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Abstract—Cooperative autonomous driving in 5G and smart
cities environment is expected to further improve safety, security
and efficiency of transportation systems. To this end, involved
vehicles is imperative to have accurate knowledge of both their
own and neighboring vehicles’ location, a task known as coop-
erative awareness. In this paper, we have formulated two novel
distributed localization and tracking schemes, based on Gradient
Descent and Extended Kalman Filter algorithms, to cope with
erroneous GPS location. Sensor-rich vehicles exploit Vehicle-to-
Vehicle communications and a multitude of integrated sensors,
like LIDAR and Cameras, to generate and fuse heterogeneous
data. Each vehicle interacts only with its own connected neigh-
boring vehicles, formulating individual star topologies. Extensive
simulation studies using CARLA autonomous driving simulator,
verify the significant reduction of GPS error achieved by the
two methods in various experimental conditions. Distributed
tracking proves to be much superior than Gradient descent
algorithm, both in the case of self (58% reduction of GPS error)
and neighboring vehicles location estimation (38% reduction of
average GPS error).

Index Terms—Autonomous driving, Cooperative Awareness,
Localization and Tracking, 5G

I. INTRODUCTION

Connected and Automated Vehicles (CAVs) have the po-
tential to enhance road safety and the overall performance
of transportation sector, through the strict control of their
positions and motion planning actions [1]. Furthermore, they
are able to achieve increased scene analysis ability through the
exchange of information by using wireless Vehicle-to-Vehicle
or Infrastructure (V2V and V2I) communication technologies.
For a better perception of surrounding environment, the mem-
bers of a 5G Vehicular Ad Hoc Network (VANET) is required
to have exact and timely knowledge, apart from their own
position, of neighboring vehicles’ positions, too. This task
is known as cooperative awareness and is critical enough
for efficient path and motion planning of CAVs. Usually,
Localization module through the GPS sensor is responsible
for providing absolute position information. However, GPS
is less reliable in challenging urban environments [2]. To
obtain highly accurate positioning solutions, vehicles exploit
V2V and integrated sensors like LIDAR, Cameras, IMU, etc.,
to generate, exchange and fuse heterogeneous measurements.

This paper has received funding from the European Union’s H2020 research
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This promising technique is known as Cooperative Localiza-
tion (CL) and it has received increasing interest during the
past few years.

Distributed and Bayesian/tracking CL methods are usually
more attractive [3], since the processing and computations
are assigned to each individual vehicle (instead of an overall
fusion center) which in addition exploits different motion
models and patterns for location estimation. Maximum likeli-
hood estimator (MLE) [4] is also a popular choice for the
multi-modal fusion, due to its consistency and asymptotic
optimality and normality properties. Based on that estimator,
a distributed cooperative Gradient Descent (GD) algorithm
has been developed in [4], addressing only inter-nodes dis-
tance measurements. In [5], a set of detected non-cooperative
features, are used as common noisy reference points. Each
vehicle performs a Bayesian Gaussian Message Passing al-
gorithm, improving stand-alone GPS accuracy in different
urban conditions. Kalman and Extended Kalman Filter (KF
and EKF) are also popular tracking schemes [6], [7]. For
example, a distributed method has been developed in [7],
formulating a Bayesian approach which reduces the location
estimation uncertainty. A KF is employed, fusing absolute self
and neighbors’ GPS positions, motion sensors and V2V range
measurements. An approach similar to ours, is described in
[8]. Authors developed a distributed Bayesian CL method for
localizing vehicles in the presence of Non-Line-of-Sight range
measurements and malicious (caused by GPS cyber-attack)
vehicles. However, they focused primarily on ego vehicle
location estimation and abnormal vehicles detection rates,
rather than evaluating how accurate they estimate neighbors’
location. The notion of centralized and distributed Laplacian
localization, utilizing the graph Laplacian operator of the
VANET, was introduced in [9], [10]. Finally, since 5G and
V2V is crucial for (distributed) CL, [11] discusses these
communication aspects and provides a framework for realising
cooperative perception.

The aforementioned distributed CL methods were primarily
evaluated for the case of ego vehicle location estimation,
without considering the cooperative awareness side of lo-
calization. Furthermore, only a small number of involved
CAVs was taken into account. Therefore, this work focus
on proposing and formulating novel cooperative awareness



distributed algorithms, considering a large number of CAVs
with varying connectivity topologies. In summary, the main
contributions of this work are outlined as follows:
• Proposed distributed mutlimodal localization and tracking

methods are performed in the context of star topologies
of involved CAVs, in which each ego vehicle acts as its
center.

• Ego vehicle estimates both its own and connected neigh-
bors’ location.

• We formulate a distributed mutlimodal cooperative GD
algorithm based on MLE, which takes into account three
different pair-wise measurement models.

• We propose a novel distributed tracking EKF-based
scheme, which exploits the inter-vehicular measurements
of individual star topologies.

• We generate realistic random traffic trajectories using
CARLA autonomous driving simulator [12].

The rest of this paper is organized as follows: Section II
describes the system model and provides the cooperative
GD approach for CL; Section III formulates the distributed
tracking scheme for cooperative awareness task; Section IV
presents numerical results and evaluation, while Section V
concludes the paper.

II. COOPERATIVE LOCALIZATION VIA MAXIMUM
LIKELIHOOD ESTIMATION

In this Section, we formulate the system model for the
problem at hand. Afterwards, the proposed cooperative GD
algorithm for distributed CL of CAVs will be derived.

A. System Model

Consider the VANET of Fig. 1, with N collaborating CAVs.
Connection links imply V2V communication. Usually, a fixed
communication range rc (much lower than typical 200m of
V2V) is employed as in [5], for reduced computational load.
Vehicles exploit also a V2X communication protocol allowing
them to broadcast and receive the necessary information in dis-
tinct time slots. The absolute position of i-th vehicle at time in-

stant t is given by the vector z(t)p,i =
[
x
(t)
i y

(t)
i

]T
∈ R2, while

distance and angle between connected vehicles i and j are

equal to: z(t)d,ij =
∥∥∥z(t)p,i − z(t)p,j∥∥∥ and z(t)a,ij = arctan

y
(t)
j −y

(t)
i

x
(t)
j −x

(t)
i

.

Usually, integrated sensors like GPS, LIDAR and Cameras can
provide those multi-modal measurements. Thus, the following
measurement models are defined for each vehicle, assuming
also additive white Gaussian noise [3], with G(µ,Σ) as the
Gaussian distribution and µ,Σ its mean and covariance:
• Absolute position measurement (from GPS):

z̃
(t)
p,i = z

(t)
p,i + n(t)

p , n(t)
p ∼ G(0,Σp)

Σp is a diagonal matrix equal to diag(σ2
x, σ

2
y).

• Distance measurement (from LIDAR and Cameras):

z̃
(t)
d,ij = z

(t)
d,ij + n

(t)
d , n

(t)
d ∼ G(0, σ2

d)

• Angle measurement (from LIDAR and Cameras):

z̃
(t)
a,ij = z

(t)
a,ij + n(t)a , n(t)a ∼ G(0, σ2

a)

(a) VANET (b) Star topology

Fig. 1. Connectivity topologies of CAVs

Instead of treating the VANET as a whole, it is more
convenient to design distributed algorithms at the level of
individual vehicles and their direct neighbors, avoiding the
deployment of a fusion center. Distributed approaches are
highly beneficial and cost effective since they: a) require only
local processing and information exchange between neighbors,
b) yield robustness against central node failures (malfunction-
ing or cyber-attacks). By inspecting Fig. 1 it can be easily
realized that the yellow (ego) vehicle requires to estimate
both its position along with that of its connected neighbors,
forming a star like topology, that corresponds to a sub-graph
of the overall network. Therefore, cooperative awareness in the
context of CL could be seen through individual star topologies,
with the corresponding ego vehicle acting as the local center
of each star.

B. Cooperative Gradient Descent algorithm

The set N (t)
i (with cardinality |N (t)

i |), containing i-th ego
vehicle along with the corresponding neighbors, represent
the star topology of the i-th node. Ego vehicle is willing
to estimate vectors x(t)

i ,y
(t)
i ∈ R|N

(t)
i |, describing the x

and y-positions of each own star topology, with P
(t)
i =[

x
(t)
i y

(t)
i

]
∈ R|N

(t)
i |×2. A typical approach in CL literature

is to formulate an objective cost function C
(
x
(t)
i ,y

(t)
i

)
according to MLE criterion, and to minimize it with respect
to locations in order to reduce GPS error. For each vehicle
k ∈ N (t)

i and connected pair (k, l) ∈ N (t)
i (note that either

k or l must be the ego vehicle i), the following Probability
Density Functions (PDFs) of measurement models are derived:

P1 = P(z̃
(t)
p,k|p

(t)
k ) =

1

2πσxσy
exp [−1

2
(
(z̃

(x,t)
p,k − x

(t)
k )2

σx2
+

(z̃
(y,t)
p,k − y

(t)
k )2

σy2
)]

P2 = P(z̃
(t)
d,kl|p

(t)
k ,p

(t)
l ) = G(z

(t)
d,kl, σ

2
d)

P3 = P(z̃
(t)
a,kl|p

(k)
k ,p

(t)
l ) = G(z

(t)
a,kl, σ

2
a)

The likelihood function of the measurement models can
now be written as the product of all PDFs. Finally, if we



take the negative logarithm of the likelihood function, then
the objective cost function (same in [13]) is given by:

C
(
x
(t)
i ,y

(t)
i

)
=

∑
(k,l)∈N (t)

i

(z̃
(t)
d,kl − z

(t)
d,kl)

2

2σd2
+

∑
(k,l)∈N (t)

i

(z̃
(t)
a,kl − z

(t)
a,kl)

2

2σa2

+
∑

k∈N (t)
i

(z̃
(x,t)
p,k − x

(t)
k )2

2σx2
+

(z̃
(y,t)
p,k − y

(t)
k )2

2σy2
(1)

The second term of angle measurement model has to be
reformulated in order to facilitate the feasible minimiza-
tion of (1) using GD algorithm (as we discuss below):∑

(k,l)∈N (t)
i

(tan z̃
(t)
a,kl(x

(t)
l −x

(t)
k )−(y(t)l −y

(t)
k ))2

2σa
2 . Note that ego ve-

hicle must have access to the GPS position of neighbors
and also to the related range measurements. Consider for
example the vehicle pair (i, j) ∈ N (t)

i . Both vehicles estimate
(z̃d,ij , z̃a,ij) and (z̃d,ji, z̃a,ji). Therefore, j must transmit to i
the range measurements pair (z̃d,ji, z̃a,ji), so as to the latter
effectively minimizes the cost function. Since j estimates
actually (|N (t)

j | − 1)(z̃d,ji, z̃a,ji) pairs from LIDAR, a data
association step is required from i in order to ”discover”
the right measurements. Transmitted GPS positions may also
facilitate the association process. In this paper, we assume that
optimal data association is given to us as a preprocessing step.

The objective cost function can be minimized by the cor-
responding ego vehicle employing a distributed Alternating
Direction Method of Multipliers [13], cooperative GD [4] or
the interior point methods of CVX software. We choose the
GD due to its simplicity. The already established cooperative
GD minimizes a cost function comprising of only the relative
distance measurements. We extend it in order to account also
for angle and absolute position model. In each iteration of
this algorithm (Kmax the maximum number of iterations),
an update step ∆ is calculated to obtain the next estimate:
P

(K+1,t)
i = P

(K,t)
i +∆, with P (Kmax,t)

i being the optimal.
The GD uses the negative gradient of C (·) to identify the

direction of steepest descent: ∆ = −µ ∂C(·)
∂P

(t)
i

∣∣∣∣
P

(K,t)
i

. Step size

µ > 0 needs to be carefully chosen to balance between safe
updates and reasonable convergence speed. The main steps
of the proposed cooperative awareness method of Maximum
Likelihood based Localization using GD or MLL-GD, are
summarized on Algorithm 1. The update step for estimating
y-position has been omitted, since it can be derived with the
same way as for x-position.

Therefore, we have formulated a distributed localization
algorithm implemented at the level of individual vehicles,
which are trying to estimate both their position and that of their
connected neighbors. Each vehicle is required also to transmit
the GPS position and the related range measurements.

Algorithm 1: MLL-GD
Input: T , Kmax, µ
Output: x(t)

i , y(t)
i ∈ RN

(t)
i

1 for t = 1, 2, . . . T do
2 Vehicles transmit to neighbors their 2D GPS

position and the corresponding 2D range
measurement ;

3 for each vehicle i do
4 Represent individual star topology with N (t)

i ;
5 for K = 0, 1, . . .Kmax do
6 for each vehicle k ∈ N (t)

i do
7 Employ the vehicle pair (k, l) ∈ N (t)

i ;
8 Either k or l must be the ego vehicle i ;

9
∂C(·)
∂P

(t)
i

∣∣∣∣
x
(K,t)
k

=
∑
l(a

(l)
x + b

(l)
x ) + cx;

10 a
(l)
x =
z̃
(t)
d,kl−

∥∥∥p(K,t)
l −p(K,t)

k

∥∥∥
σ2
d

(x
(K,t)
l −x(K,t)

k )∥∥∥p(K,t)
l −p(K,t)

k

∥∥∥ ;

11 b
(l)
x =
(x

(K,t)
l −x(K,t)

k ) tan2 z̃
(t)
a,kl−(y

(K,t)
l −y(K,t)

k ) tan z̃
(t)
a,kl

σ2
a

;

12 cx =
(z̃

(x,t)
p,k −x

(K,t)
k )

σ2
x

;

13 x
(K+1,t)
k = x

(K,t)
k + µ ∂C(·)

∂P
(t)
i

∣∣∣∣
x
(K,t)
k

;

14 y
(K+1,t)
k = y

(K,t)
k + µ ∂C(·)

∂P
(t)
i

∣∣∣∣
y
(K,t)
k

;

15 p
(K+1,t)
k =

[
x
(K+1,t)
k y

(K+1,t)
k

]T
;

16 end
17 end
18 Add x(Kmax,t)

k , y
(Kmax,t)
k (∀k ∈ N (t)

i ) to
x
(t)
i ,y

(t)
i ;

19 end
20 end

III. EXTENDED KALMAN FILTER FOR INCREASED
COOPERATIVE AWARENESS

In this Section, the proposed approach of EKF for Co-
operative Awareness or EKF-CA will be derived. It is in
fact a distributed localization and tracking scheme, since each
vehicle performs spatiotemporal multi-modal fusion relying
only to its connected neighbors. The main novelty is related
to the simultaneous estimation of ego and neighbors location
at the ego vehicle, exploiting the tracking properties of the
EKF, as well as the communication capabilities between the
vehicles participating in VANET with star topologies.

The method of MLL-GD ignores the motion model for
the vehicles, while at the same time requires a large number
of iterations before converging to the optimal solution. These
limitations, motivated us to design a more efficient distributed
localization and tracking system, exploiting the tracking prop-



erties of the well-known EKF within the cooperative awareness
concept. Our approach was inspired by the functionalities
executed at the traditional multi-modal Simultaneous Local-
ization and Mapping (SLAM) back-ends [14], [15], where
the ego vehicle tries to estimate its own position and the
position of neighboring landmarks utilizing pair-wise range
measurements.

The EKF algorithm [14], utilized by each vehicle in order to
estimate both its own position and the position of its neighbors,
exploits a non-linear state transition and measurement model
to track the desired state x̂(t)

i , based on the previous state
x̂
(t−1)
i and current control input u(t)

i and measurement z(t)i
vectors:

x̂
(t)
i = f

(
x̂
(t−1)
i ,u

(t)
i

)
+ ε1, ε1 ∼ G(0,R) (2)

z
(t)
i = h

(
x̂
(t)
i

)
+ ε2, ε2 ∼ G(0,Q) (3)

The state transition and measurement functions f(·) and h(·)
are in general non-linear, while R ∈ R3|N (t)

i |×3|N
(t)
i | and

Q ∈ R(7|N (t)
i |−4)×(7|N

(t)
i |−4) are the diagonal covariance

matrices of state and measurement noise. The IMU sensor
provides control inputs. In the proposed approaches we deploy
the bicycle kinematic model of [14] (known also as Constant
Turn Rate and Velocity model), which is a widely adopted
model that simulates the state transition function, assuming
that the 3D state of i-th vehicle consists of a 2D location and
the yaw angle θ(t)i :

x
(t)
i = x

(t−1)
i + (−v(t)i /ω

(t)
i ) sin θ

(t−1)
i +

(v
(t)
i /ω

(t)
i ) sin (θ

(t−1)
i + ω

(t)
i ∆T )

y
(t)
i = y

(t−1)
i + (v

(t)
i /ω

(t)
i ) cos θ

(t−1)
i +

(−v(t)i /ω
(t)
i ) cos(θ

(t−1)
i + ω

(t)
i ∆T )

θ
(t)
i = θ

(t−1)
i + ω

(t)
i ∆T,

where ∆T is the sampling interval and v
(t)
i , ω

(t)
i are the

linear velocity and yaw rate, respectively. The last two
quantities constitute the control input vector. Note that in
realistic conditions, zero mean white Gaussian noise is
added to individual IMU measurements [6]. As a matter
of fact, the state x̂

(t)
i ∈ R3|N (t)

i | will consist of 2D
location and yaw of vehicles of the corresponding star

topology: x̂(t)
i =

[
x
(t)
i y

(t)
i θ

(t)
i

]T
, θ

(t)
i ∈ R|N

(t)
i |.

Moreover, the control input vector u
(t)
i ∈ R2|N (t)

i | is
formed by the linear velocities and yaw rates: u(t)

i =[
v
(t)
i ω

(t)
i

]T
, v

(t)
i ,ω

(t)
i ∈ R|N

(t)
i |. The measurement vec-

tor z(t)i ∈ R7|N (t)
i |−4 contains all the inter-vehicular measure-

ments and the yaw angles of the vehicles participating in the

star topology VANET: z(t)i =
[
z̃
(t)
d,i z̃

(t)
a,i z̃

(t)
p,i θ̃

(t)
i

]T
,

with z̃(t)d,i, z̃
(t)
a,i,∈ R2(|N (t)

i |−1), θ̃(t)i ∈ R|N
(t)
i | and z̃(t)p,i ∈

R2|N (t)
i |. Note that θ̃(t)i = θ

(t)
i +nθ is the yaw measurement

vector of topology, with nθ ∼ G(0, σ2
θ). Consider for example

that vehicles i, j, k constitute the i-th star topology. Then,

z̃
(t)
d,i =

[
z̃
(t)
d,ij z̃

(t)
d,ik z̃

(t)
d,ji z̃

(t)
d,ki

]T
(the same for z̃(t)a,i)

and z̃(t)p,i =
[
z̃
(x,t)
p,i z̃

(x,t)
p,j z̃

(x,t)
p,k z̃

(y,t)
p,i z̃

(y,t)
p,j z̃

(y,t)
p,k

]T
.

Therefore, neighboring vehicles j and k have to transmit to
i, apart from GPS position, their range measurements towards
i. Furthermore, they have to broadcast their control inputs,
i.e. linear velocity, yaw rate and yaw, since it is required by
the state transition and measurement model of i. However,
in urban traffic conditions the members of individual star
topologies is probable to change as time evolves. In that case,
EKF should be reset and re-initialized with MLL-GD solution,
since the state vector is no longer the same as before. The main
steps of the proposed EKF-CA are summarized on Algorithm
2, based on EKF algorithm [14]. It is important to notice that
due to the non-linearity of (2) and (3), EKF approximates the
two functions via Taylor expansion, using the corresponding

Jacobian matrices: Fi = ∂f(·)
∂x̂

(t−1)
i

∣∣∣∣
x

(t)
i

and Hi = ∂h(·)
∂x̂

(t)
i

∣∣∣∣
x

(t)
i

.

Location vector and its covariance matrix Σ̂
(t)
i are predicted

and estimated in Lines 8-9 and 11-12.

Algorithm 2: EKF-CA
Input: T , Q, R
Output: x̂(t)

i ∈ R3|N (t)
i |

1 for each t = 1, 2, . . . T do
2 Vehicles transmit their 2D GPS position, the

corresponding 2D range measurements to the
”right” neighbors, linear velocity, yaw rate, and
yaw angle;

3 for each vehicle i do
4 Represent individual star topology with N (t)

i ;
5 if N (t)

i not identical to N (t−1)
i then

6 Initialize locations with MLL-GD;
7 else
8 x

(t)
i = f

(
x̂
(t−1)
i ,u

(t)
i

)
;

9 Σ
(t)

i = FiΣ̂
(t−1)
i F Ti +R;

10 K = Σ
(t)

i H
T
i

(
HiΣ

(t)

i H
T
i +Q

)−1
;

11 x̂
(t)
i = x

(t)
i +K

(
z
(t)
i − h

(
x
(t)
i

))
;

12 Σ̂
(t)
i =

(
I|N (t)

i |
−KHi

)
Σ

(t)

i ;
13 end
14 end
15 end

To sum up, we have derived a distributed tracking scheme
utilized by each vehicle. The latter upon receiving the nec-
essary broadcasted information, corresponding to the inter-
vehicular measurements (e.g., GPS and range measurements
extracted from LiDAR data), as well as the control inputs of
its own star topology, estimates self and neighbors’ position.
An indicative execution scenario of our approach is shown in
Fig. 2.



Fig. 2. EKF-CA execution scenario

IV. SIMULATION AND RESULTS

In this Section, we validate the proposed approaches using
Python and CARLA simulator.

(a) Ground truth (b) Different VANETs

Fig. 3. Reference trajectory and VANETs of ego vehicle

A. Experimental Setup

We extracted the trajectories of N = 200 vehicles, along
with their control inputs, from CARLA. Ground truth trajec-
tory for (a randomly chosen) ego vehicle, together with the
different VANETs which belongs to at four distinct time slots,
are shown in Fig. 3. Velocities of vehicles range between 0
(e.g. waiting at traffic lights) and 74km/h. Black and blue
dots in Fig. 3-(b) represent ego and neighboring vehicles,
while red links the V2V connections. V2V neighbors of ego
vehicle during the simulation were between 1 and 16 vehicles.
Simulation horizon was set to T = 573 time instances,
while ∆T = 0.3sec. The GPS noise was generated with
σx = 3m and σy = 2.5m. Maximum number of iterations
and step size for MLL-GD were set to Kmax = 300 and
µ = 0.001. We assume that both methods don’t have any
knowledge of noise variance. Therefore, covariance matrices,
as well as range measurements noise variance, are initialized to
identity/one. During the experiments, we studied the impact to
ego and neighboring vehicles location estimation, of VANET
size and range measurements uncertainty. The former depends
upon communication range rc and dictates the connectivity
representation of CAVs. The latter has a direct impact on the
pair-wise range measurements and is common aspect of highly
complex and occluded urban environments. As evaluation
metrics, we measured at each time instant Localization Mean
Square Error (LMSE) of all vehicles, Localization Error (LE)
of ego and Average Localization Error (ALE) of individual
star topology, and constructed the corresponding Cumulative
Distribution Function (CDF).

B. Evaluation Study

1) Impact of connectivity topology and communication
range: Connectivity topology of CAVs, i.e. which vehicles are
V2V connected, can be seen through the communication range
rc =

∥∥∥z(t)p,i − z
(t)
p,j

∥∥∥. In Fig. 4-(a),(b), the CDF of LMSE is de-
picted with rc = 20m and rc = 30m, and σd = 1m, σa = 4◦.
That error has actually been computed using the output of two
algorithms and GPS for each ego vehicle. Clearly, EKF-CA
exhibits superior performance over MLL-GD, highlighting the
benefits of tracking for location estimation. More specifically,
the former achieved 61% reduction of GPS LMSE, while the
latter only 49%. By increasing the communication range to
rc = 30m (as a matter of fact more neighbors are taken
into account), higher location estimation accuracy has been
achieved, especially for MLL-GD. In Fig. 4-(b), EKF-CA
achieved 67% reduction of GPS LMSE, while MLL-GD
61%. We conclude that the integration of information from
a large number of neighbors, resulted in higher estimation ac-
curacy. Furthermore, EKF-CA proved to be much better than
MLL-GD. Small figures coupled with error values, indicate
maximum LMSE (LE and ALE, respectively) achieved by the
two methods with 80% probability.

2) Effect of range measurements uncertainty: In occluded
urban conditions it is expected that LIDAR sensor may provide
range measurements highly contaminated by noise, which
seriously affects algorithms’ performance. The impact of range
measurements uncertainty is investigated in Fig. 4-(c), with
σd = 4m, σa = 7◦ and communication range rc = 20m. It is
evident that performances have been seriously degraded. The
EKF-CA reduced GPS LMSE by 41%, while MLL-GD by
38%. That deteriorated performance could be seen contrary
to Fig. 4-(a) (with σd = 1m and σa = 4◦). For example,
with 80% probability the LMSE with EKF-CA can reach
9.79 m2 (instead of 6.35 m2). Therefore, we conclude that
increased range measurements uncertainty seriously affects the
performance of the two methods. Distributed tracking has been
verified to be slightly more robust to noisy pair-wise range
measurements.

3) Cooperative awareness evaluation: In Fig. 4-(d), we
demonstrate the location estimation accuracy for the chosen
ego vehicle, with communication range rc = 20m, σd = 1m
and σa = 4◦. Once again EKF-CA outperforms MLL-GD.
More specifically, EKF-CA achieved 58% reduction of LE,
with contrast to 54% of MLL-GD. Furthermore, EKF-CA
succeeded in reducing maximum GPS LE from nearly 10m, to
6m (instead of 8.3m using MLL-GD). The indicative results
seem to verify the overall evaluation for the total number of
vehicles in Fig. 4-(a). Cooperative awareness accuracy of the
proposed methods has been evaluated in Fig. 4-(e), by plotting
the ALE of different star topologies (containing both ego and
neighbors). The proposed EKF-CA, once again, proved to
be much superior, exhibiting 38% reduction of GPS ALE.
Finally, in Fig. 4-(f) we demonstrate a snapshot from CARLA
simulator containing both ego vehicle and its neighbors, along
with the location estimation accuracy achieved by the ego.



(a) LMSE with communication range rc = 20m (b) LMSE with communication range rc = 30m (c) LMSE with higher range measurements uncer-
tainty

(d) Ego location’s estimation accuracy (e) Neighbors location’s estimation accuracy (f) CARLA visualization

Fig. 4. Results

Therefore, proposed EKF-CA is also useful for effectively
performing the cooperative awareness task.

V. CONCLUSION

This paper has contributed towards the design of a robust lo-
calization system enhanced with increased cooperative aware-
ness ability, which is considered fundamental for automated
vehicle’s reliable operation. For that purpose, we have formu-
lated two novel distributed and cooperative localization and
tracking schemes. Each vehicle, acting as the center of its own
V2V connectivity topology, is in place to accurately estimate
its position, as well as those of its connected neighbors. Under
a variety of different experimental conditions in CARLA
renowned simulator, we have highlighted the feasibility and
benefits of the two methods. Distributed tracking has proven
to be superior than GD-based scheme, especially in the case
of cooperative awareness task.
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