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Abstract—Cooperative Real-time Localization is expected to
play a crucial role in various applications in the field of
Connected and Semi-Autonomous vehicles (CAVs), such as col-
lision avoidance/warning, cooperative adaptive cruise control,
etc. Future 5G wireless systems are expected to enable cost-
effective Vehicle-to-Everything (V2X) systems, allowing CAVs to
share the measured data with other entities of the network.
Typical measurement models usually deployed for this problem,
are absolute position from Global Positioning System (GPS),
relative distance to neighboring vehicles and relative angle or
azimuth angle, extracted from Light Detection and Ranging
(LIDAR) or Radio Detection and Ranging (RADAR) sensors.
In this paper, we provide a cooperative localization approach
that performs multi modal-fusion between the interconnected
vehicles, by representing a fleet of connected cars as an undirected
graph, encoding each vehicle position relative to its neighboring
vehicles. This method is based on the so called Laplacian
Processing, a Graph Signal Processing tool, that allows to capture
intrinsic geometry of the undirected graph of vehicles rather than
their absolute position on global coordinate system, significantly
outperforming current state of the art approaches, in terms
of localization mean square and maximum absolute error and
computational complexity.

Index Terms—Cooperative Localization, 5G, CAVs, Multi-
modal fusion

I. INTRODUCTION

Real-time Localization is one of the main pillars of Intel-
ligent Transportation Systems (ITS). Although, Global Navi-
gation Satellite Systems (GNSSs), e.g GPS, provide absolute
position information, their accuracy is limited to 10 m or
higher [8], [10], especially in harsh environments such as
urban canyons and tunnels. Since the desired localization
error in autonomous driving applications should be no greater
than 5 m in the worst case [7], efficient methods for vehicle
localization should be developed. In recent years, there is
a growing interest in Cooperative Localization (CL) as a
means to improve GPS accuracy. CL is based on the 5G
communication technology V2X, allowing the vehicles of a
Vehicular-Ad-hoc-NETwork (VANET) to share information
among them. Useful information could be absolute position
from GPS, relative distance or angle to neighboring vehicles
from LIDAR/RADAR. Thus, CL consists in fusing different
measurement modalities used in VANET, in order to improve
the position accuracy.

Recent approaches of CL on VANETs, include [2] where
an objective function, based on absolute positions, relative
distances and relative angles measurements of the vehicles,
is minimized by employing Alternating Direction Method of
Multipliers (ADMM). In [3], vehicles share absolute position,
relative position and motion state measurements and CL is
performed by a covariance intersection filter (CIF), integrating
those informations. The VANET of [4], fuses absolute position
and range measurements, using Extended Kalman Filter (EKF)
and CIF. In [5], a CL method in tunnels, that fuses V2X
measurements using particle filtering, is presented. In [6], a
CL method in urban canyons, that fuses absolute position
and range measurements using EKF is proposed. In [7],
CL is achieved by employing V2X measurements between
vehicles and infrastructure. In [8], GPS and vehicles dynamics
measurements are fed into a Kalman Filter (KF) and combined
with any information available about surrounding features such
as relative positions of people, traffic lights, etc. In [9], a
Bayesian approach that fuses GPS and inter-vehicle distance
measurements, is employed in order to perform CL. In [1], CL
approaches in Wireless Sensor Networks are distinguished to
Bayesian and Non-Bayesian, that rely on Maximum A Poste-
riori (MAP) estimation and Maximum Likelihood Estimation
(MLE), respectively. In [12], distributed solutions that fuse
received signal strength and angle of arrival measurements for
Internet-of-Things nodes localization are presented. Finally,
[10] and [11] provide an overview for cooperative and non-
cooperative localization techniques in VANETs.

The previously discussed methods, focus only on the pair-
wise measurements of the interconnected vehicles. To the best
of our knowledge, the method proposed here is the first one
which, apart from the measurement models, it also takes into
account the connectivity properties of the underlying graph
formed by the involved vehicles. Moreover, we integrate those
properties in our location estimation approach.

Our main contributions can be summarized as follows:
• A novel method for efficient CL in VANETs is pro-

posed. The method performs cooperative multi-modal
fusion exploiting the intrinsic geometric properties. This
is achieved by encoding each vehicle’s position, relative
to its neighboring vehicles.

• The new method can be implemented both in a central-



ized (assuming the existence of a fusion center) and local
(’distributed’) fashion. In the latter case, each vehicle
interacts directly only with its immediate neighborhood.

• As shown via extensive experiments, the new method
outperforms existing state-of-the-art method in terms of
both accuracy and execution time. The gain in execution
time is as high as 2 or 3 orders of magnitude. Note that the
method chosen for comparison is the one in [2] because
it exploits exactly the same types of measurements.

The rest of the paper is organized as follows: Section II
provides the background of traditional CL in VANETs; Section
III presents the proposed method while Section IV is dedicated
to the experimental setup and simulation results and Section
V concludes our work.

II. COOPERATIVE NETWORK LOCALIZATION

Consider a 2-D region where N connected vehicles collect
measurements while moving. An example of such a VANET,
is shown in Fig. 1. The location of the i-th vehicle at k-th

Fig. 1. Example of VANET

time instant is given by x(k)
i =

[
x
(k)
i y

(k)
i

]T
. Each vehicle

knows its absolute position from GPS and measures its relative
distances and angles with respect to neighboring vehicles using
LIDAR or RADAR. The true relative distance z(k)d,ij between
connected vehicles i and j is given by:

z
(k)
d,ij =

∥∥∥x(k)
j − x(k)

i

∥∥∥ (1)

, where ‖·‖ is the l2 norm. The true relative angle (shown in
Fig. 2) z(k)a,ij between neighboring and connected vehicles i
and j is given by:

z
(k)
a,ij = arctan

y
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i
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(k)
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(k)
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(2)

The acquired measurements are assumed to be described by
the following models:
• Relative Distance measurement:

z̃
(k)
d,ij = z

(k)
d,ij + w

(k)
d , w

(k)
d ∼ N (0, σ2

d) (3)

• Relative Angle measurement:

z̃
(k)
a,ij = z

(k)
a,ij + w(k)

a , w(k)
a ∼ N (0, σ2

a) (4)

• Absolute position measurement:

z̃
(k)
p,i = x

(k)
i +w(k)

p , w(k)
p ∼ N (0,Σp) (5)

Covariance matrix Σp is a diagonal matrix equal to
diag(σ2

x, σ
2
y).

Note that the noise introduced in the measurements is assumed
to be Gaussian, as commonly done in relevant literature [2],
[3], [4], [5].

A typical approach in CL is to formulate an objective cost
function C

(
x(k)

)
according to MLE [1], [2] and to minimize

it with respect to locations x(k)
i , in order to reduce the error

of absolute position measurement. The probability density
functions of the respective measurement models are defined
below:

P1 = P(z̃(k)d,ij |x
(k)
i ,x

(k)
j ) = N (z

(k)
d,ij , σ

2
d) (6)

P2 = P(z̃(k)a,ij |x
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(k)
j ) = N (z
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a,ij , σ

2
a) (7)

P3 = P(z̃(k)p,i |x
(k)
i ) =

1

2πσxσy
exp [−1

2
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The likelihood function of the measurement models can be
written as:

L
(
x(k)

)
=

∏
i∈N,j∈N(i)

P1

∏
i∈N,j∈N(i)

P2

∏
i∈N
P3 (9)

, where N(i) denotes the set of neighbors of the i-th vehicle. If
we take the logarithm of (9), then the objective cost function
(same as in [2] and similar to that of [1]) is given by:

C
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 (10)

For the minimization of (10), distributed ADMM [2], cooper-
ative gradient descent [1] or interior point methods (provided
by CVX software) can be applied.

III. SPARSE LAPLACIAN BASED LOCALIZATION

The method that will be derived in this Section is based on
a proper extension of the Laplacian Processing technique [13]
that was originally proposed for surface representation. The
motivation was that by modelling a VANET as an undirected
graph, one can exploit not only the different measurement
modalities between connected vehicles, but also the connec-
tivity properties of vehicles.



A. Centralized Scheme

Let G(k) = (V(k), E(k)) be an undirected graph, which
changes over time, where V(k) is the set of vertices and E(k)
the set of edges. Each vertex v(k)i is represented by absolute
cartesian coordinates as v(k)i =

[
x
(k)
i y

(k)
i

]
. The differential

coordinates δ(k)i for each vertex v(k)i are defined as:

δ
(k)
i = [δ

(k),(x)
i δ

(k),(y)
i ] = v

(k)
i − 1

d
(k)
i

∑
j∈N(i)

v
(k)
j

, where d
(k)
i is the number of neighbors of vertex v

(k)
i

and N(i) denotes the set of neighbors of v(k)i . Obviously,
δ(k),(x), δ(k),(y) ∈ RN×1. We also define the diagonal
degree matrix D(k) ∈ RN×N (with D(k)[i, i] = d

(k)
i and

D(k)[i, j] = 0, if i 6= j) and adjacency matrix A(k) ∈ RN×N
(with A(k)[i, j] = 1, if (i, j) ∈ E(k) and A(k)[i, j] = 0,
otherwise). Finally, the Laplacian matrix L(k) ∈ RN×N of
graph is equal to L(k) = D(k) − A(k). Relying on the
previously defined δ(k) coordinates, one can recover the true
absolute coordinates of the vertices, represented by the vectors
x(k) ∈ RN×1 and y(k) ∈ RN×1, by solving the systems:

L(k)x(k) =D(k)δ(k),(x), L(k)y(k) =D(k)δ(k),(y) (11)

Each vehicle, using LIDAR or RADAR, can also exploit,
the Azimuth Angle (shown in Fig. 2) measurement between
vehicle observer i and vehicle target j:

z̃
(k)
az,ij =


λπ + arctan

|x(k)
j −x

(k)
i |

|y(k)
j −y

(k)
i |

+ w
(k)
az , λ = 0, 1

λπ + arctan
|y(k)

j −y
(k)
i |

|x(k)
j −x

(k)
i |

+ w
(k)
az , λ = 1

2 ,
3
2

w
(k)
az ∼ N (0, σ2

az)

(12)

For example, in Fig. 2, λ = 1
2 . We can also notice from Fig. 2

Fig. 2. Angle measurements

that:

δ
(k),(x)
i =

1

d
(k)
i

∑
j∈N(i)

−z̃(k)d,ij sin z̃
(k)
az,ij (13)

δ
(k),(y)
i =

1

d
(k)
i

∑
j∈N(i)

−z̃(k)d,ij cos z̃
(k)
az,ij (14)

By considering the vehicles of the network as vertices of
a graph (example in Fig. 3) and the communication link
between the neighbors as its edges, we can create matrices

D(k),A(k),L(k). Moreover, each vehicle utilizing measure-
ment models (3) and (12), can define the δ(k)i coordinates
and sent them to a fusion center. The latter will try to solve
the systems of (11) and estimate the true locations of vehicles.
However, L(k) is a singular matrix, which implies that systems
in (11) are not solvable. Thus, we need to add into the systems
some anchor points c(k)i =

[
c
(k),(x)
i c

(k),(y)
i

]
with known

absolute coordinates. Furthermore, if we assume as anchors

Fig. 3. Example of VANET graph

the vertices v(k)1 and v(k)5 , then we define the extended L̃(k)

which is equal to:

L̃(k) =

 L(k)

e1
e5


, where ei ∈ R1×N is a vector with zeros and ei[i] = 1. If the
number of available anchors is α, then L̃(k) ∈ R(N+α)×N .
After adding the anchor points, the systems in (11) can be
re-written as:

L̃(k)x(k) = b(k),(x), b(k),(x) =
[
d
(k)
1 δ1

(k),(x) . . . c
(k),(x)
α

]T
(15)

L̃(k)y(k) = b(k),(y), b(k),(y) =
[
d
(k)
1 δ1

(k),(y) . . . c
(k),(y)
α

]T
(16)

The solution of (15) and (16) corresponds to the minimizing
of:

argmin
x(k)

∥∥∥L̃(k)x(k) − b(k),(x)
∥∥∥2 (17)

argmin
y(k)

∥∥∥L̃(k)y(k) − b(k),(y)
∥∥∥2 (18)

The required location vectors x(k) and y(k) can be computed
as follows:

x(k) =
(
L̃(k)T L̃(k)

)−1
L̃(k)T b(k),(x) (19)

y(k) =
(
L̃(k)T L̃(k)

)−1
L̃(k)T b(k),(y) (20)

In practice, as anchor points the noisy GPS positions
(measurement model (5)) of the vehicles of the network can be
used. This differentiate us with the majority of CL methods,
where the location of anchors is considered to be the true
and without any ambiguity. Furthermore, each δi(k) must be
multiplied with d(k)i , so as to remain in accordance with (11).



Moreover, due to the limited communication range of vehicles’
transceivers, matrix L̃(k) is actually sparse. Thus, one may use
a sparse least-squares solver [14], in order to solve (17) and
(18). We named our centralized CL approach Graph based
CL-Centralized Laplacian or GCL-CLapl. The main steps
of GCL-CLapl are summarized on Algorithm 1.

Algorithm 1: Graph based CL-Centralized Lapla-
cian or GCL-CLapl

Input: N, T
Output: x(k), y(k)

1 for k = 1, 2, . . . T do
2 δ(k),(x) = δ(k),(y) = b(k),(x) = b(k),(y) = 0;
3 Movement of vehicles;
4 L(k) = D(k) - A(k);
5 Create L̃(k) from L(k), D(k), A(k);
6 for i = 1, 2, . . . N do
7 δ

(k),(x)
i = 1

d
(k)
i

∑
j∈N(i)−z̃

(k)
d,ij sin z̃

(k)
az,ij ;

8 δ
(k),(y)
i = 1

d
(k)
i

∑
j∈N(i)−z̃

(k)
d,ij cos z̃

(k)
az,ij ;

9 end

10 b(k),(x) =
[
d
(k)
1 δ1

(k),(x) . . . c
(k),(x)
α

]T
;

11 b(k),(y) =
[
d
(k)
1 δ1

(k),(y) . . . c
(k),(y)
α

]T
;

12 x(k) =
(
L̃(k)T L̃(k)

)−1
L̃(k)T b(k),(x) ;

13 y(k) =
(
L̃(k)T L̃(k)

)−1
L̃(k)T b(k),(y) ;

14 end

B. Local Laplacian Implementation

In a local Laplacian processing approach, each vehicle
receives GPS measurements from neighboring vehicles and
solves a local Laplacian problem. This may offer some ad-
vantages as compared to the centralized technique, such as: a)
no need to define a central node, which is difficult in such a
varying topology of VANETs and b) robustness against failure
of the central node. In the local Laplacian implementation
presented here, instead of using the overall L̃(k), we use local
L̃

(k)
i ∈ R(N(i)+2)×(N(i)+1). For example, local L̃(k)

1 for the
vertex v(k)1 of Fig. 3 is equal to:

L̃
(k)
1 =


1 0 0
0 1 0
0 0 2
e3

 (21)

While, local vectors b(k),(x)1 ∈ R(N(1)+2)×1 and b(k),(y)1 ∈
R(N(1)+2)×1 are equal to:

b
(k),(x)
1 =

[
z̃
(k),(x)
p,2 z̃

(k),(x)
p,3 d

(k)
1 δ1

(k),(x) z̃
(k),(x)
p,1

]T
(22)

b
(k),(y)
1 =

[
z̃
(k),(y)
p,2 z̃

(k),(y)
p,3 d

(k)
1 δ1

(k),(y) z̃
(k),(y)
p,1

]T
(23)

In order to determine the location of v(k)1 , we must solve the
two systems:

L̃
(k)
1 x

(k)
N(1)

= b
(k),(x)
1 , L̃

(k)
1 y

(k)
N(1)

= b
(k),(y)
1 (24)

Vectors x(k)
N(1)

∈ R(N(1)+1)×1 and y(k)
N(1)

∈ R(N(1)+1)×1 can
be computed (based on (19) and (20)) as follows:

x
(k)
N(1)

=
(
L̃

(k)T
1 L̃

(k)
1

)−1
L̃

(k)T
1 b

(k),(x)
1

(25)

y
(k)
N(1)

=
(
L̃

(k)T
1 L̃

(k)
1

)−1
L̃

(k)T
1 b

(k),(y)
1

(26)

The estimated location of v(k)1 is the last element of vectors
x
(k)
N(1)

and y
(k)
N(1)

(according to the definition of b(k),(x)1 ,

b
(k),(y)
1 and L̃(k)

1 ). Thus, in Step 1 each vehicle exchanges
GPS positions with its neighbors, in Step 2 it computes its
own δ(k)i coordinate and in Step 3 estimates its location using
(25) and (26). The presented approach, offers resilience against
potential cyber-failures, while as it will be also shown in the
following section its accuracy is close enough to that of the
global centralized method. As a future step we plan to extend
this method to a fully distributed scheme, though the gain
margins seems to be limited, compared to the communication
and processing overheads that will be potentially required. We
named the local (or ’distributed’) approach of this Section
Graph based CL-Distributed Laplacian or GCL-DLapl.
GCL-DLapl is summarized on Algorithm 2. Note that the

Algorithm 2: Graph based CL-Distributed Lapla-
cian or GCL-DLapl
Input: N, T
Output: x(k)

Ni
, y(k)

Ni

1 for k = 1, 2, . . . T do
2 Movement of vehicles;
3 for i = 1, 2, . . . N do
4 Create L̃(k)

i using (21);
5 δ

(k),(x)
i = 1

d
(k)
i

∑
j∈N(i)−z̃

(k)
d,ij sin z̃

(k)
az,ij ;

6 δ
(k),(y)
i = 1

d
(k)
i

∑
j∈N(i)−z̃

(k)
d,ij cos z̃

(k)
az,ij ;

7 Define b(k),(x)i and b(k),(y)i from (22) and
(23);

8 x
(k)
N(i)

=
(
L̃

(k)T
i L̃

(k)
i

)−1
L̃

(k)T
i b

(k),(x)
i ;

9 y
(k)
N(i)

=
(
L̃

(k)T
i L̃

(k)
i

)−1
L̃

(k)T
i b

(k),(y)
i ;

10 Last element of x(k)
N(i)

and y(k)
N(i)

corresponds
to the estimated true location of i-th vehicle;

11 end
12 end

local scheme, could also be useful for the self-localization task,
where instead of cooperating vehicles, visually detected road
landmarks (e.g. poles, facades) [15] can be used. Distances and
angles between the landmark and the vehicle or the relative



position of landmark (determined by LIDAR or Camera),
could be exploited.

IV. SIMULATIONS

A. Experimental Setup

The conducted experiments were based on different levels
of noise of measurement models and different number of
vehicles. The initial locations of vehicles were determined
assuming uniform distribution for x and y coordinates. We
generate the trajectories of vehicles for 500 time instances
according to the vehicle motion model of [5]. For a reduced
computational load, active communication links are assumed
to exist between the vehicles, only if their distance is lower
than 20 m, and the number of connected neighbors is at most
6. Moreover, each vehicle always has a connected neighbor.
Based on the aforementioned assumptions we consider three
different approaches: i) the Traditional CL of (10) based
on MLE or TCL-MLE, ii) the proposed centralized scheme
GCL-CLapl, and iii) the proposed local (’distributed’) scheme
GCL-DLapl. We apply the three approaches each time in-
stant. We minimize (10) using a cooperative gradient descent
algorithm. Each time instant, we define σx = 3 m, σy =
2.5 m in order to have an average GPS error equal to 3.4
m and we calculate the Localization Mean Square and the
Maximum Absolute Error of GPS and the 3 aforementioned
methods. In Fig. 4, we present the Cumulative Distribution
Functions (CDFs) of Localization Maximum Absolute Errors
for 10 vehicles with (a) σd = 1 m, σa,az = 4◦ and (b) σd = 3
m, σa,az = 5◦. In Fig. 5, we present the CDFs of Localization
Mean Square Errors for (a) 5 and (b) 20 vehicles with σd = 1
m, σa,az = 4◦. The variance of noise of distances and angles
is based on [2].

B. Evaluation Study

The performances of the proposed method, as well as that
of the method in [2], depend on the error introduced in range
measurements. The variance of the range measurements error
is usually much smaller than the variance of the GPS error,
allowing an accurate estimation of the differential coordinates,
which seems to be a requirement for estimating accurately
the actual vehicles position. In Fig. 4, it is evident that there
is a significant reduction of GPS error. In Fig. 4-(a) the
reduction of error is 69% for GCL-CLapl, 60% for GCL-
DLapl and 60% for TCL-MLE. In Fig. 4-(b) the reduction
of error is 56% for GCL-CLapl, 53% for GCL-DLapl and
50% for TCL-MLE. GCL-CLapl outperforms TCL-MLE and
GCL-DLapl in Fig. 4-(a),-(b). The increased noise of range
measurements (Fig. 4-(b)) results in deteriorated performance
for all three methods. However, our schemes turn out to be
more robust to noise. This is apparently due to the fact that
the proposed method exploits not only the (noisy) inter-vehicle
measurements but it also integrates properly the connectivity
representation of VANET graph. Thus, the impact of noise
could be further reduced.

We also tested our method on different number of vehicles,
namely 5 and 20. In Fig. 5-(a), the reduction of error is 80% for

GCL-CLapl, 78% for GCL-DLapl and 71% for TCL-MLE.
In Fig. 5-(b), the reduction of error is 87% for GCL-CLapl,
81% for GCL-DLapl and 82% for TCL-MLE. Once again,
GCL-CLapl outperforms the 2 others methods. We observe
also that the performance of CL methods has increased when
the number of vehicles grows larger, i.e 20 vehicles. The
explanation is that as the number of vehicles increases, so
does the number of neighbors of each vehicle. Thus, vehicles
integrate greater amount of information during the location
estimation process, either with (10) or our method. We notice
also that the distributed scheme GCL-DLapl outperforms
TCL-MLE in Fig. 5-(a), while in Fig. 5-(b) have similar
performance.

We are planning in the future, to apply our schemes to
datasets extracted by CARLA autonomous driving simulator
[16] but also to investigate the benefits of integrating the
detected road landmarks to our location estimation approach.

C. Complexity

To show the computational complexity of the derived al-
gorithms we demonstrate below in TABLE I the average
execution time of 500 time instances of the 3 methods, for
10, 20 and 30 vehicles. It is obvious that GCL-CLapl and
GCL-DLapl are much more faster than TCL-MLE. More
specifically, GCL-CLapl and GCL-DLapl are 290 and 63,
453 and 63 and 338 and 66 times faster than TCL-MLE,
for 10, 20 and 30 vehicles, respectively. As a result, in cases
where GCL-DLapl and TCL-MLE have similar performance
(Fig. 4-(a), Fig. 5-(b)), GCL-DLapl has the advantage of the
lower complexity and execution time. Also, we observe that as
the number of vehicles increases, so does the execution time,
which is reasonable.

Parentheses into the cells of TABLE I refer to how many
times faster than TCL-MLE the 2 proposed schemes are.

TABLE I
AVERAGE EXECUTION TIME (×10−4sec)

CL methods 10 vehicles 20 vehicles 30 vehicles
GCL-CLapl 15 (290×) 19 (453×) 40 (338×)
GCL-DLapl 69 (63×) 137 (63×) 204 (66×)
TCL-MLE 4357 8617 13520

V. CONCLUSION

In this paper, we modeled the vehicles of a VANET as
vertices of an undirected graph and the communication links
between them as the edges of the graph. Each vehicle is
able to know its absolute position and to measure its relative
distance and angle or azimuth angle to its neighboring and
connected vehicles. Thus, by creating the overall or local
Laplacian matrix and defining the δ coordinates, Sparse Lapla-
cian Localization can significantly improve vehicles’ GPS
accuracy. Finally, we have proven that the centralized or local
(’distributed’) scheme of our method, outperforms the method
of [2], both in terms of accuracy and execution time. Regarding



(a) σd = 1 m, σa,az = 4◦ (b) σd = 3 m, σa,az = 5◦

Fig. 4. CDFs of Localization Maximum Absolute Error

(a) 5 vehicles (b) 20 vehicles

Fig. 5. CDFs of Localization Mean Square Error

the accuracy, the reduction of Mean Square and Maximum
Absolute Localization error can reach 87% and 69% with our
method (instead of 82% and 60% of [2]), while the gain in
execution time is 3 (GCL-CLapl) and 2 (GCL-DLapl) orders
of magnitude.
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