work is different,
as it focuses on the longitudinal gliding dynamic stability
by the linearisation of the system. This technique, based on
previous works on aircraft stability [24], is aimed to control
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the UAV in order to get a steady state in gliding flight. But
the method is updated here to allow also for more aggressive
manoeuvres, as this implies operations out of the steady
states.

The paper is organised as follows. Section II defines the
model, including new terms in relation to [19] to better
capturing the transitions to the steady state. The effect of
these new transient terms are analysed in Section III, consid-
ering also the stability modes for both cases, by means of a
linearisation of the equations. Finally, Section IV summarizes
the main conclusions and points out some future lines of
research.

II. MODEL

In this section, the gliding dynamics of a bio-inspired UAV
is formulated. The model used considers two lifting surfaces
and the body of the vehicle, and it is based on that of [19],
but with some changes in the formulation.

A. Non-dimensional Newton-Euler equations

In order to develop the Newton-Euler equations, the hy-
pothesis of rigid body have been used. The non-dimensional
equations which describe the longitudinal UAV behaviour are
given by

2MdUb
dt

= −U2
b (CD + Li + ΛCDt)− sin(γ) (1)

2MUb
dγ

dt
= Ub (CL + ΛCLt)−

cos(γ)

Ub
(2)

1

χU2
b

dq

dt
= CL cos(α) + CD sin(α)

+ LΛ[CLt cos(α) + CDt sin(α)]

−RHL[CL sin(α)− CD cos(α)] (3)
dθ

dt
= q (4)

where Ub is the velocity magnitude, γ its angle with the Earth
reference frame, q the angular velocity, θ the pitch angle
and α the wing’s angle of attack, which can be computed
by the difference between the pitch angle and the trajectory
angle: α = θ − γ (see Fig. 1). Note that the mass forces
are considered to be applied only in the centre of gravity of
the vehicle. Note also that the formulation in the trajectory
frame simplifies the force equations in relation to [19], as
the lift terms appears only in (1) whereas all the drag terms
are in (2). However, (3) is formulated in the body reference
frame as it is related to the rotation of the vehicle with the
inertial frame.

The aerodynamics forces appearing on the UAV, depicted
in Fig. 1, act in the aerodynamics centres of wing and tail
and in the centre of gravity. These forces appear in (1)-(4) as
the aerodynamic coefficients CL, CD, CLt and CDt, while
the drag produced by the body is represented by the Lighthill
number Li = Sb

S CDb. Note that subscript ”t” refers to the
tail, while wing’s aerodynamic forces are written without
subscripts.

Fig. 1. Schematics of the ornithopter with the forces acting on it and all
the reference frames of interest. Tail angle δt is the only control variable
in the present work. xb, zb denote the body reference frame, xT , zT the
trajectory frame and X,Z the Earth frame

The characteristic magnitudes of the problem (velocity,
length and time) are the following

Uc =

√
2mg

ρS
, Lc =

c

2
, tc =

√
ρSc2

8mg
(5)

with g the gravity acceleration, m the ornithopter mass, ρ
the air density, S the effective wing surface and c the mean
wing chord length. With this scaling, the non-dimensional
parameters involved in the problem and appearing in (1)-(4)
are

M =
2m

ρSc
, χ =

1

8
ρSc2

lw
Iy

Λ =
St
S
, L =

lt
lw
, RHL =

hw
lw

(6)

where Iy is the moment of inertia while lw, hw and lt are
the relative distances from the aerodynamics centres of the
wing and the tail to the centre of gravity,

lw = xcg − xac,w, hw = zcg − zac,w, lt = xcg − xac,t (7)

The aerodynamic centre of the wing is considered to
be significantly above the longitudinal reference axis. The
reason for this consideration is that it is usual to fly with an
important dihedral angle, as it helps to the lateral stability
[20]. This is one of the main differences of the models
for bio-inspired gliders with those of conventional aircrafts,
which make inadequate to use traditional stability frame
models for ornithopters, as projections of forces change
considerably.

B. Aerodynamic models

The approximation of very thin airfoils (actually, rectan-
gular flat plates for the wings) is used for the aerodynamic
forces. Then, considering the linear potential theory, which
is appropriated for the Reynolds number of the ornithopter
flight (∼ 6× 104) [1], Prandtl’s lifting line theory gives the
lift coefficient of the wing [25]
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CL = 2πα
A

A+ 2
(8)

where A denotes the aspect ratio. For the tail, due to the
bio-inspired design, the expression of a delta wing is more
suitable [26], [27]. In addition, there is the issue that the
angle of attack which the tail sees is not the angle of attack
of the vehicle, because of the interference caused by the
wing [25]. This difference in the effective angle of the tail is
modelled proportional to the wing lift coefficient [28], and,
considering the formula of this coefficient, it can also be
simplified as ε = εαα, being εα = 0.3 in this case. Then, it
is obtained a lift coefficient given by

CLt =
π

2
[α (1− εα) + δt]At (9)

with δt being the deflection of the tail and At the aspect
ratio of the tail. However, these formulas are only valid in
the steady state. Whenever angular velocities appear, there
are unsteady effects which produce additional aerodynamics
forces. They can be modelled at the typical Reynolds num-
bers of the UAV by the linear potential theory of unsteady
thin airfoils [25]. Neglecting the small terms associated to
the second temporal derivatives and to the weak effects of
the unsteady wakes of wings and tail, they can be written as

CLus = 2π

(
1.5α̇− 2lw

c q

Ub

)
A

A+ 2
(10)

CLtus =
π

2

(
1.5α̇− 2lt

c q

Ub

)
At (11)

where the dot denotes temporal derivative. The above coeffi-
cients are added to the ones in (8) and (9) in order to obtain
the total forces. Unsteady aerodynamic does not affect the
steady state, as these are only transitional effects, but it is
fundamental in the evolution to that state, as they work as
damping terms in the glider dynamics. The pitch term comes
from the vertical displacement of the wing or tail produced
by the rotation around the center of gravity with angular
velocity q, whereas the angle of attack rate term is produced
by the rotation of the velocity vector with respect to the wing
or tail.

As discussed in [19], stall of the lifting surfaces may
lead to unphysical results. For this reason, a procedure of
saturating the lift coefficients has been followed, reducing
also the effects of the unsteady terms when the saturation
conditions are reached. As explained in [19], these limita-
tions are established at relatives angles of attack of 15o for
the wing and 35o for the tail.

Finally, induced drag is modelled from Prandtl’s lifting
line theory in the linear limit as

CDi =
C2
Ls

πA
, CDit =

C2
Lts

πAt
(12)

where the subscript ”s” means the steady part of these
coefficients, defined in (8) and (9).

Fig. 2. Image of the reference prototype

III. RESULTS AND DISCUSSION

In order to see the evolution of the variables during
the transitional phase to the steady state, the ornithopter
prototype showed in Fig. 2 has been used as reference.
The aerodynamic surfaces of this UAV are made of fabric
stiffened by carbon fiber ribs and spar, so aerodynamic theory
used is reasonable as the wing can be considered as a rigid
flat plate.

This vehicle has the capacity of alternating gliding and
flapping modes but this paper is mainly focused on the
gliding mode, as one of the great advantages of birds consists
on their ability to travel long distances without flapping their
wings. The values of the non-dimensional parameters for
the prototype are written in Table I. All the results reported
below are obtained with these values.

TABLE I
MAGNITUDES OF THE UAV

M Λ L RHL χ Li A At

5.80 0.221 −9.60 1.12 0.133 0.005 4.78 2.35

The results analysed are focused on showing the effects
of the unsteady aerodynamics on the gliding dynamics of
the bio-inspired UAV. Firstly, the effect of these terms
are analysed by comparing the evolution of the system of
equations with and without them. Then, a stability analysis
is proposed by means of the linearisation of the model,
comparing the stability modes obtained.

A. Effect of unsteady aerodynamics

To better understand the effect that the unsteady aerodi-
namic coefficients (10)-(11) have on the vehicle’s dynamics,
the equations (1)-(4) have been solved numerically with and
without these unsteady aerodynamic terms. The computation
has been done by using the ode45 function integrated in
MATLAB (The MathWorks, Inc., Natick, MA, USA).

Table II shows the different sets of initial conditions used
in the numerical simulations, all of them with the same
control variable (tail angle δt), thus sharing the same gliding
steady state (see [19]), which is also given in Table II. Note
that dimensional variables are used in this section, with the
same name as their dimensionless counterparts. Initial point
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Fig. 3. Comparison between trajectories considering and neglecting
unsteady aerodynamic, being X the longitudinal distance and h the height
with respect to the Earth inertial frame.

of the trajectory is defined at 0 in the longitudinal frame
and a height of 75 m. Trajectories obtained with the first
two sets of initial conditions are compared in Fig. 3, and
results prove that oscillations in the trajectory of the system
considering only steady aerodynamics are growing, until
the computation is stopped as it reaches values where the
model lose its applicability. However, the model considering
unsteady coefficients reach the steady values.

TABLE II
DIMENSIONAL STATES

Initial conditions
Ub(m/s) γ(o) q θ(o)

x1
0 4.08 0 0 0

x2
0 12.23 −30 0 −20

x3
0 12.23 20 0 20

x4
0 4.08 0 0 10

x5
0 12.23 5 0 10

x6
0 8.15 0 0 −5

Steady state
Ub(m/s) γ(o) q θ(o)

xs 6.00 −5.02 0 0.40

The divergence of the system without considering the
transient aerodynamic terms is clearer in the trajectory angle
shown in Fig. 4 for the same initial conditions. The am-
plitude of the oscillations of the model without unsteady
aerodynamic terms becomes very high even at the first peak,
and then blows up after a few oscillations, while when
the unsteady terms are taken into account low amplitude
oscillations converge towards the steady state. A similar
behaviour is observed for the speed (Fig. 5).

Figures 6 and 7 show the trajectory angle and the speed
obtained considering the unsteady terms with all the different
initial conditions given in Table II, thus showing that the
ornithopter is capable of reaching the steady state for a wide
range of initial conditions. The information in these two

Fig. 4. Comparison between evolution of the trajectory angle considering
and neglecting unsteady aerodynamic.

Fig. 5. Comparison between evolution of the velocity module considering
and neglecting unsteady aerodynamic.

figures is plotted in Fig. 8 in a phase diagram, where it is
clearly shown that these two variables, which are the most
critical ones during the transient period, always converge
to the to the steady state. In some cases, short period can
also be observed as the first displacement in this diagram
is not always following the spiral, for instance, with initial
conditions 2 and 6.

B. Linearisation of the model

In order to numerically characterize the transition of the
gliding until reaching the steady state, a linearisation of
the model is proposed, with the objective of obtaining the
stability modes. State variables are decomposed into a steady
state and a perturbation:

Ub = Ubs + Ub(t) (13)
γ = γs + γ(t) (14)
q = qs + q(t) (15)
θ = θs + θ(t) (16)
δt = δts + δt(t) (17)

1599

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 08,2021 at 16:34:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Comparison of the evolution of the trajectory angle for different
initial conditions.

Fig. 7. Comparison of the evolution of the speed for different initial
conditions.

Fig. 8. Phase diagram for speed and trajectory angle with different initial
conditions.

Fig. 9. Comparison between evolution of the trajectory angle given by the
non-linear model and the linear approximation.

After substituting this decomposition into (1)-(4), they
are linearised assuming small perturbations. Once the steady
state terms are eliminated, the following descriptor (implicit)
state-space model of linear equations is obtained for the
perturbations:

M


U̇b

γ̇

q̇

θ̇

 = A


Ub

γ

q

θ

+Bδt (18)

Note that we have selected the tail angle δt as the control
parameter. Matrices M , A and B are given by

M =


CXU̇b

0 0 0

0 CZγ̇ 0 CZθ̇
0 Cmγ̇ Cmq̇ Cmθ̇
0 0 0 1

 (19)

A =


CXUb CXγ 0 CXθ
CZUb CZγ CZq CZθ

0 Cmγ Cmq Cmθ
0 0 1 0

 (20)

B =


CXδt
CZδt
Cmδt

0

 (21)

The coefficients depend of the equilibrium state chosen,
which is obtained by the deflection of the tail. The definitions
of each coefficient are formulated in Appendix I.

Figures 9 and Fig. 10 show the difference between the
non-linear and linear models for the trajectory angle and
speed, respectively. Results are quite similar, particularly
in the damping of the system and the frequency of the
response. Overshooting of both variables gives the highest
error, which makes sense, because when the state is far from
the linearisation point the approximation is less accurate.
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Fig. 10. Comparison between evolution of the velocity module given by
the non-linear model and the linear approximation.

The effect of each variable are related to diverse physical
effects. Velocity affects by means of the variation of the
absolute aerodynamics forces. There is no velocity term in
the third equation as all the terms in (3) are aerodynamic
forces.

The angle of attack is represented in the variations of γ
and θ, and it affects in two ways: variation of aerodynamic
coefficients and change of projections of the forces. In fact,
the static stability coefficient Cmα is also in the equations
as it is the same as Cmθ . Coefficients of γ include also the
change of the gravity force projections.

Unsteady aerodynamic is represented by the terms of q, γ̇
and θ̇. Those coefficients are responsible of the damping of
the system. CXV̇ and CZγ̇ include the mass of the system,
whereas Cmq̇ corresponds to the moment of inertia.

The control derivatives are related to the deflection of the
tail, being the only control variable of the UAV of Fig. 2
in gliding mode. However, in the present gliding analysis,
the effects of these terms is not going to be considered, as
the focus here is on the free response of the glider, which is
obtained just with the variables of the system. For the cases
studied, the numerical values of the matrices are collected
in the Appendix II. They correspond to the dimensionless
parameters in Table I and for the steady state defined in
Table II

C. Stability modes

The free-response of the solutions of the system (18)
(without the forcing term δt), can be written as x = x0e

λt.
Considering this solution, the different modes are obtained
solving the generalised eigenvalue problem given by

|M−1A− λI| = 0. (22)

The eigenvalues and eigenvectors of the matrix M−1A
characterize the dynamic stability of the glider. The eigenval-
ues λ, obtained numerically in MATLAB using the function
eig, are plotted in the complex plane in Fig. 11. As
expected, the system with the unsteady aerodynamic coeffi-
cients has all the eigenvalues with negative real part, whereas

Fig. 11. Comparison between the eigenvalues λ = λr+iλi in the complex
plane obtained obtained with a without transient terms. The inset shows a
zoom around the imaginary axis.

the simpler steady model has a pair of complex eigenvalues
with positive real part, which causes the divergence of the
transient dynamics. In Fig. 11 right these small values are
clearer, as a zoom has been made near the imaginary axis.

The eigenvalues obtained when considering the unsteady
aerodynamics are presented in Table III (to provide a more
physical information, we give the dimensional values for the
ornithopter with characteristics summarized in Table I):

TABLE III
EIGENVALUES OF THE SYSTEM

Unsteady aerodynamics considered
λ1 λ2 λ3,4

−40.70 s−1 −10.76 s−1 −0.1943± 0.8162i s−1

Unsteady aerodynamics neglected
λ1,2 λ3,4

−9.27± 4.61 s−1 0.224± 2.184 s−1

TABLE IV
EIGENVECTORS OF THE SYSTEM

Unsteady aerodynamics considered
x01 x02 x03,04

Ub0 −0.0289 0.0853 0.9853∠0.9o

γ0 −0.1890 1 0.3404∠86.1o

q0 1 0.0174 0.0103∠1.3o

θ0 −0.5762 −0.0185 0.3433∠104.7o

Unsteady aerodynamics neglected
x01,02 x03,04

Ub0 0.1652∠140.5o 0.7629∠17.7o

γ0 1∠180.0o 0.6930∠120.4o

q0 0.1962∠−1.5o 0.0573∠36.9o

θ0 0.5288∠152.1o 0.7286∠121.1o

The eigenvectors associated to these modes are given in
Table IV. From these values it is possible to compare the
stability modes of the UAV as function of the unsteady
aerodynamic terms:
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• Fast modes: In the case of neglecting the unsteady
aerodynamic, there is a single mode, an oscillatory
convergence, mainly associated to angular variables.
However, considering these terms, two exponential con-
vergences appear, related to the angular acceleration and
the trajectory angle. The dynamic is considerably fast
with both models, as times to reduce to half amplitude
with the updated model are of 0.0170 s and 0.0644 s,
similar to 0.0747 s associated to the other system.
These modes are related to the short period mode of
an airplane, but their effects are different in both cases.
When just the steady aerodynamic is considered, the
angular pitch velocity seems not to be damped, when
in aircraft is one of the most relevant of this mode. In the
other case, due to the differences in the design between
a regular fixed-wing aircraft and a bio-inspired vehicle,
the short period is overdamped. It is relevant that the
aerodynamic surfaces take almost all the plantform of
the ornithopter which causes this overdamping of the
mode.
In Fig. 12, evolution of the trajectory angle shows the
fast convergence of these modes. It also proves that the
convergence is exponential, with a faster and a slower
time.

• Slow modes: These are the modes which appear in
Figures 4-10. Neglecting the unsteady aerodynamics,
the mode is an oscillatory divergence, due to the lack
of damping terms for the reacting moments of the
glider. When these coefficients are considered, the mode
changes becoming stable. Some reference values of the
mode are written in Table V, where ωn is the natural
frequency, ξ the damping, t1/2 the time to damp to half
amplitude and t2 the time to duplicate the perturbations.
These characteristic values are clearly visible in Figures
4-10, particularly the frequencies and the times to damp
or duplicate the perturbations.

TABLE V
CHARACTERISTIC VALUES OF PHUGOID MODE

Unsteady aerodynamics considered
ωn ξ t1/2

0.84 rad/s 0.232 3.57 s

Unsteady aerodynamics neglected
ωn ξ t2

2.20 rad/s −0.102 3.10 s

This mode is similar to the phugoid of a conventional
aircraft. From the eigenvectors associated, it is notice-
able that trajectory angle and pitch angle have a very
similar module and a small difference of phase, meaning
that the variations on the angle of attack is significantly
smaller than these other angles.
Fig. 13 shows the convergent oscillations of the trajec-
tory angle in different phases. The characteristics seen
in Table V are clearly visible. The phugoid is the main
evolution seen in Figures 3-10.

Fig. 12. Evolution of the trajectory angle for the fast modes.

Fig. 13. Evolution of the trajectory angle for the slow modes.

IV. CONCLUSIONS

Due to the limitations of on-board instrumentation of
bio-inspired systems, complex aerodynamic models or full
aerodynamic simulations are impossible to implement for
real-time control. These vehicles require of simpler analytical
models as it had been stated in [19]. This study intends
to complement this previous work by the extension of the
validity of the model to unsteady cases.

In this sense, the results presented here shows that the
dynamics of the model of [19] diverge before reaching the
steady state, even when the system is statically stable. The
update presented here, which includes unsteady aerodynam-
ics coefficients, causes the system to converge to the steady
state, taking values with much more physical meaning. It is
worth mentioning that even if results for other prototypes
may show convergence without the unsteady aerodynamics
coefficients, neglecting them would affect trajectories ob-
tained by simulations, showing a slower convergence.

The linearisation of the model around the steady state
allows to obtain a numerical characterization of the dynamic
stability of the system, in order to visualize the unsteady ef-
fects more clearly. By this process, results show that phugoid
mode is unstable when unsteady aerodynamic effects are

1602

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 08,2021 at 16:34:37 UTC from IEEE Xplore.  Restrictions apply. 



neglected, but it became stable when they are considered.
Results also show that the short period is overdamped,
which makes sense considering that the relative size of the
aerodynamics surfaces respect to the total vehicle size is
more important than that of an aircraft. This characteristic
also makes more relevant considering unsteady aerodynamics
in bio-inspired UAVs.

The longitudinal model considered in this paper is quite
more general, to our knowledge, than any other one consid-
ered before for modelling gliding ornithopters. Linearisation
is also an important step towards an efficient control of
the gliding flight, allowing to reach and maintain a certain
angle of trajectory and optimizing the distance traveled.
In order to extend this work it would be appropriated to
obtain experimental data and confirm that the stability modes
obtained theoretically corresponds to the actual flight. In
this line, the work could also be extended to characterize
the stability of flapping phases in combined gliding and
flapping flight. For that task it would be appropriated to use
a simplification for the flapping state, in order to characterize
all the phases of the flight.

APPENDIX I
LINEARISATION COEFFICIENTS

CXU̇b
= 2M (23)

Cmq̇ =
1

χ
(24)

CZγ̇ = Ubs

(
2M+ 3π

A

A+ 2
+ Λ3π

At

4

)
(25)

Cmγ̇ = Ubs

[(
3π
A

A+ 2
+ LΛ3π

At

4

)
cos (αs)

−RHL3π
A

A+ 2
sin (αs)

]
(26)

CZθ̇ = −Ubs
(

3π
A

A+ 2
+ Λ3π

At

4

)
(27)

Cmθ̇ = −Ubs
[(

3π
A

A+ 2
+ LΛ3π

At

4

)
cos (αs)

−RHL3π
A

A+ 2
sin (αs)

]
(28)

CXUb = −2Ubs (CDs + Li+ ΛCDts) (29)

CZUb = 2Ubs (CLs + ΛCLts) (30)

CZq = Ubs

(
− 2πA

A+ 2

2lw
c
− ΛπAt

lt
c

)
(31)

Cmq = Ubs

[(
− 2πA

A+ 2

2lw
c
− LΛπAt

lt
c

)
cos (αs)

+RHL
2πA

A+ 2

2lw
c

sin (αs)

]
(32)

CXγ = U2
bs

[
4CLs
A+ 2

+ ΛCLts (1− εα)

]
− cos (γs) (33)

CZγ = −U2
bs

[
2πA

A+ 2
+ Λ

πAt

2
(1− εα)

]
+ sin (γs) (34)

Cmγ = U2
bs

{
(CLs + LΛCLts) sin (αs)

−
[

2πA

A+ 2
+ LΛ

πAt

2
(1− εα)

]
cos (αs)

−
[

4CLs
A+ 2

+ LΛCLts (1− εα)

]
sin (αs)

− (CDs + ΛCDts) cos (αs)

+RHL
[

2πA

A+ 2
sin (αs) + CLs cos (αs)

− 4CLs
A+ 2

cos (αs) + CDs sin (αs)

]}
(35)

CXθ = −U2
bs

[
4CLs
A+ 2

+ ΛCLts (1− εα)

]
(36)

CZθ = U2
bs

[
2πA

A+ 2
+ Λ

πAt

2
(1− εα)

]
(37)

Cmθ = U2
bs

{
− (CLs + LΛCLts) sin (αs)

+

[
2πA

A+ 2
+ LΛ

πAt

2
(1− εα)

]
cos (αs)

+

[
4CLs
A+ 2

+ LΛCLts (1− εα)

]
sin (αs)

+ (CDs + ΛCDts) cos (αs)

−RHL
[

2πA

A+ 2
sin (αs) + CLs cos (αs)

− 4CLs
A+ 2

cos (αs) + CDs sin (αs)

]}
(38)

CXδt = −ΛU2
bsCLts (39)

CZδt = ΛU2
bs

πAt

2
(40)

Cmδt = ΛU2
bsL

[
πAt

2
cos (αs) + CLts sin (αs)

]
(41)

APPENDIX II
DESCRIPTOR STATE-SPACE MODEL

The numerical values of the used in the simulations of
section III-C are the following

M =


11.61 0 0 0

0 28.62 0 −11.56

0 −8.46 30.07 8.46

0 0 0 1

 (42)

A =


−0.12 −0.40 0 −0.60

1.36 −10.89 1.71 10.80

0 3.73 −39.58 −3.73

0 0 1 0

 (43)
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B =


−0.09

1.76

−16.90

0

 (44)
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