THE RIEMANN HYPOTHESIS
FRANK VEGA

ABSTRACT. Robin criterion states that the Riemann Hypothesis
is true if and only if the inequality o(n) < e” x n x loglogn holds
for all n > 5040, where o(n) is the sum-of-divisors function and
v ~ 0.57721 is the Euler-Mascheroni constant. This is known as
the Robin inequality. We obtain a contradiction just assuming the
smallest counterexample of the Robin inequality exists for some
n > 5040. In this way, we prove that the Robin inequality is true
for all n > 5040. Consequently, the Riemann Hypothesis is also
true.

1. INTRODUCTION

As usual o(n) is the sum-of-divisors function of n |Cho+07]:

> d

din

where d | n means the integer d divides to n. Define f(n) to be @

Say Robins(n) holds provided
f(n) < e’ x loglogn.

The constant v is the Euler-Mascheroni constant, and log is the natural
logarithm. The importance of this property is:

Theorem 1.1. [RH]| Robins(n) holds for all n > 5040 if and only if the
Riemann Hypothesis is true [Rob84).

We demonstrate that there is a contradiction just assuming the ex-
istence of the smallest number n > 5040 such that Robins(n) does not
hold. By contraposition, we show that Robins(n) holds for all n > 5040
and thus, the Riemann Hypothesis is true.
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2. A Basic CASE
We can easily prove that Robins(n) holds for certain kind of numbers:

Lemma 2.1. [less-than-7| Robins(n) holds for alln > 5040 when q < 5,
where q is the largest prime divisor of n.

Proof. Let n > 5040 and let all its prime divisors be ¢; < -+ < ¢, < 5,
then we need to prove

f(n) < e’ xloglogn
that is true when
q;
pel
is also true. Certainly, for n > 2 [Cho+-07]:

q
f(n) < L -1

< e’ x loglogn

FOYQ1<"'<qm§57

T L 2x3x5
i:lqi_1_1X2X4

= 3.75 < €7 x loglog(5040) ~ 3.81.

However, we note that for n > 5040
e” x loglog(5040) < €7 x loglogn
and therefore, the proof is complete when ¢; < --- < ¢,,, <5. U

3. SOME USEFUL INEQUALITIES
The following lemma is a very helpful inequality:

Lemma 3.1. [l-ineq| For x > 0, we have

T 1
<

— 3
L=z = yty24+ %

where y =1 — .
Proof. For k> —1, we know 1+ k < e* [Koz20]. Therefore,

T er1 1 1

l—2z " 1—2 (1—-2)xel yxev
However, for every real number y € R [Koz20]:

y3
yxe'zy+y'+ 5
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and this can be transformed into
1 1
Yy < 20 L ¥
yxet  y+y + 5

Consequently, we show
T 1
< 5 -
L=z = y4y24+ &

This is another inequality that we use:

Lemma 3.2. [2-ineq| For xz > 2,

1
> ex.
rx—17
Proof. If we apply the logarithm to the both sides of the inequality,
then we obtain that

T 1
log > —.
r—1" =z
We know that
log = log(1 + —1)
For z > —1 [Koz20|:
x
—— < log(1 .
1= og(l+ z)
We use this property to show that:

1 1 1
log(1 + > 1 — =—.
og( a:—l)_l—l—ﬁ z-1)x(1+-Y) =

Therefore, the proof is complete. O

Here, it is another practical inequality:

Lemma 3.3. [property| Suppose that n > 5040 and let n = r X q,
where q denotes the largest prime factor of n and r > 1 is a natural
number. We have that

) < (1+ %) % £(r).

Proof. Suppose that n is the form of m x ¢* where m and ¢ are coprimes
such that m and k are natural numbers. We have that

f(n) = f(m x ¢*) = f(m) x f(¢")
since f is multiplicative and m and ¢ are coprimes [Vo0j20|. However,
we know that

F(d") < f(d* ") x fg)
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because of we notice that f(a x b) < f(a) x f(b) when a,b > 2 [Voj20].
In this way, we obtain that

F@) % Fla) = @) x (1+ é)

according to the value of f(q) = (1+%) [Voj20]. In addition, we analyze
that

flm) x f(¢"1) = f(m x ¢*) = f(r)
because f is multiplicative and m and ¢ are coprimes [Voj20]. Finally,
we obtain that

o) = £(m) x 7(a") < £m) x S % fa) = ) x (1 1)
and as a consequence, the proof is done. O

4. PROOF OF MAIN THEOREM
Theorem 4.1. [main| Robins(n) holds for all n > 5040.

Proof. Suppose that n is the smallest integer exceeding 5040 that does
not satisfy the Robin inequality. Let n = 7 x ¢, where ¢ denotes
the largest prime factor of n. We prove that Robins(n) holds for all
n > 5040 when ¢ < 5 according to the lemma [less-than-7]. As
result, this implies that ¢ > 5 for this possible counterexample. Recall
that pq,po, ... denote the consecutive primes. An integer of the form
[, " withe; > ey > -+ > eg > 0 we will call an Hardy-Ramanujan
integer |[Cho+07]. A natural number n is called superabundant pre-
cisely when, for all m < n

f(m) < f(n).
If n is superabundant, then n is an Hardy-Ramanujan integer [AF44].
Moreover, the smallest counterexample of Robin inequality greater
than 5040 must be a superabundant number |[AF09]. Consequently,
it is necessary that » > 2 x 3 x 5 = 30. In this way, the following
inequality
f(n) >e" x loglogn
should be true. We know that

1
(1+=)x f(r) = flgxr) = f(n) = e xloglogn
q
due to the lemma ‘property|. Besides, this shows that

1
(1+ 5) x €7 x loglogr > €7 x loglogn
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should be also true, because of f(r) < ¢ x loglogr. Certainly, if n
is the smallest counterexample exceeding 5040 of the Robin inequality,
then Robins(r) holds |[Cho+07]. That is the same as

1
(1+ -) x loglogr > loglogn.
q
We have that
1
(1+ —) x loglogr > log(logr + log q)
q

where we notice that
log(a + ¢) = log <a x (1+ E)) = loga + log(1 + E)
a a

for @ > 1 and ¢ > 1. This follows as

logq)

1
(1+ -) x loglogr > loglogr + log(1 +
q log r

since logr > 1 and logq > 1 for ¢ > 5 and r > 30. This is equal to

log q)

(1+q) xloglogr > ¢ x loglogr + g x log(1 +1
ogr

and thus,

1
loglogr > ¢q x log(1 + qu).
log r

This implies that
loglogr

I
log(1 + 25%)

log log r

1o logr+logq
lOg logr

log log r

log loen

logr

log log r

loglogn — loglog r
log log r

_ loglogr =
loglogn x (1 — {5050
loglogr
loglogn
__ loglogr
(1 loglogn)

>q
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should be true. If we assume that y =1 — 112511%, then we analyze that
loglogr
1 loglogn
3 = loglogr
v+ + s (- )
because of lemma [1-ineq|. As result, we have that
L >
— 5 4
yt+y i+
and therefore,
1
—— > g Xxy.
l+y+ %
Since we have
y?
Lty+5>1
then
1
- <1
I+y+ %
Consequently, we obtain that
1>qgxy
which is the same as
e > eV,

For y > 0, we have that 1+ y < e¥ [Koz20] and therefore,

log log r
S Y > (1 7 _ (9 _ 755" g
> etz (1+y) ( 10glogn)
that is log]
Yo > (2 28T
log logn
and finally,
log 1 1
1> (2 28980y~
log logn ed
According to the lemma 2-ineq|, we know that
=
which is equivalent to
qg—1 1
<=
q eq
In this way, we obtain that
(2_loglogr xiz _ loglogr q—1

loglogn” .3 log log n q
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and thus,
log1 -1
1> (2- 08087y 4 )
log logn q
This the same as
log1 — —
ogogrxq 1>2Xq 1
log logn q q
which is equal to
log1 -1 2
808" 4 +—->2.

loglogn q 5

We know that . log] )
q— S oglogr y q—
q loglogn q

since we can assure that a > ¢ and b > ¢ when ¢ = a x b such that

0<a<land 0<b< 1. Infact,wenotethat0<11§§11%<1and

0< ‘1;(11 < 1. Consequently, we would have that

-1 2
== + - > 2
q q
However, this is contradiction because of
-1
1=
q
and
2
-<1
q

for ¢ > 5. Indeed, if we sum the previous inequalities, then we can see
that 1 9
1= 2c141=2
q q
Hence, we obtain a contradiction when n > 5040 is the possible smallest

number such that Robins(n) does not hold. By contraposition, we have
that Robins(n) holds for all n > 5040. O

Theorem 4.2. [conclusion| The Riemann Hypothesis is true.

Proof. This is a direct consequence of theorems|1.1{[RH| and 4.1| [main]|.
Ul
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