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ABSTRACT 
Robots destined to tasks like teaching or caregiving have to build 
a long-lasting social rapport with their human partners. This 
requires, from the robot side, to be capable of assessing whether 
the partner is trustworthy.  To this aim a robot should be able to 
assess whether someone is lying or not, while preserving the 
pleasantness of the social interaction. We present an approach to 
promptly detect lies based on the pupil dilation, as intrinsic 
marker of the lie-associated cognitive load that can be applied in 
an ecological human-robot interaction, autonomously led by a 
robot. We demonstrated the validity of the approach with an 
experiment, in which the iCub humanoid robot engages the 
human partner by playing the role of a magician in a card game 
and detects in real-time the partner deceptive behavior. On top of 
that, we show how the robot can leverage on the gained 
knowledge about the deceptive behavior of each human partner, 
to better detect subsequent lies of that individual. Also, we explore 
whether machine learning models could improve lie detection 
performances for both known individuals (within-participants) 
over multiple interaction with the same partner, and with novel 
partners (between-participant). The proposed setup, interaction 
and models enable iCub to understand when its partners are lying, 
which is a fundamental skill for evaluating their trustworthiness 
and hence improving social human-robot interaction. 

1 Introduction 

Trust is a fundamental component of social interaction. For an 
individual, it is crucial to gain the partners’ trust and, at the same 
time, to assess their trustworthiness. One of the main elements 
normally adopted to evaluate whether someone should be trusted 
or not is the veridicality of their claims; since, the occurrence of 
lies naturally undermines the trust given to a partner [1], [2].  
Being able to recognize when someone is lying to us plays an 
important role in shaping our trust toward them and the entire 
social rapport. 

If robots are meant to become autonomous agents active in our 
society, they should consider the relevance of mutual trust with 

their human partners. Recently, researchers and social media 
raised public awareness on how much artificial intelligence and 
robots can be trusted [3]. On the other hand, it will be necessary 
also for the social robot to evaluate how much the human partner 
is trustworthy and consistently adapt its behavior. Several 
Human-Robot Interaction (HRI) studies explored the factors that 
influence humans’ trust toward robots. For example, robots’ shape 
and performances can affect trust and its development [4]–[6]. 
Additionally, robot’s transparency [7], [8], behavior explanation 
[9] and perceived reliability [10]–[13] have been shown to affect 
trust. To measure trust in human-robot collaboration different 
scale metrics have been developed  [14]–[16]. However, little 
research has focused on the opposite scenario: how a robot should 
assess human partner’s trustworthiness. Vinanzi et al. [17] and 
Patacchiola et al. [18] worked on a developmental cognitive 
architecture based on the Theory of Mind. Their architecture 
exploits episodic memory to feed a Bayesian model of trust, 
making the iCub and Pepper humanoid robots able to decide 
whether to trust or not the human partners. Importantly, in these 
models, trust is assessed based on whether the human has 
provided a veridical or a false indication to the robot, but this 
information is not dynamically updated in further interactions. 
Hence, the ability to detect lies represents for a robot a crucial skill 
to evaluate whether its partner should be trusted. Indeed, 
detecting lies has been proved to be an effective way to evaluate 
partner’s trustworthiness in a social interaction [1]. In the context 
of human robot interaction, a robot capable of detecting lies, could 
use it as a quantitative measure to understand and predict the 
human partners’ behaviors.  

Lie detection has been well explored in the literature. De Paulo et 
al. [19] and Honts et al. [20] showed how lying can be related to 
an increment of cognitive load with respect to truth telling. This 
cognitive effort is due to the creation and maintenance of a 
credible and coherent story [21]. Therefore, traditional methods 
of lie detection involve the monitoring of physiological metrics 
like skin conductance, respiration rate, heartbeat, or blood 
pressure, all reflecting variations of cognitive load and stress. The 
polygraph, one of the most used lie detection devices, relies on the 
aforementioned metrics reaching an accuracy between 81% and 
91% [22] (but see [20] about the possibility of bypassing the 
measure). Other lie detection methods rely on fMRI images [23], 
skin temperature variations [24], micro-expressions [25], 
photoplethysmography [26] or acoustic prosody [27]. Most of 
these methods (i) are invasive or require cumbersome devices, not 
easily portable to everyday life scenarios; (ii) are expensive; (iii) 
or require experts to evaluate the measures. These characteristics 
make these approaches not suitable for porting them to robotic 
platforms. 
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Figure 1: (Left) Participant describing a card to iCub, while wearing the Tobii Pro Glasses 2 eye tracker (Logitech Brio 4k 
webcam point of view); (Center) Point of view of the participant during the interaction collected through the Tobii glasses; 
(Right) Examples of Dixit Journey gaming cards (authored by Jean-Louis Roubira, designed by Xavier Collette and published 
by Libellud). 

Recent findings [28]–[33] proved how pupillometry 
measurements [34] and, in particular, Task Evoked Pupillary 
Responses (TEPRs) [35], can be used to evaluate the task-evoked 
cognitive load. Beatty et al. [35] identified mean pupil dilation, 
peak dilation and latency to peak as useful task-evoked pupillary 
responses. Dionisio et al. [36] studied the task-evoked pupil 
dilation related to lie telling. They asked students to lie or tell the 
truth, answering questions about episodic memory. They reported 
a significant greater pupil dilation during lie production with 
respect to truth telling. Gonzalez-Billandon et al. [37] and Aroyo 
et al. [38] found that participants had a higher mean pupil dilation 
when lying with respect to telling the truth both in human-human 
and human-robot interaction. Both, mobile head mounted [39], 
[40], and remote eye tracker [41], [42] devices have been used as 
minimally invasive methods to measure pupillometric features, 
more appropriate for real-world scenarios. Recent research 
showed the possibility to measure TEPRs from RGB cameras, 
suitable for robotic platforms, making pupillometry a promising 
candidate to detect lies in real-life human-robot interactions [43]–
[45].  

Beyond minimizing the invasiveness of the sensors used, the 
social robot should perform this evaluation while preserving the 
pleasantness of the interaction. This is particularly important for 
humanoid robots that aim to act as teachers, caregivers, or just 
friendly companions. Conversely, state-of-the-art setups and 
scenarios for lie detection are long, strict, and interrogatory-like 
[26], [27], [37].  

In this paper, we propose a method to detect lies in real-time via 
pupillometry-driven cognitive load assessment, by learning how 
each individual partners’ pupil dilation changes while lying.  We 
validate the approach in a quick and entertaining interaction 
autonomously led by the iCub humanoid robot. The iCub asked 
participants to describe 12 gaming cards and to lie about a few of 

them. iCub autonomously processed in real-time participants’ 
pupil dilation to detect the deceptive card description based on 
our proposed method. During a first phase of the game 
(Calibration Phase) participants had to lie about one predefined 
card among six. Afterwards, participants could freely decide 
whether to lie or not for each of the next 6 cards in the game 
(Testing Phase). In this second phase, iCub exploited the 
knowledge about pupil dilation acquired in the Calibration phase 
to detect the player’s lies, without knowing in advance the 
number of true or false descriptions. The robot obtained an 
average accuracy of 70.8%, during the game, among the two 
phases, where the number of lies was either fixed (1 over 6 cards, 
Calibration) or it was arbitrarily chosen by each participant 
(Testing). To improve the robustness of the approach, we designed 
novel classification methods to adapt iCub’s knowledge over 
multiple interactions with the same individual. Last, we propose 
an attempt to train a generic machine learning model, able to 
detect lies without any previous information about the specific 
human partner. 

In the following sections we will first describe the experimental 
procedure and the setup used to run the validation experiment 
(section 2), the collected measures (section 3) and the architecture 
enabling the robot to conduct the game and detect lies (section 4). 
Then, we describe the data preparation procedures and the 
datasets built with the collected data (section 5). Last, we will 
report the results of the experimental validation with naïve 
subjects and the results of machine learning methods aimed at 
improving within-subject detection and lie detection in presence 
of novel partners (section 6).  Results suggest that with the 
proposed interaction and lie detection models iCub could reliably 
assess when the human partners were lying. 

2 Methods 



 

To prove the effectiveness of our lie detection method, we 
performed an HRI experiment. The setup and a subset of the 
procedure have been previously described in [46].   

 

Figure 2: Card game experimental setup with iCub (left) and 
the participant (right) sitting on a table. The deployment 
area is the location where the remaining Dixit Cards after 
each drawing were placed. 

2.1 Setup and Materials 

The room was arranged to replicate an informal interaction 
scenario between a human and a robot (Figure 2). The participants 
sat in front of the iCub humanoid robot separated by a table 
covered with a black cloth. On the table, the experimenter placed: 
six green marks (95x70 mm); a deck of 84 cards from Dixit Journey 
card game with the back painted in blue; a keyboard; and a Tobii 
Pro Glasses 2 eye-tracker. On participants’ left there was a little 
drawer (deployment area); while on the right, a black curtain hid 
the experimenter from participants’ sight. Behind iCub, a 47 
inches television showed iCub's speech during the interaction (to 
prevent any speech misunderstanding). A Logitech Brio 4k 
webcam, fixed on the television, recorded the scene from iCub's 
point of view at a resolution of 1080p (Figure 1, left). 

The Dixit Journey card deck is composed by 84 cards (80x120 mm) 
with different toon-styled drawings meant to stimulate creative 
thinking [47] (Figure 1, right). Designing the card game, we tried 
to avoid any cue – other than the wearable eye-tracker – for the 
participants about the method used by iCub to detect their false 
card descriptions; in this sense, we avoided any machine-readable 
mark (i.e., QR codes on cards’ back) that iCub could use to 
recognize the cards. The Tobii Pro Glasses 2 eye tracker recorded 
participants’ pupillometric features at a frequency of 100 Hz and 
streamed in real-time the participants’ pupil dilations at a 
frequency of 10 Hz (Figure 1, center). The window blinders were 
closed, and the room was lit with artificial light to ensure a stable 
light condition for all the participants. 

The iCub humanoid robotic platform [48] played the role of a 
magician. iCub autonomously led the whole interaction thanks to 
the autonomous end-to-end (E2E) architecture in Figure 3 (see 
section 4). The experimenter monitored the scene through the 
iCub’s left eye ensuring the safety of the participants and the 
correct execution of the experiment. 

2.2 Procedure  

At least a day before the experimental session, the participants 
filled in a set of questionnaires meant to assess their personality 
(see Section 3). After signing the informed consent, the 
experimenter led the participants to the experimental room. They 
were asked to sit on the chair in front of iCub and informed that 
the robot would have played a game with them. Then, the 
experimenter hid himself behind the black curtain and started the 
experiment. 

The human-robot interaction was composed of two phases, 
Calibration Phase and Testing Phase, both led autonomously by 
iCub. 

2.4.1 Calibration Phase. As the game started, iCub asked the 
participants to shuffle the cards deck, extract six cards without 
looking at them and put the deck on the deployment area. Then, 
iCub asked them to draw out one of the cards (referred as secret 
card) and memorize it. Afterwards, iCub instructed the 
participants to look at all the cards, one by one, shuffle them and 
put them facing down on the six green marks on the table. iCub 
explained that it was going to point each card one by one and they 
had to take the pointed card, look at it, describe it and then put it 
back facing down on the table. Then, iCub explained the game 
rules: “The trick is this: if the card you take is your secret card, you 
should describe it in a deceitful and creative way. Otherwise, describe 
just what you see”. Finally, iCub asked the participants to wear the 
Tobii Pro Glasses 2 eye tracker, take a deep breath and relax.  

iCub randomly pointed to each of the six cards, while listening to 
participants’ description, and acknowledging it with a short 
greeting sentence (e.g., “ok”, “I see”, etc.). After the last description, 
iCub guessed the participants’ secret card and asked them to put 
the six cards aside to validate the detection or show to iCub the 
real secret card to reject it. Participants’ confirmation is meant to 
select the correct secret card in case iCub fails to detect it. Before 
the beginning of the Testing Phase, the experimenter could 
manually override the detected secret card with the one presented 
by the participants, in case the robot failed the guess. Finally, iCub 
asked them to remove the six cards to start a new game. 

2.4.2 Testing Phase. As soon as the participants removed the six 
cards from the table, iCub asked to take the deck again and draw 
out six new cards. iCub told the participants to look at all the 
cards, one by one, then shuffle them and place them on the six 
green marks. Afterward, iCub instructed the participants that it 
was going to point to all the cards from right to left (with respect 
to participants’ point of view) and instructed them to handle the 
pointed card as in the first game. However, it added: “This time 
you can choose, for each card, whether to describe it in a creative and 
deceitful way, or to describe just what you see”. While the robot was 



 

 

 

 

explaining the rules, the participants kept wearing the Tobii Pro 
Glasses 2. 

For each card, iCub (i) pointed it, (ii) listened to participants’ 
description, (iii) acknowledged it with a short sentence, (iv) tried 
to classify the description as truthful or false and, (v) asked for a 
confirmation. The participants had to show the card they just 
described to reject iCub’s classification or do nothing to validate 
it. 

2.4.3 General Remarks. During the rule explanation of the two 
phases, iCub instructed the participants to press a button on the 
keyboard in order to move to the next task (i.e., after shuffling the 
cards deck, or after memorizing the secret card). No time limit was 
given to shuffle the card, to look at them, to memorize the secret 
card nor to describe them. iCub’s pointing has been designed to 
replicate a human-like gesture: first moving the gaze toward the 
target, then the arm, fingers, and torso with a biological inspired 
velocity profile. 

After the second game, the experimenter led the participants to 
the initial room and asked them to fill in a questionnaire meant to 
evaluate their task load and self-report their performance during 
the game (see Section 3). Finally, the experimenter deeply 
debriefed the participants and let them have the chance to ask 
questions about the experiment before receiving their monetary 
compensation. 

2.3 Participants  

39 participants (25 females, 14 males), with an average age of 28 
years (SD=8) and a broad educational background took part in the 
experiment. They signed an informed consent form approved by 
the ethical committee of the Regione Liguria (Italy) where it was 
stated that cameras and microphones could record their 
performance and agreed on the use of their data for scientific 
purposes. After the experiment, they received a monetary 
compensation of 10€. Although all participants completed the 
game, 5 were excluded from further analysis: 2 for technical 
issues, 2 because they did not follow the rules of the game. The 
last one was considered an outlier, as she concluded the game in 
38 minutes (a duration longer than 3SD plus the average game 
duration, which lasted 17 minutes). Hence, the final sample 
includes N=34 participants (22 females, 12 males).  

3 Measurements 

3.1 Pre-questionnaires  

Before the experiment, the participants filled in the following 
questionnaires: The Big Five personality traits (extroversion, 
agreeableness, conscientiousness, neuroticism, openness) [49]; 
the Brief Histrionic Personality Disorder (BHPD) [50]; and the 
Short Dark Triad (SD3, machiavellianism, narcissism, and 
psychopathy) [51]. 

3.2 Post-questionnaires  

After the experiment, the participants filled in the NASA-TLX [52] 
and a set of questions regarding: (i) the experienced fun, (ii) 
creative effort, (iii) strategies adopted in fabricating a deceitful 
and creative description during the game, (iv) previous experience 
about the Dixit Journey card game, (v) previous experience about 
improvisation and acting, and, (vi) habits on playing deception-
related games. 

3.3 Gaze Measurements  

From the full set of pupillometric features measured by the Tobii 
Pro Glasses 2 eye tracker, we collected and used only the pupil 
dilation, in millimeters, for right and left eyes. To avoid any impact 
on the informality of the social interaction, we avoided the eye 
tracker calibration phase; indeed, the calibration does not affect 
the pupil dilation measurement [53]. Pupil dilation data points are 
synchronized over the YARP robotic platform with the annotation 
events. 

 

Figure 3: Autonomous end-to-end architecture used in real-
time to make iCub able to lead the card game.  

4 Robot Architecture 

iCub autonomously leads the human-robot interaction thanks to 
the end-to-end architecture in Figure 3. An initial version of the 
architecture, designed to handle the Calibration Phase only, is 
described in [46]. With the Turn Detector iCub detects the 
beginning and end of each card description by tracking the 
number of green (marks) and blue (cards) blobs visible in the 
scene. This is also used to understand participants’ confirmations. 
The Tobii Streamer reads participants’ pupillometric features from 
the Tobii Pro Glasses 2 eye-tracker and streams and logs them in 
real-time over the YARP robotic platform [54]. The Game 
Controller implements the main game engine: (i) it controls iCub’s 
movements and speech; and (ii) it segments the start and end of 
each pointing, card description and phases, logging annotation 



 

events. The logged annotation events and pupil data points are 
synchronized over the YARP robotic platform [54], providing an 
autonomous annotation for future analysis. 

 

Figure 4: Mean pupil dilation during Calibration Phase (le) 
and Testing Phase (right) for participant A. Green circles are 
truthful card description; red squares are false ones. Bars 
represent standard errors. 

Finally, the Secret Card Detector and the Card Classifier enable 
iCub to identify participants’ lies during the game. iCub detects 
(Calibration Phase) and classifies (Testing Phase) players’ lies 
thanks to a specific Task Evoked Pupillary Response: the 
fabrication of a credible and consistent deceptive card description 
triggers an increase in players’ cognitive load [55], [56]; this 
increment reflects on a higher pupil dilation with respect to a 
truthful card description [19], [21], [57]. iCub aggregates 
participants’ eye pupil dilation data points, computing the mean 
pupil dilation during each card description and use them to detect 
players’ lies. We focused on right eye’s pupil dilation since both 
Tobii documentation [53] and previous results indicate that pupil 
dilation is not different between right and left eye [37]. The 
components implement two heuristic methods: 

Calibration Heuristic (Figure 4, le) During the Calibration Phase, 
iCub detects as secret card the one related to the highest mean 
pupil dilation among the six card descriptions. This approach has 
been described in [46]. 

Testing Heuristic (Figure 4, right) At the end of the Calibration 
Phase, iCub knows 6 mean pupil dilation data points: 1 related to 
the secret card, and 5 related to truthful cards. With them, it 
computes two reference scores: the true reference score is the 
average of the 5 mean pupil dilations of truthful cards; the false 
reference score is just the secret card mean pupil dilation. For each 
Testing Phase card description, the mean pupil dilation was 
computed and compared to the two reference scores. By taking the 
minimum absolute difference iCub could label the current 
description as fake or a true. 

 

Figure 5: Computational workflow to preprocess the 
collected data from Tobii Pro Glasses 2 eye-tracker. Two 
datasets are extracted. The difference depends on the 
applied baseline correction (single or per-card). 

5 Data Preparation 

From the pupil dilation data points collected in real-time we built 
two datasets following the computational workflow in Figure 5. 

5.1 Card Segmentation (Figure 5, top) 

The card trial annotation is autonomously performed by the Game 
Controller (Figure 4) by rising annotation events on the YARP 
robotic platform for the beginning and end of each pointing and 
card description. We segmented the pupil dilation time series into 
3 temporal intervals for each card trial: (i) robot's turn: iCub’s 
pointing gesture, from the moment iCub starts the pointing 
gesture till the participant takes the pointed card from the green 
mark; (ii) player's turn: a card description, from the moment the 
participant takes the card from the green mark, till they put it back 
on it; (iii) card trial: the whole interaction for a single card, from 
the moment iCub starts the pointing gesture till the participant 
puts the card back on the green mark. 

5.2 Data Preprocessing (Figure 5, center) 

We fitted and resampled the time series at 10 Hz to make it 
consistent with the real-time processing, then applied a median 
filter to remove the outliers and a rolling window mean filter to 
smooth the time series and infer any eventual missing data points. 
We then corrected each time series subtracting a baseline value 



 

 

 

 

for each participant [58]. In this reference system, a positive value 
represents a dilation, while a negative value represents a 
contraction with respect to the baseline. We corrected the time 
series with respect to two different baselines: (i) In the Single 
Baseline Correction, the baseline is computed as the average pupil 
dilation during the 5 seconds before the first pointing of the 
Calibration Phase and applied to all the cars of both phases; (ii) in 
the Per-card Baseline Correction, a specific baseline is computed for 
each card as the average pupil dilation during the 5 seconds before 
each pointing. 

5.3 Feature Extraction (Figure 5, bottom) 

Finally, we aggregated the time series of each temporal interval, 
and computed several features. For each player's turn, robot's turn, 
and card trial we computed the maximum, minimum, mean and 
standard deviation of the pupil dilation in millimeters, and the 
duration in seconds. Moreover, on the whole card trial we 
computed a set of 26 specific time series features using the python 
module Time Series Feature Extraction Library (TSFEL) [59]. In 
particular, the TSFEL features are: (i) Statistical Features: median, 
median absolute deviation, mean absolute deviation, kurtosis, 
skewness and variance; (ii) Temporal Features: absolute energy, 
area under the curve, autocorrelation, centroid, entropy, mean 
absolute difference, mean difference, median absolute difference, 
median difference, peak to peak distance, slope, total energy; (iii) 
Spectral Features: fundamental frequency, maximum frequency, 
median frequency, spectral centroid, spectral entropy, spectral 
kurtosis, spectral skewness, spectral slope. We considered the 
features for both eyes as separate data points to augment the 
datasets. This results in two different datasets: 

Single Baseline Dataset. This dataset includes the data points of 
both phases, replicating the data structure used in real-time. It is 
meant to explore an incremental learning over multiple 
interactions with the same individual. 

Per-card Baseline Dataset. This dataset, instead, includes only data 
from the Testing Phase; it is meant to train a generic machine 
learning model, independent from the specific interacting partner. 

Shapiro-Wilk and D’Agostino K-squared normality tests showed 
that some of the features of the datasets were not normally 
distributed. Therefore, we opted to use non-parametric tests for 
all the following statistical analyses. Additionally,  we decided to 
focus on data points from participants’ right eye (unless otherwise 
specified), since there is no difference between right and left eye 
pupillary features [53]. 

6 Results 

In this section we report the in-game and questionnaires results, 
along with the post-hoc analysis on the collected pupillometric 
data. In the post-hoc analysis, we mainly focus on the learning 

from the Calibration to the Testing Phase and on the second phase 
per-se; for a deeper analysis of the Calibration Phase see [46].  

6.1 In-game Results 

The interaction lasted on average 17 minutes (SD=5) from the 
beginning of iCub explaining the Calibration Phase’s rules till the 
final greeting of the Testing Phase.  

The Calibration Phase lasted on average 8 minutes (SD=3), during 
which, iCub successfully detected the players’ secret card with an 
accuracy of 88.2% (against a chance level of 16.6%, N=34). The 
Testing Phase lasted on average 8 minutes (SD=2). The participants 
were free to choose whether to lie or not, producing on average 
2.73 (SD=0.94, 45%) false descriptions among 6 cards. ICub 
successfully classified each card description as true or false with 
accuracy = 70.8%, precision = 73.6%, recall = 57% and F1 score = 
64.2% (N=34).  

Considering the results of the questionnaires, Table I summarizes 
the results of the Big Five personality traits [49], Brief Histrionic 
Personality Disorder [50] and Short Dark Triad [51] 
questionnaires, performed before the experiment. Average scores 
for the Big Five were Agreeableness: M=0.659, SD=0.113; 
Conscientiousness: M=0.481, SD=0.072; Neuroticism: M=0.387, 
SD=0.16; Openness to experiences: M=0.476, SD=0.07 and 
Extraversion: M=0.486, SD=0.061. Considering the Dark Triad, the 
scores were Psychopathy: M=0.191, SD=0.113; Machiavellianism: 
M=0.438, SD=0.129 and Narcissism: M=0.396, SD=0.15. For the 
Brief Histrionic Personality Disorder, the average score was 
M=0.481, SD=0.26. 

 Participants’ psychological profile 
Score % Big 5 

{C, A, N, O, E} 
Dark Triad 

{M, N, P} 
Histrionic 

0-20% {0, 0, 2, 0, 0} {2, 6, 15} 6 
20-40% {5, 1, 17, 4, 3} {8, 4, 13} 4 
40-60% {22, 6, 6, 24, 23} {18, 11, 1} 11 
60-80% {2, 21, 3, 1, 1} {0, 4, 0} 4 
80-100% {0, 1, 1, 0, 0} {1, 4, 0} 4 

Table I: Participants’ psychological profile from pre-
questionnaires. Big 5 (Conscientiousness, Agreeableness, 
Neuroticism, Openness to experience, Extraversion); Dark 
triad (Machiavellianism, Narcissism, Psychopathy); and 
Histrionic – higher score means higher effect. In brackets 
the number of participants per each percentage range. 

After the experiment, participants filled in the NASA-TLX 
questionnaire, rating on a 10-points Likert scale their effort on 
performing the task. On average, they reported a low task load 
(M=3.717, SD=1.041). Among the components, Mental Effort 
(M=5.41, SD=1.78), Fatigue (M=5.07, SD=2.14) and Performance 
(M=5.35, SD=2.32) are slightly higher than Temporal Effort 
(M=2.59, SD=1.72), Frustration (M=2.72, SD=1.83) and Physical 
Effort (M=1.21, SD=0.49). This is consistent with the requirements 



 

of the task. Also, we asked participants to self-report, on a 5-points 
Likert scale the effort put on fabricating creative and deceptive 
descriptions (Lie Effort: M=4.17, SD=0.71) and the experienced fun 
(Fun: M=4.59, SD=0.57).   

Then, we explored whether pupil dilation features were 
dependent on participants’ personality traits. We considered the 
Testing Phase data from the Per-card Baseline Dataset, to minimize 
the impact of card presentation order on pupil features, 
normalizing each card for its own baseline. We fit two linear 
regression models with the personality traits from the pre-
questionnaire as independent variables and, as dependent 
variables the difference between mean pupil dilation for false and 
true cards or the mean pupil dilation baseline. Results show that 
only Neuroticism correlates significantly with the mean pupil 
dilation baseline (t=2.492, p=0.021, Adj. R2=0.115). We also tested 
whether pupil features correlated with the average description 
duration, Fun, Lie Effort, task load or Mental Effort, but we did not 
find any significant correlation.  

6.3 Learning from a Brief Interaction  

To investigate in more detail the relationship between pupil 
dilation and lying observed during the game, we started analyzing 
the Single Baseline Dataset which resembles the data structure 
used in real-time.  

 

Figure 6: Average of mean pupil dilation during player’s 
turn for Calibration and Testing Phases, with standard 
errors of the mean. (* = p<0.05, ** = p<0.001). 

The Single Baseline Dataset presents a multilevel structure 
(multiple phases for the same participant, nested in card trials, 
nested in turns) with unbalanced card classes (one secret card 
among six (about 16.6%) in the Calibration Phase and on average 
45% of false cards in the Testing Phase). Since the real-time game 
was based on participants’ mean pupil dilation during the player's 
turn, we decided to focus on such temporal intervals.  

We fitted a mixed effects model for the player turns with mean 
pupil dilation as the outcome variable. As fixed effects we entered 
“card label” (two levels: true, false), “phase” (two levels: 
calibration, testing) and their interaction into the model. As 
random effect we had intercept for participants. We set the 
reference level on the Testing Phase and false card label.  Results 
show a highly significant effect of card label (B=-0.223, t=-8.885, 
p<0.0001) revealing a higher mean pupil dilation for the false card 
descriptions with respect to the truthful ones. We also found a 
significant effect of phase (B=0.104, t=2.428, p=0.016), with a 
significantly lower mean pupil dilation in the Testing Phase, and 
no significance of the interaction between the two factors (B=-
0.052, t=-1.023, p=0.307).  

As an exploratory analysis, we fit another mixed effects model on 
the robot's turn, with the same abovementioned structure. Results 
show no effect on the card label (B=-0.035, t=-1.373, p=0.171), but 
a highly significant effect on the phase (B=0.124, t=3.490, 
p=0.0005) confirming a lower mean pupil dilation in the Testing 
Phase with respect to the Calibration one also for this turn. Finally, 
we found no effect of the interaction of card label and phase 
factors (B=-0.014, t=-0.331, p=0.741). 

6.3.1 Incremental Testing Heuristic. Even if the Testing Heuristic 
demonstrated a quite good accuracy – humans perform near 
chance on detecting lies [60] – it has a low recall score (recall = 
57%, accuracy = 70.8%, precision = 73.6%, N=34), that is it 
recognizes only a relatively low proportion of the false statements 
made by the participants. 

Figure 7 provides two examples of correct (left graph) and wrong 
(right graph) classifications. The two panels show the mean pupil 
dilations of participant A (left graph) and participant B (right 
graph) as processed by the Testing Heuristic. In each graph, the 
two data points on the left represent the two reference scores: the 
red square is the mean pupil dilation for the secret card, while the 
green circle is the average of the mean pupil dilations for the 
truthful cards. On the right there are the mean pupil dilation data 
points for each card of the Testing Phase. For participant A, pupil 
dilations for false and true descriptions remain consistent with the 
average values measured during the previous phase and the 
classification is always successful. Conversely, all the Testing 
Phase mean pupil dilations of participant B (right graph) fall in the 
range of the true reference score. Hence all the false card 
descriptions have been misclassified as false positives (red circles).  

The observed errors are determined by two assumption on which 
the heuristic is based: (i) the difference in pupil dilation between 
false and true sentences remains almost the same between the two 
phases; and (ii) participants’ pupil dilation remains almost stable 
between the two phases. The first assumption is confirmed by the 
non-significant difference in the interaction of “phase” and “card 
labels” in both turns. However, the statistical analysis showed that 
participants’ pupil dilation is on average lower during the Testing 
Phase. 

  



   

 

   

 

 

Figure 7: (Left) Mean pupil dilation data points as seen by the Testing Heuristic for participant A (left) and B (right). Color 
represents the real class (green = true, red = false); shape represents the predicted class (circle = true, square = false); bars 
represent standard deviation. 

To compensate for this effect and increase the robustness of the 
heuristic, we explored the possibility to incrementally adapt the 
reference scores for truthful and false card description. After each 
card classification, the new card value is aggregated with the 
reference scores. This way iCub incrementally learns how the 
human partner lies and tells the truth, improving the classification 
performances trial by trial. We simulated the Testing Heuristic 
based on mean pupil dilation during the player's turn, as in the 
real-time game, but including the incremental learning. For each 
Testing Phase card trial, both the reference scores are updated 
computing the mean between each score and the novel mean pupil 
dilation data point. The heuristic performance increases to 
accuracy = 76.7%, precision = 76.1%, recall = 73.7% and F1 score = 
75.6%. 

Then, we simulated the Testing Heuristic performing a grid search 
on several parameters: (i) all the possible combinations of the 
available features (limited to a maximum of 3 features considered 
at the same time, see section 5.3 for the full list); (ii) methods to 
compute the true reference score (mean, median, minimum); (iii) 
methods to update the reference scores (mean, difference, quadratic 
error); (iv) whether to update both scores or just the one of the 
correct class; (v) whether to update the reference scores only if the 
card trial is misclassified. Since we assume that for a lie detection 
system it is preferable to detect a greater amount of true negative 
(i.e., spot a larger amount of lies) even at the expenses of having a 
few false positives, we prioritized the recall score. The best 
heuristic has an accuracy = 78.7%, precision = 76%, recall = 80% 
and F1 score = 77.9%. It is based on both the mean and minimum 
pupil dilation during player's turn, which are compared by a 2D 
Euclidean distance with the reference scores; the true reference score 
is computed as the minimum among mean pupil dilations for the 
truthful cards descriptions during the Calibration Phase; both the 

reference scores are updated in any case, averaging each score with 
the new value. 

6.3.2 Random Forest classifier. Even if the new heuristic method 
performs better than the one exploited in real-time, it is still not 
generic and robust enough to describe the variability of 
participants’ pupil dilation between the two phases. Indeed, the 
Testing Heuristic is meant to adapt to each specific individual. We 
supposed that, by relaxing this constraint, it would be possible to 
compensate for the variability between the two phases. We 
trained a machine learning model able to learn from the 
Calibration Phase on the whole participants sample, and to exploit 
the gained knowledge on the Testing Phase. The classification 
problem is a binary classification defined by a couple [X, Y] where: 
X (42 x 1) is the vector of input behavioral features and Y ∈ [0: 
true; 1: false] is the vector of desired outputs. We defined a within-
participant split, considering the Calibration Phase data as training 
set and the Testing Phase data as validation and test (with a 
splitting ratio of 50:50). Calibration Phase data points have two 
main issues: (i) they are unbalanced (1 secret card among 6 cards); 
and (ii) the set is relatively small (6 cards, for 34 participants, 2 
eyes for participants, for a total of 408 data points). We considered 
features from both eyes to augment the dataset. Due to these 
limitations we selected a Random Forests algorithm [61]. This 
kind of model should not overfit when increasing the number of 
trees, even with relatively small datasets. Also, we tackled the 
unbalancing problem by oversampling the Calibration Phase data 
points with the synthetic minority oversampling technique 
(SMOTE) [62]. We did not oversample the Testing Phase data 
points validating and testing on realistic data. Even if not strictly 
required by the Random Forest algorithm, we applied a min max 
normalization [63] to all the features within the data points of 
each participant in both phases. The idea is that a value that is 
relevant for a participant could be not relevant for another. We 



 

performed a grid search validation, with fixed validation set, 
searching the best hyper-parameters and feature set for the 
random forest classifier. Due to the unbalanced dataset, we rely 
on the F1 score, precision, recall and AUROC score. The best 
random forest classifier trained on the full features set achieved 
an F1 score of 56.5%, a precision of 57.1%, a recall of55.9% and 
AUCROC score of 59.6%.  

6.3.3 Lying as an anomaly: one-class support vector machine.  
Given the low performance of the random forest classifier we 
changed approach and we considered the lie detection task as an 
anomaly detection problem.  In this frame, the model knows just 
the values associated to true descriptions and learns to consider 
as a lie what is not truthful. We trained a one-class support vector 
machine (SVM) anomaly detector on the Calibration Phase data 
points, validating and testing it on the Testing Phase data points.  
We considered as training set the truthful card description of the 
Calibration Phase and we carefully balanced Testing Phase data 
points, preserving the ratio between true and false card 
descriptions in the validation and test sets. We performed a grid 
search validation, with fixed validation set, searching the best 
hyper-parameters and feature set for the one-class SVM model. 
Due to the nature of the anomaly detection problem, we evaluate 
it based on precision, recall and F1 score. The best one-class SVM 
model achieved a F1 score of 67.7%, a precision of 60% and a recall 
of 77.8%. It is based on features from both the player’s turn 
(minimum, maximum and mean pupil dilation); and the whole 
card trial (minimum, maximum, mean, and median pupil dilation; 
total energy, absolute energy, and autocorrelation). 

6.4 Detecting lies from novel human partners  

After having analyzed how previous knowledge gained during an 
interaction, can be used to improve lie detection in a subsequent 
task, we explored the possibility of building a pupil-dilation based 
lie detector able to classify false card descriptions from novel 
human partners. This could be the first step toward a minimally 
invasive and ecological lie detector able to classify a generic 
sentence as true or false, without any previous interaction with 
the specific partner. In this sense, it is important to consider the 
card descriptions as independent as possible from the specific 
participant and the description order. Hence, we focused on the 
Per-card Baseline Dataset which includes only Testing Phase data 
points. In the Per-card Baseline Dataset, the baseline is computed 
as the average of the pupil dilation, for each eye separately, during 
the 5 seconds before each card trial. This baseline is subtracted to 
the pupil dilation time series of the relative card description (see 
Section 5.2). We considered only the data from the Testing Phase 
since the nature of the task – “This time, you can choose, for each 
card, if describe it in a deceitful and creative way, or describe what 
you see” makes each card description more similar to a generic and 
standalone lie.   

 

Figure 8: Average of mean pupil dilation during robot’s and 
player’s turns in the Testing Phase, with standard deviation. 
(** = p<0.001). 

First, we analyzed whether the use of a Per-card baseline 
determined substantial differences with respect to the descriptive 
and statistical analysis conducted with the single baseline. We 
fitted a mixed effects model with mean pupil dilation as the 
outcome variable. We considered “card label” (two levels: true, 
false) and “turn” (two levels: robot, player) and their interaction 
as fixed factors, and we had as random effect the intercept for 
participants. We set the reference level on the player's turn and 
false card label. Results show a highly significant effect on the 
card label (B=-0.234, t=-6.58, p<0.001), the turn (B=-0.321, t=-6.39, 
p<0.001) and their interaction (B=0.255, t=5.205, p<0.001). This 
pattern of results (Figure 8) is similar to that observed for the 
Testing phase in the analysis with the “same” baseline (cf. Figure 
6). 

We also analyzed whether the other features differed significantly 
between the true and false card descriptions. We computed the 
average of each feature for true and false cards and performed 
Wilcoxon signed-rank tests. Results show that also the minimum 
pupil dilation (Z=570.0, p<0.001) and the maximum pupil dilation 
(Z=530.0, p<0.001) during player’s turn were significantly 
different. Regarding the whole card trial, the mean pupil dilation 
(Z=555.0, p<0.001), the median pupil dilation (Z=561.0, p<0.001), 
the minimum pupil dilation (Z=542.0, p<0.001), the maximum 
pupil dilation (Z=500.0, p<0.001) and the slope (Z=550.0, p<0.001) 
were significantly different. Also, the total energy (Z=477.0, 
p=0.001), the absolute energy (Z=457.0, p=0.003), the 
autocorrelation (Z=458.0, p=0.003), and the area under the curve 
(Z=442.0, p=0.007) on the whole card trial were significantly 
different. Finally, we found no significance on robot’s turn 
features.  

6.4.1 Random Forest classifier.  To design a lie detector that could 
classify a card description as true or false with not prior 
knowledge of the participants, we started from the statistical 
findings: we selected a subset of the 42 available features, 
excluding the one related to the robot’s turn. The classification 
problem is a binary classification defined by a couple [X, Y] where: 
X (37 x 1) is the vector of input behavioral features and Y ∈ [0: 



 

 

 

 

true; 1: false] is the vector of desired outputs. Considering data 
points from both participants’ eyes, we split Testing Phase data 
between-participants. We considered 25 randomly selected 
participants (75%) as training and validation set and the remaining 
as test set. We did not apply any within-participant normalization 
of the features. We ran a 4-fold grid search cross validation 
looking for the best values of the hyper-parameters for the 
classifier. Even if Testing Phase data points are more balanced (47% 
of false card description, against 16.6% during the Calibration 
Phase), we still embedded the SMOTE algorithm [62] in the cross 
validation. This way it is possible to oversample just the training 
set, avoiding any synthetized sample in the validation set. The 
best model achieves a precision, recall and F1 score of 71.1% and 
AUCROC score of 73.3%. 

7 Discussion 

In this study we endowed iCub with the capability to detect lies 
in the context of a natural game-like interaction, using pupil 
responses to detect cognitive load associated to lying.  Games are 
known to provide ecological assessments, preserving the 
relationship between the interacting partners [6], [64]–[66]. Also 
in the context of HRI, games have been successfully exploited to 
perform diverse types of measurements, even related to cognitive 
load assessment [40], [67]–[69]. In the current work, the game is 
a perfect scenario to demonstrate that our lie detection method 
based on a heuristic function is quick, interactive and does not 
depend on invasive measures. The game results also provide 
evidence of the feasibility of our approach, with an overall 
accuracy of 70.8% (F1 score of 64.2%) during the Testing Phase, 
when basing the lie detection on mean pupil dilation alone. We 
also show that such accuracy can increase up to 78.7% (F1 score of 
77.9%) by enabling an iterative adaptation to each individual 
partner and by leveraging on a combination of different pupil-
related features. The effect on which the lie detection heuristic 
was based, i.e., the difference in pupil dilation during false or true 
card descriptions, was relatively robust and did not depend on 
participants’ personality traits, nor on the characteristics of the 
game (e.g., the experienced fun or the description duration), 

Moreover, we explored the possibility to extend the lie detection 
(i) over multiple interactions with the same individual and (ii) 
with novel partners. First, we trained a random forest classifier 
splitting within-subject over the two phases. However, the model 
did not perform better than the heuristic (F1 score = 56.5%). We 
assume that this depends on the unimodality of the features, the 
small number of data points and the strong reliance on 
synthesized data on the training set. We expect that a machine 
learning model trained on more real data would be more robust 
and generic with respect to a real-world human-robot interaction. 
We try to overcome these issues by tackling the problem as an 
anomaly detection: we trained a one-class SVM anomaly detector 
on the truthful examples of the Calibration Phase and tested on 
the whole Testing Phase (F1 score = 67.7%). Needing only truthful 
examples makes the models independent from collecting lying 

examples. This could facilitate the learning, considering, for 
instance, a humanoid robot that wants to improve the lie detection 
model online in a supervised way. Finally, thinking about a 
generic lie detection system, we trained a random forest classifier 
(F1 score = 71.7%) between-subject to classify false card 
descriptions from novel individuals. The main difference between 
the heuristic methods and the machine learning models is in that, 
the heuristics’ knowledge is limited to a single individual. Hence, 
even if the machine models’ performances are worse than the 
heuristic methods’ ones, the formers should be more robust 
against unexpected behaviors from the participants. Additionally, 
they offer features that ease their portability on a real-world 
human-robot interaction i.e., the need of truthful examples only 
for the one-class SVM model or the ability to classify lies without 
any previous interaction for the last random forest classifier. 

The proposed models are light and independent from any network 
connections; this makes them suitable to be implemented with 
extreme simplicity in the context of HRI and avoiding untreatable 
computation demand. The other advantage of the presented 
contribution is that the robot can autonomously address all the 
stages of the interaction keeping the human partner engaged and 
assessing deceptive behavior in real-time. At the current 
development stage, the only potential intervention is required if 
the robot fails to detect the secret card at the end of the Calibration 
Phase. However, also this intervention could be made 
autonomously by the robot: after iCub’s detection, the 
participants have to show the correct secret card in order to reject 
it; iCub could detect the correct card position, thanks to the HSV 
(Hue, Saturation, Value) color threshold of cards and marks, and 
hence self-learn the correct false reference score. 

The current implementation relies on the players’ pupil dilation 
measured with a head mounted eye-tracker, such as the Tobii Pro 
Glasses 2. This device tends to be dependent on the environmental 
light condition and could impact the naturalness of the human-
robot interaction. We tried to limit the latter factor by removing 
the calibration step (not needed to measure participants’ pupil 
dilation). However, skipping the calibration, we could not use the 
other features from the eye-tracker (e.g., gaze orientation). The 
ideal solution would be to measure a full set of pupillometric 
features from the RGB cameras embedded on the robotic platform. 
Recent findings suggest that this approach could be feasible [43]–
[45], [70]; hence, we look forward to removing this limitation, 
making the system completely non-intrusive.  

The analysis of pupil dilation revealed that 38% of the participants 
(N=13 out of 34) presented a lower pupil dilation, during the 
second phase with respect to the first one. We speculate that this 
is associated to a reduction in cognitive load and that this effect 
depends on several factors that contribute to making the Testing 
Phase less stressful. First, in this phase participants do not need to 
remember the secret card and can freely choose how to play the 
game. As a result, there is no need to prepare in advance the 
deceptive and creative card description. Moreover, participants 
are also more used to play the game, even if there are small 



 

differences, and they are more aware of their role and iCub’s 
behavior and capabilities. Additionally, iCub provides a feedback 
after each card description, eliminating the need to wait for the 
phase completion to know if the lie had been discovered or not. 
All these factors could have contributed to decrease of 
participants' cognitive load. However overall, the interaction has 
been judged as entertaining and not too cognitively demanding in 
the questionnaires, suggesting that also the Calibration phase was 
not too challenging for the participants. 

We designed the human-robot interaction to validate our lie 
detection method in an informal interactive scenario. Since the 
game is based on 84 different cards, with complex and diverse 
drawings, we speculate that the results we obtain cannot be 
explained by artifacts on pupil dilation based on the nature of the 
cards (e.g., different colors, or emotions in the cards’ pictures). 
Hence, we think our approach is modular and generic enough to 
be ported to different application fields. For instance, in an elderly 
caregiving scenario, the cards could be pills bottles a patient has 
to take; the robot could ask the patient if he took the medication, 
detecting a lie from the patient. Also, the modularity of the end-
to-end architecture makes it easy to replace iCub with other 
robotic platforms, developing a consistent way to present the 
items based on the application context. 

By detecting lies a humanoid robot could evaluate whether the 
interacting partner is trustworthy or not. Furthermore, the robot 
could adapt its social behavior over multiple interactions based on 
this evaluation. However, the system is not perfectly accurate; 
hence, how the robot should perform its judgment and adaptation 
should be carefully managed to minimize the impact on the 
partners’ trust toward the humanoid. For instance, in the 
abovementioned elderly caregiving case, if a caregiver robot 
detected patient’s lies several times it might need to report the 
patient’s behavior to the doctor along with its confidence about 
the performed measure, rather than accusing the patient to be a 
liar. In the future, it would be necessary to explore the impact of a 
misclassification of both truthful and false sentences, on the 
interacting partners, along with the effect on their trust toward 
the robot.  

Besides the practical applications of detecting lies to assess 
trustworthiness, the proposed setup, interaction, and methods are 
based on measuring the task-evoked cognitive load related to 
creativity. The evaluation is performed in real-time, providing 
entertainment [46]. This is novel with respect to the long, strictly 
controlled, and tedious cognitive-load measurement tasks from 
the literature [37], [38], [41]. For instance, the system could be 
used to assess creative thinking abilities, before and after a 
creativity training session [71]. Also, one could use the system to 
monitor patients’ cognitive load during a training task in order to 
provide a correct support [72], adapt task difficulty [69], evaluate 
their progress [73] or schedule proper resting sessions [74]. 

8 Conclusion 

In the current manuscript we proposed novel methods to enable 
robots to detect whether the human partner is lying in a quick and 
entertaining interaction. We have shown that the detection works 

and that it is possible to improve it if the model can adapt to each 
partner during the interaction (F1 score=78%). The approach, 
however, could still succeed in a first encounter with a new 
participant (F1 score=71%). The ability to autonomously detect lies 
could be relevant for robots as a basis to build a model of its 
human partners’ trustworthiness.  The naturalness of the 
approach proposed here would allow to do so without impacting 
on the sociality of the human-robot interaction. Mutual trust is 
important to ensure healthy and stable social interactions and this 
should hold also for HRI. Hence, we believe that novel methods to 
understand human deceptive behavior will be more and more 
important in pursuing effective human-robot cooperation. 
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