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Abstract—Deep learning and especially the use of Deep Neural
Networks (DNNs) provides impressive results in various regres-
sion and classification tasks. However, to achieve these results,
there is a high demand for computing and storing resources.
This becomes problematic when, for instance, real-time, mobile
applications are considered, in which the involved (embedded)
devices have limited resources. A common way of addressing this
problem is to transform the original large pre-trained networks
into new smaller models, by utilizing Model Compression and
Acceleration (MCA) techniques. Within the MCA framework,
we propose a clustering-based approach that is able to increase
the number of employed centroids/representatives, while at the
same time, have an acceleration gain compared to conventional,
k-means based approaches. This is achieved by imposing a special
structure to the employed representatives, which is enabled
by the particularities of the problem at hand. Moreover, the
theoretical acceleration gains are presented and the key system
hyper-parameters that affect that gain, are identified. Extensive
evaluation studies carried out using various state-of-the-art DNN
models trained in image classification, validate the superiority of
the proposed method as compared for its use in MCA tasks.

I. INTRODUCTION

Deep Neural Networks (DNN) [1] have emerged recently
as a central ingredient in many modern artificial intelligence
applications [2], [3], [4], [5], [6]. However, the impressive
performance that has been reported in the literature, is closely
related to the size of the DNNs, which, for state-of-the-art
models can reach to tens, or even hundreds of millions of
parameters (e.g., 138 millions of parameters are used by the
Visual Geometry Group (VGG) DNN [7]). This leads to vast
computing and storage requirements during both the training
phase of the DNNs and (most importantly) the operational (or
inference) phase, i.e., when the DNNs are actually employed.
In real applications, these requirements are usually tackled
via high-performance computing platforms [8] that include
graphics processing units (GPUs).

Nowadays, there is an increasing interest in blending deep
learning and mobile computing in which platforms of limited
resources are employed [9], including smart devices (such as
phones, watches, and embedded sensors). In order for these
platforms to exploit the DNN gains, especially, during the
inference phase, two main lines of research can be identi-
fied. In the first one, new compact, smaller DNN models
[10] are designed or searched for in a design space for the
applications at hand (e.g., SqueezeNet [11], MobileNets [12],
and EfficientNet [13]). In the second line, existing pre-trained,

highly performing DNN models (e.g., AlexNet [14], VGG [7],
Residual Net (ResNet) [15], and many more) are transformed
into new smaller models by utilizing Model Compression and
Acceleration (MCA) techniques [10], [16], [17], [18]. The im-
portance of this line of research stems from the fact that, apart
from their standalone use, state-of-the-art, pre-trained DNN
models can also be utilized as back-bone modules in models
designed for different (but similar in nature) applications. For
example, the convolutional layers of AlexNet and VGG (that
are originally trained for image classification tasks), constitute
the core modules of the R-CNN [19] and Fast R-CNN [20],
respectively, object detectors.

The MCA-related literature has been increasing in recent
years and there are numerous surveys that provide a compre-
hensive overview of the area ([10], [16], [17], [18]). Roughly
speaking (and by no means being exhaustive), some of the ear-
liest works proposed parameter pruning, in which, unimportant
parameters (e.g., filters [21], [22]) are removed and, hence, not
considered during the inference phase of the DNN deploy-
ment. Other works focus on limiting the representation of the
involved parameter by reducing their bit-width or increasing
common representations via the design of codebooks (e.g.,
scalar [23], vector and product quantization [24]). Finally,
several works employ tensor / matrix decompositions on the
involved quantities (e.g., filters) into factors by utilizing, for
instance, low-rankness [25].

In this paper, a new MCA technique for pre-trained DNNs
is described and evaluated. The highlights of the paper are
outlined as follows:
• We propose a novel codebook design procedure that, for

the same target acceleration, leads to larger codebooks
than the typically used k-means-based approaches, thus
improving considerably the quantization error.

• This is achieved by imposing a special structure to
the learned codewords based on a Dictionary Learning
framework.

• Theoretical analysis is provided for determining the pa-
rameters that dictate the structure of the codebook.

• The efficacy of the proposed MCA technique is assessed
on three state-of-the-art DNN models (VGG, ResNet,
SqueezeNet) on the demanding ILSVRC2012 dataset
[14], achieving up to 100% (or 2×) acceleration gain
over the conventional approach, for the same quantization
error.



• The application of the proposed technique for the selected
DNNs results in significantly accelerated models with
limited performance degradation.

In the following, first, the relevant bibliography is presented
and the positioning of this paper is described. Then, in Sec. III,
the problem is formulated, while, in Sec. IV, the proposed
technique is explained. Simulation results are presented in
Sec. V. Finally, Sec. VI concludes the paper.

II. RELEVANT BIBLIOGRAPHY

The work in this paper is related to MCA techniques that
utilize a codebook for quantizing network parameters. The
codebook contains representative quantities (called codewords,
centroids, etc.) for the parameters to be approximated (e.g.,
vectors of weights). As multiple network parameters are
mapped to a single representative quantity, such approaches
are also called parameter sharing techniques.

Towards this end, [24] proposed vector quantization meth-
ods (using the k-means algorithm) for estimating the desired
codebook with the aim to compress the weights of fully
connected layers. In [26], a three stage method was presented
in which parameter pruning was followed by a codebook de-
sign for parameter quantization and concluded with Huffman
coding. In [27], a new codebook design was devised that im-
proved upon or generalized works like [24], [26]. In [27], the
proposed approach could be applied to both convolutional and
fully connected layers, while two cost-functions for estimating
the involved codebooks, were devised that minimized the
quantization error of the weights and the representation error
of the layers’ output (namely, the error between the outputs
of the original and the accelerated layers for a given input),
respectively. In [28], the proposed technique operates on scaled
versions of the 2D kernels for estimating the desired centroids
using the k-means algorithm. Then, during fine-tuning, both
the scales and the centroids are considered free variables to be
updated. In [29], [30] and [31], proper regularization terms are
introduced and via re-training procedures the resulted weights
can be more easily clustered using the k-means algorithm.
The work in [32] adopts product quantization and focuses
on the representation error of the layer outputs. Finally, in
[33], a methodology is devised for determining the size of
the codebooks by introducing a sensitivity analysis per layer
in order to assess the impact of compression on the accuracy
performance.

The proposed MCA technique is mostly related to works
like [24], [26], and [27]. Here, however, by exploiting the
special structure of the weights to be quantized, improved
quantization error is achieved. For assessing the performance,
[27] is selected as a baseline. Moreover, although, here, a
new MCA technique is outlined, the proposed dictionary-
learning approach for designing the codebook, can be actually
utilized by all the works mentioned above (i.e., instead of the
commonly used k-means algorithm).
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Fig. 1: The linear operation of a single convolutional layer.

III. PROBLEM FORMULATION

The core operation performed by a convolutional layer and
the involved quantities, are depicted in Fig. 1. In particular,
the input volume consists of N channels Xi, i = 1, 2, . . . , N .
Also, there are M kernel volumes and the k-th kernel volume
has N filters Wk,i, k = 1, 2, . . . ,M , i = 1, 2, . . . , N . For
simplicity, it is assumed that the dimensions of the Xi’s,
Wk,i’s and Uk’s are m×m, p× p, and m×m, respectively.

The convolution of the input volume with the k-th kernel
volume is given by

Uk =

N∑
i=1

Xi ?Wk,i, (1)

where ? denotes the 2D convolution operation.
In order to proceed and describe the entities to be clustered

(i.e., coded by the codebook that will be designed), (1) is re-
written in order to describe the (i, j)-th element Uk[i, j] as

Uk[i, j] =
∑

n,l∈Ri,j

xT
n,lwk,i−n,j−l, (2)

where xi,j = [X1[i, j], . . . ,XN [i, j]]T contains the samples at
the (i, j)-th position of all input channels. Also, wk,u,v =
[Wk,1[u, v], . . . ,Wk,N [u, v]]T contains the filter weights at
the (u, v) position of all channels in the k-th kernel volume.
Finally, the set Ri,j contains p2 indices around the position
(i, j).

In the product quantization framework, the N -dimensional
vector space is partitioned into S, N ′-dimensional subspaces
with N ′ = N/S, so that the s-th subspace spans dimensions
[(s− 1)N ′ + 1, . . . , sN ′], s = 1, . . . , S. Let us now partition
vectors xi,j , wk,u,v defined in Eq. (2), accordingly, as

xi,j=[(x1
i,j)

T, . . . , (xSi,j)
T]T, (3)

wk,u,v=[(w1
k,u,v)

T, . . . , (wS
k,u,v)

T]T, (4)

where each of the sub-vectors lies in N ′-D space. Then, (2)
can be rewritten as

Uk[i, j] =

S∑
s=1

∑
n,l∈Ri,j

(xsn,l)
Tws

k,i−n,j−l, (5)



where the inner sum denotes the contribution of the s-th
subspace to the k-th convolutional output, at position (i, j).

For each subspace, the goal of product quantization is to per-
form vector quantization to the Mp2 kernel sub-vectors lying
in s-th subspace, and cluster them into Ks � Mp2 clusters.
This way, each sub-vector is represented by the centroid of
the cluster it belongs to, reducing accordingly the number of
required dot-products. To be more specific, the acceleration
occurs because the original dot-products between the input
and the Mp2 kernel sub-vectors, are approximated by the ones
between the input and the Ks centroids/representatives.

IV. DICTIONARY-LEARNING-BASED WEIGHT CLUSTERING

In this section, first, the proposed codebook structure for ap-
proximating the kernel sub-vectors, is described and discussed
in comparison with the conventional codebook structure that
appears in current literature. This discussion is also extended
towards the gains that are achieved through a computational
complexity analysis. Then, the proposed codebook design is
approached as a Dictionary Learning (DL) problem, which
actually treats the k-means-based conventional codebook de-
sign as a special case. The latter will be referred to as Vector
Quantization (VQ) in the following. Finally, some implemen-
tation details are described concerning the initialization of the
involved parameters when applying the proposed DL solution.

A. Proposed approximation

Let us first define the kernel approximation scheme incurred
by the conventional codebook structure, as follows:

W ≈ CΓ, (6)

where the columns of W ∈ RN ′×p2M , C ∈ RN ′×Kvq ,
and Γ ∈ RKvq×p2M , contain the kernel sub-vectors (of a
particular subspace), the representatives (or cluster centroids),
and assignment vectors, respectively. Specifically, each column
of Γ has exactly one non-zero element, equal to 1, meaning
that each column of W is approximated by one column
of C. Thus, in the conventional case, the Mp2 sub-vectors
are approximated by Kvq � p2M representatives, using the
codebook C.

Instead, in this paper, the following approximation is pro-
posed:

W ≈ DΛΓ, (7)

where W ∈ RN ′×p2M and Γ ∈ RKdl×p2M are defined as
in (6), while D ∈ RN ′×Ldl and Λ ∈ RLdl×Kdl denote the
dictionary and the matrix of sparse coefficients, respectively.
Specifically, the columns of D (called dictionary atoms), are
normalized, while Λ is a sparse matrix in the sense that each
of its columns contains at most α non-zero elements, with
α being the sparsity level. Thus, under the proposed scheme,
the p2M sub-vectors are approximated via Kdl representatives
contained in the codebook DΛ. In turn, these representatives
are obtained as linear combinations of at most α atoms from
a dictionary of size Ldl, with Ldl < Kdl � p2M . Note that
the matrix approximation defined in (7) can be viewed as a

special case of the general Dictionary Learning (DL) problem
[34], which is why we call our acceleration technique as a
DL-based one.

It should be noted that, in the general case, the proposed
approximation requires more representatives than the conven-
tional approach (i.e., Kdl > Kvq), for achieving the same
quantization (i.e. approximation) error. This is by definition
since the conventional codebook C is obtained in an uncon-
strained fashion, while the proposed codebook DΛ follows a
specific structure. Although it seems counter intuitive (in the
sense that the proposed approximation is less efficient than the
conventional one, in the general case), due to the particularities
of the problem at hand, namely, due to the fact that the “data
points” in W are in fact filters used in convolution operations,
the proposed approximation results actually in significantly
higher acceleration ratios for the same quantization error, as
it is going to be demonstrated. This is because, due to the
linearity of the operations performed in the convolutional
layer, the sparse coefficients in Λ need only be applied to the
convolution between the input and the dictionary atoms in D,
instead of the atoms themselves. This endows the proposed
approximation scheme with the flexibility to use a number
of representatives Kdl that is several times larger than Kvq ,
while restricting the size of the dictionary (so that Ldl � Kvq)
thus reducing the number of “heavy” convolutions, as it will
become clearer in the following subsection.

B. Computational complexity analysis

Since the core operations of a DNN are ultimately trans-
lated into dot-products between input and kernel vectors, the
computational complexity of a DNN is usually measured in
terms of the number of Multiply and Accumulate (MAC) op-
erations. A MAC is dominated by the involved multiplication
(MUL), which is a significantly “heavier” computation than
the involved addition. As such, in the subsequent analysis, in
order to compare the techniques on a common ground, MAC
and MUL operations are going to be used interchangeably, i.e,
a MAC will be considered equivalent to one MUL, so that the
computational cost is measured as the number of MULs.

Let us first begin by examining the computational complex-
ity of the original layer, where, by arranging the m2 input
sub-vectors of the s-th subspace in the columns of a matrix
X ∈ RN ′×m2

, we see that the convolution operation involves
the calculation of a matrix product of the form:

Y = XTW, (8)

where W contains the kernel sub-vectors (as defined in (6)),
followed by the appropriate summation of the dot-products
according to (5). Since calculating Y requires m2p2MN ′ mul-
tiplications, the overall (i.e. for all S subspaces) computational
complexity of the original convolutional layer, measured in
MULs, is obtained as:

To = m2p2M(SN ′) = m2p2MN. (9)



In the VQ case (described by the approximation in (6)), the
approximate Y is obtained as:

Y ≈ (XTC)Γ, (10)

namely, it involves calculating the dot-products between input
sub-vectors and representatives and then “plugging” the results
appropriately, according to the columns of Γ. Calculating
XTC requires only m2N ′Kvq MULs (as kvq � Mp2),
meaning that the overall computational complexity for the
approximate convolutional output is reduced to:

Tvq(Kvq) = m2(SN ′)Kvq = m2NKvq. (11)

Finally, for the DL-based approximation scheme, we can write:

Y ≈
(
(XTD)Λ

)
Γ, (12)

meaning that, in this case, calculating the approximate Y is
a two-stage operation. First, we calculate XTD, i.e., the dot-
products between the input and the dictionary atoms, which
requires m2N ′Ldl MULs, where Ldl denotes the dictionary
size. Subsequently, the results are combined according to the
columns of Λ, which requires αm2Kdl additional MULs
Thus, the overall computational complexity for the approxi-
mate convolutional output in the DL case, is obtained as:

Tdl(Kdl, Ldl, α) = m2(NLdl + αSKdl). (13)

Accordingly, the acceleration ratio (namely, the ratio of
original vs accelerated computational complexities) achieved
by the two rival approaches, can be written as follows:

ρvq≡
To
Tvq

=
p2M

Kvq
(14)

ρdl≡
To
Tdl

=
p2M

Ldl +
α

N ′
Kdl

. (15)

Of great interest is also the relative acceleration between
the proposed DL-based and the VQ approach, which will also
provide rules for selecting the free parameters of the proposed
technique. First, in order to have a better representation error,
we set the number of representatives used by the proposed
technique as a multiple of the representatives used by the VQ
approach, i.e., Kdl = cKvq , c > 1. Then, using (11), (13),
we can see that for the DL-based approximation to achieve
at least the same acceleration with the VQ technique, i.e., for
Tdl(Kdl, Ldl, α) ≤ Tvq(Kvq) to hold, the following inequality
should hold regarding the size of the used dictionary:

Ldl ≤ Kvq

(
1− α c

N ′

)
. (16)

As we are going to demonstrate in our experimental results
for various combinations of the coefficient c and sparsity level
α, and for (16) holding with equality (i.e., for the two rivals
achieving the same acceleration ratio), the proposed technique
leads to a significantly better approximation of the original
weights, which ultimately translates into better classification
accuracy for the accelerated DNNs.

C. Proposed algorithm

For deriving the matrix factorizations described by the
proposed weight factorization in (7), the quantization error
between the original W and its approximate version is min-
imized. In particular, the following minimization problem is
defined.

min
D,Λ,Γ

||W −DΛΓ||2F (17)

s.t. ||di||22 = 1, i = 1, . . . , Ldl,

||λi||0 ≤ α, i = 1, . . . ,Kdl,

||γi||0 = 1, 1Tγi = 1, i = 1 . . .Mp2,

where || · ||F , || · ||2, || · ||0 denote the Frobenius, l2, and l0
norms, respectively, while the last constraint ensures that the
elements of Γ take values in {0, 1} and each of its columns
has exactly one non-zero element.

In order to solve (17), we follow a strategy of alternating
optimizations over each set of parameters, leading to the
following three sub-problems:

a) Sparse coding: With D, Γ fixed, the loss function in
(17) can be rewritten as follows:∣∣∣∣∣∣∣∣W −

Kdl∑
i=1

(Dλi)γ̃i

∣∣∣∣∣∣∣∣
F

=

Kdl∑
i=1

∣∣∣∣WIi − (Dλi)1T
∣∣∣∣
F
, (18)

where yi, ỹi is used to denote the i-th column and row of
matrix Y, respectively, Ii = {j|γij = 1} is the set of indices
of the non-zero elements of γ̃i, WIi is the submatrix formed
by the columns of W indexed by Ii, while 1 denotes the
all-ones vector of dimension |Ii|.

Observing (18), due to the l0-norm constraints on Γ, Ii’s,
i = 1, . . . ,Kdl, are a partition of {1, 2, . . . , p2M}, meaning
that the minimization of (18) over Λ is translated into Kdl

separate sub-problems, one for each of Λ’s columns:

min
ζ

||WIi − (Dζ)1T||2F (19)

s.t. ||ζ||0 ≤ α.

In order to solve (19), we follow an Orthogonal Matching
Pursuit (OMP) approach, which builds the support of the
sparse representation (non-zero elements of λi), by adding
one dictionary atom at a time, up to α atoms [34].

This sparse coding sub-problem is outlined in lines 5-12
of Table I. There, S denotes a set of non-zero indices, while
DS and ζS contain the columns of D and the elements of ζ
indexed by S, respectively.

b) Dictionary update: With Λ, Γ fixed, we write the loss
function in (17) as follows:

E = ||W −DG||2F =

∣∣∣∣∣∣∣∣W −
Ldl∑
i=1

dig̃i

∣∣∣∣∣∣∣∣2
F

, (20)

where g̃i denotes the i-th row of G = ΛΓ. Thus, the
dictionary update step translates to minimizing E under the l2-
norm constraint for the dictionary atoms. In order to solve this
problem, we follow the coordinate-descent-based approach



1: procedure DL-based sub-space clustering
2: Input: original sub-vectors W, # of representatives Kdl

dictionary size Ldl, sparsity level α.
3: Obtain initial solution {D0,Λ0,Γ0}
4: repeat
5: for i = 1 : Kdl //Sparse Coding
6: Initialize: E = WIi , S = ∅
7: for j = 1 : α
8: Build new support: S ← S ∪ {k},

where k = argmaxj 6∈S |1TETdj |.
9: Find new solution: ζS by solving minξ ||WIi −DS ξ 1T||2F .
10: Update residual: E = WIi −DS ζS 1T.
11: end
12: end
13: Initialize: E = W −DΛΓ //Dictionary Update
14: for i = 1 : Ldl

15: Modify error: F = EIi + di g̃i,Ii .

16: Update i-th atom: di =
F (g̃i,Ii

)T

||F (g̃i,Ii
)T|| .

17: Re-compute error: EIi = F− di g̃i,Ii .
18: end
19: for i = 1 : p2M //Assignment Update
20: Update γi solving ji = argminj∈{1,...,Kdl} ||wi − c̃j ||2.
21: end
22:Until: a maximum number of iterations is met.
23:Return: D, Λ, Γ.
24:end procedure

TABLE I: Proposed algorithm for solving (17)

outlined in Algorithm 3.5 of [34]. This sub-problem is de-
scribed in lines 13-18 of Table I.

c) Assignment update: With D, Λ fixed, the loss function
in (17) takes the following form:

E = ||W − C̃Γ||2F =

p2M∑
i=1

||wi − C̃γi||22 (21)

where C̃ = DΛ is the N ′ × Kdl matrix of representatives.
Taking into account the special structure of Γ, updating γi is
equivalent to determining the position ji of its non-zero (unity)
element, which simply assigns wi to its closest representative.
This sub-problem is described in lines 19-21 of Table I.

D. Initial Solution and Parameter Selection

In order to provide an initial solution D0, Λ0, Γ0, to the
proposed acceleration technique, we work as follows:

1) We obtain a clustering of the original kernel sub-vectors
into Kdl clusters by minimizing ||W − CΓ||F under
the constraints on the assignment matrix Γ stated in
(17). This problem can be solved by using the k-means
algorithm.

2) We then obtain a sparse representation of the cluster
centroids in C as C ≈ D0Λ0, by using a dictionary
of size Ldl and target sparsity α. This problem can be
solved with standard DL techniques such as the ones
described earlier.

3) Finally, we obtain the initial assignment matrix Γ0 by
assigning each of the sub-vectors in W to its closest
representative in C̃ = D0Λ0.

There are four free parameters in the proposed technique,
namely, the subspace dimension N ′, the number of represen-
tatives Kdl, the size of the dictionary Ldl, and the sparsity

level α. For a target acceleration ρ, we first determine the
number of representatives Kvq required by the VQ technique
in order to achieve ρ, by using (14). This provides a lower
bound for the number of representatives Kdl required by the
proposed technique. We set Kdl = cKvq , c > 1. Then, for
a target sparsity α, we use (16) with equality in order to
determine the dictionary size required to achieve ρ. Typical
ranges for the parameter values are c = 2, . . . , 5, α = 1, 2, 3,
and N ′ = 4, . . . , 8.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed technique is
evaluated and compared against the conventional VQ approach
defined in (6) (and used in [27]). A two-fold performance
evaluation is presented here. Specifically, in Experiment I, we
evaluate the representation power of the rivals by means of
the achieved quantization error, namely the error between W
and its approximations defined in (6) and (7), respectively, for
a range of target accelerations. This experiment is performed
on the basis of individual-layer kernel approximations.

As expected, the less the per-layer quantization error, the
less the anticipated accuracy loss of the accelerated model.
Measuring this loss is the topic of Experiment II, where we
perform full-range acceleration for selected modern DNNs,
and compare the achieved accuracy of the accelerated models.
In this case, the acceleration is limited to conv layers which are
responsible for the vast majority of the DNN’s computational
complexity.

Our experiments are based on pre-trained versions of three
state-of-the-art DNNs for image classification, namely, VGG-
16 [7], SqueezeNet [11], and ResNet18 [15], using the training
and validation datasets of ILSVRC2012 [35], for fine-tuning
and accuracy evaluation purposes, respectively.

A. Experiment I. Quantization error in individual layers

In the first experiment, we evaluate the quantization error
of the proposed technique for a range of target accelera-
tions and compare the results against the conventional, k-
means-based, VQ technique. To this end, we approximate the
kernels of individual convolutional layers from the VGG16,
SqueezeNet, and ResNet18 networks, using (6) and (7), and
measure, in each case, the mean error between the original and
approximated weights. For the target acceleration ratios, the
number of representatives Kvq required by the VQ technique
was calculated via (11). Then, by setting the number of
DL representatives as Kdl = cKvq , c > 1, the dictionary
size Ldl was obtained so that (16) holds with equality. We
then calculated the quantization error versus the achieved
acceleration for various selections of the coefficient c and the
sparsity level α. The subspace dimension was set to N ′ = 8,
which is a typical value used in the relevant bibliography.

A representative instance of Experiment I involving three se-
lected conv layers from the used models, namely, (a) conv4−1
of VGG16 (512 kernels of size 3×3×256), (b) res4a-branch2b
of ResNet18 (256 kernels of size 3 × 3 × 256), and (c)
fire8-expand3x3 of SquezeNet (256 kernels of size 3×3×64),



is shown in Fig. 2 (top row). As shown in Fig. 2, (and will
become more apparent in the Experiment II), the proposed
technique clearly outperforms its rival with respect to quanti-
zation error, achieving a better approximation of the original
weights, for the same acceleration. Equivalently, this superior
performance is translated into a significant acceleration gain
for the same quantization error, as quantified by the respective
plots on the bottom row of Fig. 2.

B. Experiment II. Accuracy loss

In this experiment, we apply the rival techniques to the
three DNN models in a “full-model” acceleration scenario. It
involves accelerating multiple (or all) convolutional layers of
the original models and measuring the achieved classification
accuracy of the accelerated networks.

It is stressed here that, although full-range acceleration
depends heavily on the performance of the technique used
for the acceleration of each layer, it also involves experi-
mentation over the strategy used for accelerating the layers
and the involved fine-tuning (re-training) of the accelerated
model. Here, we follow a stage-wise acceleration approach (as
proposed in [27]) with each stage involving accelerating (and
fixing) one or more layers of the network, and subsequently,
fine-tuning (i.e., re-training) the remaining original layers. The
starting point for each stage is the accelerated and fine-tuned
version of the previous stage. The process begins with the
original network, and it is repeated until all target layers are
accelerated. For fine-tuning and performance assessment we
use the training and validation datasets, respectively, from
ILSVRC2012. Since, in each stage, only a small fraction of
the network is affected and in order to expedite the process,
we divided the initial training dataset into smaller subsets and
used these smaller sets for fine-tuning purposes.

a) Accelerating VGG16: VGG16 consists of 13 3 × 3
convolutional and 3 fully-connected (fc) layers and it is (by
far) the most computationally intensive network of the three
used in our experiments. Of the total 15.5×109 MACs/MULs
required for inference, over 99% are consumed by the conv
layers, meaning that the acceleration of the conv layers is
practically equivalent to the acceleration of the entire network.
The conv layers of VGG16 are organized in 5 groups of
consecutive conv layers, which is why we accelerate VGG16
in 5 stages, with the i-th group being accelerated at stage i. The
stage-by-stage results of our VGG16 acceleration experiment,
using the procedure describe in the previous paragraph for
three different acceleration ratios, namely ρ = 20, ρ = 30,
and ρ = 40, are shown in the top row of Fig. 3.

b) Accelerating ResNet18: ResNet18 is based on the
concept of residual learning and follows the architecture of
other bigger ResNet variants (e.g. ResNet34, ResNet50, etc.).
Its building block comprises of two consecutive 3 × 3 conv
layers, with the block’s output being summed to its input using
a “bypass” connection (hence, the block is required to only
learn the residual representation). ResNet18 consists of 8 such
blocks (plus an input conv layer and an fc layer), that, similarly
to the VGG16 case, are responsible for roughly 99% of the

total 1.8× 109 MACs/MULs required by the network. In our
experiments with ResNet18 we accelerated its building blocks
in a one-block-per-stage fashion leading to 8 total acceleration
stages. The acceleration results using ratios ρ = 10, ρ = 20,
and ρ = 30, are shown in the middle row of Fig. 3.

c) Accelerating SqueezeNet: SqueezeNet is a fully con-
volutional CNN that employs a special architecture managing
to drastically reduce its size while still remaining within the
state-of-the-art performance territory. Its building block is the
“fire” module that consists of a “squeeze” 1 × 1 conv layer
with the purpose of reducing the number of input channels,
followed by 1×1 and 3×3 “expand” conv layers that are con-
nected in parallel to the “squeezed” output. SqueezeNet con-
sists of 8 such modules, connected in series. Since SqueezeNet
constitutes an already “streamlined” network, in our accelera-
tion experiments we followed a moderate acceleration strategy
only targeting the 3×3 “expand” layers that are responsible for
roughly 53% of the total 3.9× 108 MACs/MULs required by
the network. Acceleration was performed in a one-module-per-
stage fashion for a total of 8 acceleration stages. The results for
acceleration ratios ρ = 10, ρ = 15, and ρ = 20, corresponding
to a total acceleration of the network by 91%, 98%, and 101%,
respectively, are shown in the bottom row of Fig. 3.

As a general comment regarding the result presented in
Fig. 3, it could be stated that the “before fine-tuning” error
values (shown in bars) at each stage, reveal the sensitivity
of the network with respect to accelerating/approximating
the kernels of the layers involved at that particular stage,
but also, the performance of the technique used to achieve
the acceleration. As such, it is evident by the shown plots,
that the proposed technique achieves a universally superior
performance compared to its rival.

On the other hand, the corresponding “after fine-tuning”
error values reflect the capacity of the remaining (original)
layers to “adapt” to the newly accelerated part. Here we see
that, by offering a better starting point to the fine-tuning
process, the proposed technique still manages to outperform
its rival by a safe margin in all cases, although, as it is to be
expected, fine-tuning compresses the difference between the
compared techniques to a great extent.

In summary, both the comparative analysis of the results
shown in Fig. 3, and also, the final Top5 error figures
achieved by the accelerated networks, reveal a very promising
performance by the proposed technique, whose application
results in significantly accelerated CNNs, with limited loss
of their classification power. It should be finally noted that the
shown results could be further improved by following a more
targeted acceleration strategy (e.g. experimentation over the
acceleration sequence, the acceleration ratio per layer, using a
more extensive fine-tuning process, etc.), which acts as further
confirmation of our conclusion.

VI. CONCLUSIONS

A new clustering-based weight-approximation technique for
the acceleration of DNNs was proposed in this paper. The
technique exploits the particularities of the problem at hand
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Fig. 2: Mean quantization error (top row) and acceleration gain (bottom row) of DL vs VQ techniques as a function of the
acceleration ratio for layers: (a) layer conv4−1 of VGG16, (b) layer res4a-branch2b of ResNet18, and (c) layer fire8-expand3x3
of SquezeNet. In all cases, the subspace dimension was N ′ = 8.

in order to increase the number of used centroids for the
same target acceleration, as compared to the conventional k-
means technique. This is achieved using a Dictionary Learning
framework, by imposing a special structure to the centroids
that reduces the overall computational complexity of the
accelerated layer. The superior performance of the technique
was validated via a number of experiments on three well-
known state-of-the-art pre-trained DNN models.
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