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Abstract—The new generation 3D scanner devices have revolu-
tionized the way information from 3D objects is acquired, making
the process of scene capturing and digitization straightforward.
However, the effectiveness and robustness of conventional al-
gorithms for real scene analysis are usually deteriorated due
to challenging conditions, such as noise, low resolution, and
bad perceptual quality. In this work, we present a methodology
for identifying and registering partially-scanned and noisy 3D
objects, lying in arbitrary positions in a 3D scene, with cor-
responding high-quality models. The methodology is assessed
on point cloud scenes with multiple objects with large missing
parts. The proposed approach does not require connectivity
information and is thus generic and computationally efficient,
thereby facilitating computationally demanding applications, like
augmented reality. The main contributions of this work are
the introduction of a layered joint registration and indexing
scheme of cluttered partial point clouds using a novel multi-scale
saliency extraction technique to identify distinctive regions, and
an enhanced similarity criterion for object-to-model matching.
The processing time of the process is also accelerated through 3D
scene segmentation. Comparisons of the proposed methodology
with other state-of-the-art approaches highlight its superiority
under challenging conditions.

Index Terms—point cloud registration, partially-scanned point
clouds, saliency, weighted ICP, cluttered scene.

I. INTRODUCTION

The scanning and digitization of 3D objects of the real, phys-
ical world has recently attracted a lot of attention. Nowadays,
there are many applications in different areas (e.g., entertain-
ment, industry, medical visualization, military, heritage, etc.)
that utilize 3D objects, either in the form of point clouds
or 3D meshes. Future trends show that both this type of
applications and the need for reliable 3D object representation
will continue to increase. However, in practical scenarios,
there are many factors that inevitably affect the quality of
the acquired 3D objects, such as illumination conditions or
relative motion between device and target during the scanning
process, which can create random fluctuation of the data,
the formation of additional and unnecessary points on the
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surface and points away from the surface (outliers). The device
itself may also generate a pattern of systematic noise that
is added to the surface of the 3D object. Additionally, due
to time limitations or a random non-ideal acquisition angle,
the point clouds may be incomplete or deformed, which can
cause errors in matching and registration [1]. Researchers
strive to overcome the existing limitations, trying to provide
robust solutions that can be used in realistic circumstances
and challenging scenarios. One of the most common research
problems upon digitization is the recognition of partially-
observed objects in cluttered scenes, which is fundamental in
numerous applications of computer vision, such as intelligent
surveillance, remote manipulation of robots in manufacturing,
autonomous vehicles, automatic assembly, remote sensing,
retrieval, automatic object completion. In this work, we assume
the existence of scanned point clouds that have been acquired
using low-resolution and low-cost 3D scanning devices. These
noisy point clouds represent real cluttered scenes consisting of
different partially-observed objects, denoted as guery models.
Additionally, we assume the existence of high-quality and
complete 3D models, denoted as target models, which serve
as the ideal representation of the guery models. The target
models have been acquired using high-resolution scanning
devices, and have also been post-processed to remove noise
and outliers. Even though the query and target models may
represent the same object, they have different resolution,
orientation, while the query object is subject to occlusion,
making the processes of matching and registration an arduous
task. The objective of this research is threefold,;

« To identify different query objects partially visible in a
point cloud scene.

« To match each query object with the corresponding
original farget model (if detected).

o To register query and farget objects in the point cloud
scene through 3D registration.

The successful integration of the steps is a challenging task,
especially due to the presence of noise and outliers, occlusions,
missing parts, different resolutions. Motivated by the need to
overcome all the aforementioned challenges and limitations,
inherent in each step of the process, we designed an end-
to-end methodology that demonstrates the following main
contributions:

« A layered broad-to-narrow registration scheme that re-
duces the likelihood of getting trapped in local minima,
following a RANSAC-style initialization, based on den-
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sity estimation in the space of rigid transformations, and
a subsequent transformation refinement through a novel
weighted ICP approach.

o Computational acceleration during object identification
through scene segmentation acting as a data selection (i.e.
reduction) step.

o Reduction of the effects of noise and object partiality,
based on a novel multi-scale saliency extraction technique
that allows identification of distinctive regions and reduc-
tion of ambiguity in the matching process.

« A novel point cloud descriptor combining pose informa-
tion with local geometric properties that allows to iden-
tify point correspondences even in the case of extreme
partiality of the query object. An enhanced point cloud
similarity criterion is also introduced for accurate target-
to-query object matching and registration.

It should be emphasized that our method does not require train-
ing data, for the matching process, since it uses only geometric
descriptors of each model. Appropriate computational provi-
sions were made in every step of the methodology to produce
a fast and robust solution. The rest of this paper is organized
as follows: Section 2 presents previous work in related areas.
Section 3 describes the proposed method in detail. Section
4 presents the experimental results in comparison with other
state-of-the-art methods. Section 5 draws the conclusions and
directions for future work.

II. PREVIOUS WORK

Maybe the most critical step of a 3D object recognition and
matching process is the feature descriptor extraction. In the
literature, a great number of feature descriptors have been
proposed [2], such as spin image [3], direct spacial matching
[4], point’s fingerprint [5], 3D shape context (3DSC) [6],
snapshot [7], local shape descriptors [8], Mesh Histogram
of Oriented Gradients (MeshHOG) [9], exponential map [10]
and rotational projection statistics [11]. The feature descriptors
can be divided into two broad categories: the global feature
descriptors and the local feature descriptors. Global feature
descriptors represent the geometric and topological properties
of the entire 3D model, but they ignore the shape details
and require an accurate segmentation of the object. Therefore,
they are not usually suitable for the recognition of a partially
observed object lying in cluttered scenes. The global feature-
based methods are usually used in the context of 3D shape
retrieval and classification. Some popular implementations
include geometric 3D moments [12], shape distributions [13],
viewpoint feature histogram [14], and potential well space
embedding [15].

On the other hand, local descriptors focus on narrow neighbor-
hoods, while coarse areas are still present for disambiguation
[1]. They can generally handle occlusion and clutter better than
the global methods [16], therefore local descriptor approaches
are inherently more effective for 3D object recognition [17].
Taati and Greenspan [8] formulated the local shape descriptor
for object recognition and localization in range data as an
optimization problem. They presented a generalized platform
for constructing local shape descriptors that subsumes a large
class of existing methods, allowing for tuning to the geometry

of specific models. Salti et al. [17] developed a hybrid struc-
ture between Signatures and Histograms aiming to a more
favorable balance between descriptive power and robustness.
Their proposed descriptor, called as Signature of Histograms
of OrienTations (SHOT), attempts to leverage on the benefits
of both Signatures and Histograms approaches. Buch et al.
[18] introduced a method for fusing several feature matches to
provide a significant increase in matching accuracy, which was
consistent over all tested datasets. Lu and Wang [1] presented
a novel matching algorithm of 3D point clouds based on
multiple scale features and covariance matrix descriptors. They
applied a combination of the curvature and eigenvalue varia-
tion, to precisely detect the key points under multiple scales.
Darom and Keller [19] proposed an intrinsic scale detection
scheme per interest point and utilized it to derive two scale-
invariant local features for mesh models. First, they presented
the Scale Invariant Spin Image local descriptor that is a scale-
invariant formulation of the Spin Image descriptor, and then,
they adapted the SIFT feature to mesh data by representing the
vicinity of each interest point as a depth map and estimating
its dominant angle using PCA to achieve rotation invariance.
Lu et al. [2] presented an effective algorithm to recognize 3D
objects in point clouds using multi-scale local surface features.
It first detects several keypoints in each scene/model and then
extracts several feature descriptors with different scales at each
keypoint [20], [21].

Point cloud registration refers to the problem of aligning two
or more different point clouds that do represent only partially
overlapping regions. Generally, the higher the overlap, the
easier the registration of the two scenes. However, there are
numerous factors that can negatively affect the results [22],
such as noise and outliers due to different illumination con-
ditions or relative motion between the scanner and the scene,
occlusions and tangled areas. The most well-known and widely
used baseline registration method is the Iterative Closest Point
(ICP) algorithm. Throughout the years, several ICP-based
approaches have been presented [23]-[25] providing very good
results; however, the registration is usually inaccurate when the
two related point clouds do not have a good relative initial
alignment or do not exhibit an ample overlap. Bouaziz et
al. [26] introduced the sparse ICP which promises superior
registration results when dealing with outliers and incomplete
data. On one hand, it provides better results than the traditional
ICP approach, however, it needs parameter adjustments for
different use cases, limiting of application potential. Mavridis
et al. [27] identified the reasons for the low efficiency of the
original Sparse ICP approach and they proposed a registration
pipeline that improves the convergence rate of the method by
using a more efficient hybrid optimization strategy. Yuan et
al. [28] try to solve this problem using a combination of ICP
and Principal Component Analysis (PCA), which is used to
reflect the similarity of the two point clouds. Authors of other
works separate the process into a coarse and a fine registration
[29], [30]. Moreover, the 4-Points Congruent Sets (4PCS)
techniques are very popular, especially for global registration
strategies [31]-[33] such as algorithms based on RANdom
SAmple Consensus (RANSAC) [34]-[36]. Other related works
try to find representative local or global features that are used
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Fig. 1. Pipeline of the proposed methodology. For the sake of simplicity, we illustrate here only the rarget models that are also present in the selected partially

observed scene.

later as descriptors for matching. Makadia et al. [37] used
extended Gaussian images that can be approximated by spher-
ical histograms of the surface orientations. Their algorithm
uses only global information and it does not estimate any
local feature. Recently, many deep learning approaches have
also been presented [38]-[41], trying to exploit recognizable
features from a training dataset, using them later for fast
registration, however, they are very vulnerable (as well all
the machine learning techniques) in cases where the training
and the testing datasets have been created under different
circumstances.

III. WORK-FLOW OF THE PROPOSED METHOD

In this work, we focus on point clouds P consisting of n
vertices v. The i-th vertex v; is represented by the Cartesian
coordinates, denoted v, = [z;, yi, zi]T, Vi=1-,n
Thus, all the vertices can be represented as a matrix V =
[Vi, Vo, ---,vy] € R3*". Let’s also denote with WX the
set of the K nearest neighbors of point i. Throughout the
paper each neighboring point j can be indicated through its
vertex coordinates (v; € ¥;) or, for simplicity, only through
its index (j € ;). Point cloud P represents the scanned
scene, consisting of different partially visible 3D objects.
The objective of this work is to match and replace these
objects with the corresponding high-quality 3D objects that
are assumed to be available beforehand.

The irrelevant objects and the noise seriously affect the
optimization process [42]-[50]. Our methodology extends
previous work on point cloud registration [34] to overcome
its limitations in the case of noisy point clouds. Our idea
is that the obtained alignment solution can be improved if
registration is guided by the most relevant salient part of the
scene. The subsequent steps after the broad-phase registration
include feature extraction, similarity assessment and saliency
estimation. These steps are more computationally efficient
when a part of the point cloud is used rather than the whole
scene, as in some cases the scene might be very big. In the

next sections, we describe how we robustify and accelerate
computations at the same time by identifying and focusing
only on salient parts of the scene that potentially correspond to
the target model. This data selection step not only accelerates
the calculations as it allows to search for pairs of landmarks
(necessary for the final registration step) in a reduced space,
but also leads to a reduction of the impact of the outliers. An
outline of our methodology is illustrated in Fig. 1 and can be
summarized as follows:

1) Broad-phase registration: First, a fast global registration
technique [34] is applied, which helps both for the decision of
the matching and the final fine registration process, providing
a better initial alignment between the query and the farget
object (subsection III-A).

2) Segmentation, robustification, feature extraction and
matching: In parallel, the whole scene is divided into clus-
ters using our parameter-free implementation of the popular
density-based clustering algorithm [51]. Scene clusters, which
are geometrically more similar to the registered point cloud
of the previous step, are merged to create the query object
(subsection III-B1). A robustification step is applied to fa-
cilitate the identification and removal of spurious point sets
(obtained by imperfect scanning) that might blur the object
boundaries affecting the registration and the execution time
(subsection III-D). The proposed feature vectors, combining
pose with local multi-scale geometric information (subsection
II1-B2), are then extracted and used as descriptors for model to
object correspondence assessment (subsection III-B3). Finally,
based on the defined point similarity criterion, the best-related
pairs of vertices between the matched (complete and partial)
objects are identified (subsection III-B4).

3) Narrow-phase registration: The final step includes the
calculation of a rigid transformation that brings the previously
identified pairs of corresponding points into alignment (sub-
section III-C).
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A. Broad-Phase Registration

The first step of the matching process is to align each target
model to the scanned scene by global registration, without
incorporating knowledge of the model class. We have selected
a recently proposed global registration algorithm [34] that has
shown very good performance in different realistic datasets.
For completeness, we present here an overview of the al-
gorithm, while details can be found in [34]. The algorithm
finds a number of candidate transformations by matching
pairs in a roughly uniformly distributed subset of vertices
of the input objects based on local shape properties (i.e.,
principal curvatures and the first principal direction). The
optimal transformation is selected by localizing a density peak
in the space of candidate rigid transformations. In order to find
the density peak, a metric d(73,T3) is needed, which measures
the distance of a transformation 737 from a transformation
T5. A density estimation function can be defined using some
kernel function F' as:

=3 F(Ta) M

Various kernel functions can be used for F, however, rnostly
for efficiency reasons, a simple Gaussian F'(r) = e —(r)” s
preferred, where b is a spread parameter. Instead of looking for
the general location of the true global maximum of p, p is only
evaluated at each candidate position and the maximum among
them is chosen as the result. Given the spread parameter b
and some small threshold (, only samples within the radius
r = /—In(¢)/b contribute significantly (> () to the density.
Therefore, the task is to find, for each candidate, a set of
candidates up to the distance r. Because of the non-Euclidean
topology of the search space, a KD-tree cannot be used for
this purpose, however, a more general acceleration structure
- the Vantage Point Tree [52] - can be used. Measuring
the distance between two transformations commonly involves
relating their rotation and translation components, which is
notoriously difficult. Instead, embracing the inherent depen-
dence of such relation on the character of the input data, the
metric can be derived from the difference of the effect the two
transformations have on the vertices of the input objects:

d(T1,Tz) = Y ||R1vi + t1 — Ravi — to| @

where R; and Ry are the rotations of 77 and 75 respectively
and t; and to, are the translation vectors of 77 and 715
respectively. Since the sampling density of the input objects
may be quite irregular, a more robust option is to integrate
distance over triangles instead of summing over vertices. The
value of the corresponding integral over a single triangle ¢ can
be expressed as:

dt(Tl,Tg) :/|‘R1V+t1 7R2V7t2|‘da. 3)
t

where a(t) represents the simplest geometric area (i.e., con-
sisting of three vertices) represented by a triangle t. Since this
work is designed for point clouds and does not request actual
connectivity information, triangles are defined based on the

point’s closest neighbors. Finally, the full rigid transformation
metric is obtained by summing over all triangles:

(T, T2)? Zdt (11, T»)? “
A remarkable property of both expressions for transformation
distance, i.e. the vertex sum and the triangle integral, is that
with linear pre-processing, they can be evaluated in constant
time, i.e. independently on the sampling density of the input
objects.

It is important to note here that the rarget object may not
appear in the partially observed scene, as presented in the forth
line (i.e., rhino model) of Fig. 2. The global registration step
is not required to identify if there is a correlation between the
target model and the query model, but only to provide the best
possible solution. The final decision on the correspondence of
the two models will be made in the narrow-phase registration
step according to subsection III-B4. After the broad-phase
registration, all the high-resolution models have been mapped
to the scene using global alignment. Then the solution is
further refined to become more robust to outliers.

B. Scene Segmentation and Model-to-Object Matching

1) Point Cloud Segmentation by Density-based Clustering:
The semantic segmentation of the scene is often challenging,
as the 3D objects lying in the scene might appear tangled with
each other, due to abnormalities created by imperfect scan-
ning. Let’s also note that supervised [53] or semi-supervised
[54] learning techniques that exploit prior knowledge in the
form of shape priors or large training datasets with semantic
annotations cannot be applied here to facilitate segmentation,
because such large scale annotations are not always available.
Our method is based on the assumption that, even if different
objects overlap, (i.e. their distance is small in some regions),
the local point density within each object is larger than these
across different objects in the scene. Therefore for parcellation
of the scene, we formulate a density-based algorithm, i.e the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [51], and implement a parameter-free approach, as
explained in the sequel. More specifically, DBSCAN is used
for the automated segmentation of a point cloud scene into
separate clusters, which can be potentially used for matching
and registration, reducing the total execution time. The number
of clusters is not required beforehand. Considering point cloud
P € R™*3, the clustering result is represented by an vector
k € Z™ [55] with elements:

_ J
o-{

where m represents the number of clusters. Each scene may
consist of a different number of 3D objects and a 3D object
may be represented by more than one clusters due to imperfect
scanning, occlusions, etc. One parameter of the DBSCAN
algorithm which needs to be predefined is the neighborhood
radius e. Our contribution is that we allow the threshold € to
be spatially adapted and be larger in sparse regions in order to
retain sufficient neighbors everywhere. The method becomes
more robust with this adaptation, especially in cases where the

if v; belongs to cluster j € {1,---,m}
if v; is an outlier )

(%)
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Fig. 2. Broad-to-narrow phase registration. Each target model is registered to the partial scene. The clusters that are geometrically close to the registered
model are selected to create the query object for the matching comparison step.

3D objects have different density of points in different areas
of their surface. More specifically, we assign a value that is
inversely proportional to the local density, such as twice the
average distance of the K, nearest neighbors.

V i=1,.

(6)

61—22 Dij

where D;; = D(i,j) is the Euclidean distance of the 4 vertex
to its j* nearest vertex. The spatially adaptive value of e
allows us to differentiate which points belong to a cluster,
and which are large-scale outliers or noise points. After the
broad-phase registration step, all clusters being geometrically
close to the registered target model (according to a predefined
distance threshold) are merged to form a new point cloud (i.e.,
query object), denoted as Q.

2) Salient Points Detection: Our purpose in this step is to
identify if each high-quality target model T € R™*3 and
each segmented query object Q & R™ >3 (where n; >
ng due to occlusion, low-quality, etc), represents the same
structure. To define similarity between each set of point clouds
we propose descriptors that encode spectral saliency. In the
following we describe the proposed features, and how they
are used to extract point-to-point correspondences, necessary
for the final registration step.

The feature descriptors that we use are related to the saliency
map of the point cloud. Saliency is a value assigned to each
vertex of a point cloud that represents its perceived importance.
In the case of raw point clouds without context information,
saliency characterizes the geometric properties. High values
of saliency represent more perceptually protruding vertices. In
this work, we assume that geometric lines, corners, and edges

are more distinctive perceptually than flat areas, according to
the theory of visual saliency of sight.

To estimate the saliency map, we use a similar pipeline, as the
one described in [56], but we extract the saliency map using
only spectral analysis, avoiding the computationally complex
geometric analysis. For each point v; of the point cloud Q €
R™2%3_ we construct a matrix N; € R*F+X3 comprising of
the normals of v; and the normals of the k-nearest neighboring
points of v; (generally, we set k = 20):

TVi=1,,ng, (]

For the estimation of the point normals, a plane is approxi-
mated based on the set of closest neighboring points, according

to [57]:
n;, — |\IJ| Z val

The eigenvector corresponding to the smallest eigenvalue of
n;, is the best estimation of its normal vector. The matrices
N, are also used for the computation of covariance matrices
Cil

Ni = [1’11'7 N, Ny, -, nik]

3

—vZ)T

(C)]

The matrix C; = UAU? is decomposed into a matrix
U, consisting of the eigenvectors, and a diagonal matrix
A = diag(\j1, \i2, Ai3), consisting of the corresponding
eigenvalues. Finally, the saliency value s; of a vertex v; is
determined as the value given by the inverse ls-norm of the
corresponding eigenvalues:

C; = NTN, € R**?

1
VAL + 24, + A

Based on this equation, flat areas producing high eigenvalues
correspond to small saliency values, while the most salient

(10)

S; =
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vertices are those that represent high-frequency features (i.e.,
edges and corners) and thereby produce small eigenvalues.
These features are more recognizable by the human brain,
since they are perceptually more distinctive. The same process
for extracting the saliency maps is followed for partial objects
as well as the rarget models. The only difference is that
computations for the farget models are performed only once
(offline) and a small set of salient points is stored to be used
for the subsequent matching process.

3) Multi-Scale Feature Extraction: First, the saliency values
of the two compared models are normalized according to:

o Kssy,

Szi::lf - Vi:l,-”,nt
an
—Kg*sq; .
Sq; :1—#V’L:1, s Ng
where Smax = max(max(s;), max(sq)). Then, we perform

spatial smoothing of the saliency map with a uniform kernel of
increasing size and use the obtained values to form a feature
vector with the multi-scale saliency values. The neighborhood
size is selected as W* X with K = 5and k = 1, ..., 5, although
these parameters may vary. Smaller scales increase feature
vector specificity, while larger scales smooth out noise and
irregularities making the shape descriptor more robust. The use
of multiple scales allows us to combine both properties and
leads to unique and accurate correspondences. This process is
applied for each point cloud in T as well as Q. Specifically,
for each vertex i, we create a corresponding vector a; € R?,
according to:

28 X S > S
jewk jewzK jEWSK

K 2K 5K

Then, we concatenate the multi-scale saliency values with the
vertex coordinates to obtain the final feature representation.
Finally, for each one vertex, we create the augmented feature
vector f € RR®, consisting of the vertex coordinates and the
corresponding values of the vector a:

VT

ai=| I (12)

13)

(a) (b) c (d)
Fig. 3. (a) [Up] Original high-quality 3D mesh (Chef model) (consisting of 176,912 vertices), [Down] partially scanned point cloud object of the same
model (consisting of 45,811 vertices), (b) [Up] salient vertices of the original model (consisting of 55,935 vertices), [Down] salient vertices of the partial
scanned object (consisting of 16,324), (c) [Up] remaining salient vertices of the high-quality model that creates unique pairs with the salient vertices of
partially-scanned model (consisting of 11,162 vertices) and [Down] vice versa, (d) Enlarged regions illustrating the identified correspondences in red color.

4) Model-to-Object Correspondence Estimation: The feature
vectors f, calculated using Eq. (13), are used for the evaluation
of similarity between the query and farget point clouds,
looking for their unique pairs of vertices p which exhibit the
smallest feature vector distance. It is expressed through the
lo-norm:

P = (Vi,vq) = argmin [|f; — fo[|> (14)

Vi, Vg
Finally, we keep only the first K, pairs having the highest
feature vector similarity. An example is shown in Fig. 3c-3d,
where feature vector correspondences are illustrated with red
color. These K, pairs are the best-identified correspondences
between model T and object Q. Let’s note here that we
use the augmented feature vectors f, which include multi-
scale geometric descriptors in addition to 3D location, to
avoid erroneous surface mapping obtained by chance due
to accidentally good local geometric fit (small Euclidean
distance) of the partial point cloud. These augmented feature
vectors can ensure not only spatial proximity, but also local
shape similarity. At this point of the methodology, the obtained
pairs of corresponding vertices include matches for each target
model T to each query object Q7,5 € {1,---,m,}, where
the m, denotes the number of the guery objects. To identify the
correspondences, we introduce a dissimilarity factor c¢; which
is defined as the mean distance of the K, pairs of the best-
related vertices between model T and each object Q.

1 &
¢ = E;Hfti —fll2 (15)
where £ ; € Q’ is the feature vector matched to f; €T
The lower the value of ¢, the more similar are the two point
clouds.

C. Narrow-Phase Registration

Having identified and matched the target and query object pairs
in the scene, the fine registration is achieved by identifying
a set of corresponding points and then finding the optimal
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transformation that brings those pairs of points (control points)
into alignment. In this step, we initialize the registration with
the solution obtained from the global initial alignment and
refine it using a weighted ICP approach. The objective is, given
a set of control points p = (vy,, vy, ) withvy, € Tand v, € Q,
to estimate a rigid transformation 7" that minimizes a distance
(or more general an error) function.

As the partial object contains only a subset of the shape
represented by the high resolution model, point matching is
performed starting with a set of control points in Q and
identifying the corresponding points in T as described in the
previous section. Generally, in weighted ICP approaches [58],
[59] the error function is composed of a feature vector distance
term and a weighting term used to downgrade the contribution
of pairs that have high likelihood to be outliers or wrong
correspondences. The optimal transformation is obtained by
solving a weighted least squares minimization problem. For
rigid transformations expressed by a rotation matrix R and a
translation vector t, it can be written as:

i DRve, +t,vg, 16
argﬁr,iunzi:gzﬁ( (Rve, +t,vg,)) 16)

where D is the Euclidean distance and ¢(.) is an even, C'-
continuous on R and monotonically increasing function on
[0, 00). The function ¢(r) that we use is the Tukey’s bi-weight
function formulated as:

if [r| <~

: (17)
* if |r] >~

and we use as weights w(r), the first order derivative of ¢(r)
function, denoted w(r) = ¢ (r):

w(r) :{ r(1

2

)7 if | <y

- 18
0 if |r] >~ (15

D. Robustification by Outliers Removal

Outliers and other surface abnormalities of the scanning pro-
cedure might be interpreted as salient points, leading to wrong
matching and registration results. So, we have to ignore both
the outliers and the open edges, which form the boundary
of the segmented point cloud, because they do not represent
characteristic discriminative features to guide the registration
process.

1) Small-Scale Outliers Removal: Scanned objects or scenes
usually include noisy parts represented by vertices that do not
belong to the geometry of the real object. Two different types
of outliers occur in scanned point clouds; (a) the large-scale
outliers that lie away from the point cloud and (b) the small-
scale outliers which are tangled with the useful information
and could be mistakenly recognized as points [60]. As we
mentioned earlier, the large-scale outliers could be removed
through the application of the clustering method presented in
Section III-B1. For the small-scale outliers removal process,
we use a Robust Principal Component Analysis (RPCA) ap-
proach, which decomposes the observed measurement matrix
E into a low-rank matrix L, representing the real data, and

a sparse matrix S, representing the outliers [61], [62], by
solving:

argmin ||L||« + A||S|]1, subject to L+ S =E, (19)
L,s

where ||L||, is the nuclear norm of a matrix L (i.e, ), o;(L)

is the sum of the singular values of L). This problem can

be solved using a splitting method, such as the Augmented

Lagrange Multiplier (ALM) algorithm [63], [64]:

arg min ||[L||. + A[S[ + (Y, E-L-S)+ £ |[E-L-8|} 0
L.S,Y 2

where (a,b) represents the inner product of a and b. The
observed matrix E € R3"*(*+1) i constructed as follows:

Vi Vi1 Vi2 Vik
V2 Va1 V22 V2k

E= Q1)
Vng  Vngl Vng2 Vngk

where v; = [7;,;,2]7 and k represents the number of the
nearest neighbors used (k = 50). The estimation of the low-
rank and the sparse matrix is performed according to:

mins £(L,S,Y) = Q,,~1(E—L+p7Y)

ming, £(L,S,Y) =D, 1 (E-S+p'Y) 22)

where Q,[] = sgn(.)max(].| — 7,0) denotes the shrinkage
operator and D,(.) = UQ,(>.)VT denotes the singular
value thresholding operator. More details about the RPCA
can be found in [63], [64]. The resulting sparse matrix
S € R37ax(k+1) hag the form:

‘71 i711 {’/12 {}lk
V2 V21 V22 Vak

S = (23)
vnq {"nql ‘771[12 {"nqk

where V; = [Z;,7:, 2i]7 represents the corresponding sparse
values. We use only the values v; of the first column in order
to estimate the metric m;, according to the following equation.

mi = /3] +J7 + 2

The value m; quantifies the probability of vertex ¢ to be an
outlier. The sparse matrix is usually full of zeros (representing
vertices on flat areas), and only some high non-zero values
exist that correspond to outliers.

2) Boundary Edges Identification and Removal: Similarly
to the outliers, the boundary edges of a partially-scanned
object may mistakenly be recognized as edge features, so they
must be identified and removed as well. It is necessary to
differentiate salient points on edges and corners, useful for
guiding the registration process, from misleading boundary
edges around holes and missing parts, caused by imperfect

scanning. To identify such boundary edges, we estimate the
> lv=vill

K
vew, D

(24)

mean distance dy, = — between each ¢ vertex
and its K p nearest neighbors, and characterize each point as
internal or boundary point according to:

|

is an internal vertex, if dy, < 2d

is a boundary vertex, if dy, > 2d (25)
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where the d represents the mean distance of all mean distances
dy; in the query object Q,
’VLq
Z d‘I’j
CZ — 1=1

Ng

(26)

IV. EXPERIMENTAL ANALYSIS
A. Experimental Setup, Datasets and Metrics

The experiments were carried out on an Intel Core 17-4790HQ
CPU @ 3.60GHz PC with 16 GB of RAM. The core algo-
rithms are written in Matlab and C++.

For the experiments, we used two different datasets. The first
one consists of a variety of partially scanned point clouds
representing cluttered scenes of different objects, denoted as
UWAOR [65], [66]. The dataset contains 50 cluttered scenes
with up to 5 objects acquired with the Minolta Vivid 910
scanner in various configurations from a single viewpoint. All
objects are heavily occluded (60% to 90%), as illustrated in
Fig. 4. The second dataset, Fig. 5, consists of a variety of in-

Hhd

N *; —
Fig. 5. UWA3M dataset consisting of incomplete scans of 3D models in
arbitrary angles.

N . ¥
X ) Ny oy AT e
S - 4 N L —
\ - N~ / “ < J o th .
- a4 /d £ .
Fig. 6. Rodola’s dataset consisting of 150 synthetic partially-observed scenes.

complete models under different viewpoints (angles), denoted
as UWA3M [67] and with various percentages of occlusion.
There are 22 incomplete instances of ”Chef”, 16 of ”Chicken”
and “Parasaurolophus”, and 21 of “T-rex”. The third dataset
[68] is composed of 150 synthetic scenes, captured with a
(perspective) virtual camera, and each scene contains 3 to
5 objects. The model set is composed of 20 different target
objects.

An index of performance of the registration task is the degree
of deviation for rotation R and translation t from the ground
truth rotation matrix R, and translation vector t,. The rotation
error €, and the translation error ¢; are defined as:

S(RR;!) -1
€, = arccos <(9)) @ 27
2 T
€ = ||t — tg]] (28)

where S(A) determines the sum of the diagonal elements of
the matrix A [1]. It is obvious that the smaller these errors,
the better the matching results.

B. Parameter Adjustment

In this paragraph, we will present and justify the selection
of parameter values that are fixed through the steps of the
proposed methodology in order to provide reproducible results.
The chosen number of neighboring vertices in Eq. (6) is equal
to K, = 5, but in any case, we have observed that the
algorithm is not sensitive to this value. In fact, the results
are very similar for the range of K, € [5,8]. The only
important fact is that those vertices should be retrieved from
the geometric area, which is very close to the reference vertex,
such as the first ring area.

In Eq. (24), we estimate the quantity m,; for each ¢ vertex that
is used to identify if a vertex is an outlier or not. However,
we first need to specify a threshold for this identification.
We interpret as outliers those vertices that have a value of
m,; bigger than 0.6, and then we remove them. Obviously,
this threshold can be adjusted; The experimental analysis
demonstrates that the lower the threshold, the more vertices
are considered as outliers and are therefore removed. The user
can adjust the value of this parameter; however, we suggest
the threshold to be equal to 0.6.

Eq. (25) is used to determine if a vertex is considered as
a boundary point or not. The used number of neighboring
vertices in this case is Kp = 10. The selection of this value
is not critical and it is advised to be selected in the range
of Kp € [8,12]. These values provide enough, but not too
many, instances. In subsection III-B4, we described the use of
feature vectors f for finding unique pairs. However, to make
the process more computationally efficient, we do not compare
the two full-sized point clouds, vertex by vertex, but we keep
only the highest saliency vertices (as presented in Fig. 3-(b)),
corresponding to saliency values higher than a threshold set
to T =0.4.

TABLE III
DEFAULT VALUES FOR PARAMETERS.
Variable Default Short description
Value
K 5 Number of neighboring vertices in Eq. (6)
Kp 10 Number of neighboring vertices in Eq. (25)
K 1000 Value of kernel in Eq. (11)
Ky 200 Number of compared vertices in Eq. (15)
I3 0.4 Threshold that denotes the dissimilarity

Eq. (15) expresses the dissimilarity factor c. If the value of c is
lower than a threshold then we assume that the two examined
point clouds are related, representing the same 3D object. The
experimental analysis (please refer to subsection IV-D1) has
shown that a threshold ¢ = 0.4 allows to differentiate intra-
from inter-class object pairs. We also define the number of the
compared vertices to be equal to K, = 200.

We would like to mention here that the selected values are
invariant to affine transformations and sampling density. Table
IIT summarizes the default values that we used and a short
description.
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TABLE I

TABLE 11
SPEED UP OF OUR APPROACH (NARROW-PHASE REGISTRATION) SPEED UP OF OUR APPROACH (CLUSTERING)
O. Registration (in sec.) Our Approach (in sec.)
Target Pre- Regi- Segme- Pre- Regi- Speed Scene Nm;;.ber Original AO m; Speed
to proce- stra- Total nta- proce- | stra- Total P . DBSCAN ppr. up
. . . . . up Points oach
scene cessing tion tion ssing tion
Scene
Chef to 26.08 9.82 35.90 0.81 3.78 1.81 6.40 X 5.6 3 101,644 18.75 0.46 x 417
Scene 5
. Scene
Chic.©0 115991 | 1280 || 4071 || 020 | 220 | 215 || 473 || x86 24 | 14130 16125 064 | x 957
Scene 12
Scene
Par. 0 1| 2936 | 2682 || 5618 || 031 | 420 | 508 || 959 || x58 33 | U275 22531 053 | x 425
Scene 27
Scene
Trexto 1l 9670 | 1848 || 45.20 0.16 299 | 312 || 627 || x72 4 153,486 68.42 070 | x97.7
Scene 32
. Scene
Rhino to 11 3106 | 876 || 39.82 || 046 | 141 | 071 || 258 || x 154 so | 124464 1 2901 057 xSl
Scene 43

C. Computational Efficiency

In this paragraph, we present a time complexity analysis
showing how our contribution can speed up the clustering
process. Table I assesses the execution time of the narrow-
phase registration phase and Table II assesses the modified
clustering algorithm.

More specifically, in Table I, we present the speed up of our
approach in comparison with the one-shot registration (i.e, O.
Registration in Table I) (without scene segmentation) applied
for different rarget to scene registration examples. In this case,
the effectiveness of our approach depends mainly on the size
of the query point cloud, however for all tested examples the
speed up is more than 5x. We would like to note here that the
pre-processing step consists of the outliers’ removal process
and feature extraction.

In Table II, we present the execution times of the original
DBSCAN algorithm and our approach for some random scenes
of the used dataset (UWAOR). As we can see, our approach
is up to 97.7 times faster. Also, we can observe that the
effectiveness of our approach is more apparent with increasing
number of points. The main reason why our implementation
is faster than the original DBSCAN is that our approach
does not exhaustively estimate distances between each vertex
and all the other vertices of the point cloud, but searches
only within a small spatial area consisting of a specific and
predefined number of neighbors equal to K,. In this case the
time complexity of the algorithm is not O(n?) but O(K?2),
where K, < n.

D. Performance Evaluation

In the following subsection, we present and evaluate the
performance and accuracy of the proposed matching and
registration process.

1) Evaluation of Matching in Partial Scenes: For this ex-
periment, we used the 50 partially scanned scenes of the
UWAOR dataset (Fig. 4) and the five target models (i.e., Chef,
Chicken, Parasaurodophus, T-rex, Rhino). Fig. 7 presents the
boxplots of the dissimilarity factor between the guery and the
target models. The first five boxplots present the value of the
dissimilarity factor when the farget model is registered through

Boxplots of the dissimilarity between target and query models
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Chef Chicken Parasaurolophus — T-rex Rhino  Different models
Fig. 7. Range of the dissimilarity factor calculated between each target

and query (partial) model when they represent the same object (intra-
class) or different objects (inter-class). The first 5 boxplots show intra-class
comparisons for every individual object, whereas the last boxplot summarizes
the values of all inter-class comparisons.
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Fig. 8. Effect of occlusion on dissimilarity factor. [Left] Marginal distribution
of dissimilarity factor. [Right] Joint distribution of dissimilarity factor and
amount of occlusion in the case of intra-class object matching.

the broad phase in a scene where a partial representation of the
same object also exists (intra-class). On the opposite, the last
boxplot presents the values of the dissimilarity factor when
the rarget model is globally registered in a scene which does
not include a partial representation of the same object (inter-
class), like in the case of the rhino model as shown in Fig. 2.
As we can see, the dissimilarity factor of the first five cases
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is smaller than 0.5. This means that the global registration
provides a correct initial estimate, regardless of the noise,
amount of cluttering, and type of object. On the other hand, as
we expected, the dissimilarity factor between query and target
models is very high, when they represent different objects.

UWAOR
1 v }vy Py
0.8
g 0.6
(O]
Y 04
0.2%
o ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1
1-Precision

Fig. 9. PR curve under different threshold of the dissimilarity factor.

Fig. 8-[Right] depicts how the occlusion of a model (in
percentage %) affects the dissimilarity factor (in case of intra-
class matching). In other words, this figure shows that the
value of the dissimilarity factor depends on the percentage of
the occlusion of the query object. The bigger the occlusion,
the higher the possible values of the dissimilarity factor, as
observed from the slight shift of the distribution towards higher
values. The colors of the heatmap represent the number of the
instances per occlusion and dissimilarity factor as presented
in the corresponding axes. Fig. 8-[Left] presents a histogram
showing the number of instances that in certain range of the
dissimilarity factor. The distribution shows that most of the
cases have a dissimilarity factor between [0.1 —0.3]. Each bar
of the histogram is the total sum of each row of the right
figure.

Moreover, we calculated the Precision-Recall (PR) curve
which is one of the most common indicators used in the
literature for the evaluation of a descriptor or algorithm in
retrieval tasks [18]. Precision denotes the number of correct
matches to the total number of matches. Recall denotes the
number of correct matches to the total number of possible
correct matches. In Fig. 9, the PR curve has been created
by changing the threshold of the dissimilarity factor (which
defines the similarity between two models) in a range of
[0.05 — 1] with a step of 0.05. Our method provides a binary

TABLE IV
RESULTS OF MATCHING THE FIVE TARGET MODELS TO THE 50 PARTIAL
SCAN SCENES [UWAOR].

Name of |y oe | Chicken | Parasaur. T-rex Rhino
model
TP 50/(50) | 47/(48) | 45/(45) | 45/(45) | 28/(29)
TN 0/(0) 2/(2) 4/(5) 5/5) | 21421
FP 0 0 1 0 0
FN 0 1 0 0 !

decision (if the query and target models represent the same
object or not), based on the value of the predefined threshold.
The broad-phase registration only identifies the area of the

10

point cloud scene in which the query model may lie, but the
value of the dissimilarity factor is what ultimately defines
if there is an actual match. Table IV presents the results of
our matching process. The numbers in parenthesis present the
correct (existing or non-existing) matches which we aim to
identify. For example, the "Chicken” model appears in 48 of
the 50 scenes and the method has found 47 true positives (TP)
and 2 true negatives (TN) cases. As can be seen, the "Chef”
and the "T-rex” models are correctly matched in all of the 50
and 45 scenes, in which they correspondingly appear. Also, all
models except the Parasaurolophus (having one false positive
(FP) were correctly identified as missing in all scenes in
which they do not appear. Statistical measures of performance
are shown in Table V for each model separately as well as
averaged across all models. Finally, in Fig. 10, we present the

TABLE V
STATISTICAL MEASURES FOR THE EVALUATION OF OUR METHOD.
Spec. | Prec. | Recall | Acc FPR F1
Chef - 1 1 1 - 1
Chicken | 1 1 | 0979 [ 0980 | o | 0989
Parasaur. | 0.800 | 0.978 | 1 098 | 0200 | 0.989
Tyra 1 i i i 0 i
Rhino i 1 | 0965 [ 0980 | o0 | 0982
’ Total \ 0.969 \ 0.995 \ 0.991 \ 0.988 \ 0.030 \ 0.993 ‘

recognition rate, i.e. the fraction of TP over the total number
of correct matches, of our method in comparison with other
well-known methods of the literature for different occlusion
rates. The recognition rate of our method is less than 100%
only when the occlusion is higher than > 85%.
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Fig. 10. Recognition rates per different percentage of occlusion, in compar-
ison with other methods, namely tensor [65], spin image [3], keypoint [66],
VD-LSD [8], EM based [10], RoPS [11] and MS_LF [2].

2) Evaluation of Matching with Noisy Query Models: In this
experimental case, we compare the target models with query
objects that represent a partial scan of the farget model, under
different levels of noise. For the creation of the noisy models,
we added, to each query model, different levels of Gaussian
noise with intensity op = {0.1,0.3,0.5} to each of the
original representations [69]. An example of a noisy scene
with different levels of Gaussian noise is presented in Fig. 19.
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Fig. 13. Recognition rates per different levels of noise for the each model
separately and in total.

TABLE VI
TRUE POSITIVE AND FALSE NEGATIVE MATCHES USING THE ORIGINAL
AND THE NOISY DATASETS [UWA3M].

Chef Chicken Parasaur. T-rex

Original TP=22 | TP=16 | TP =16 | TP = 21
rgina FN=0 | FN=0 | FN=0 | FN=0
Noise o — 0.1 | TP=22 | TP=16 | TP=16 | TP =21
7B =Y FN=0 | FN=0 | FN=0 | FN=0
Noise 0 — 0.3 | TP=21 | TP=15 | TP=15 | TP =16
oE =5 FN=1 | FN=1 | FN=1 | FN=5

Noi _ o5 | TP=20 | TP=10 | TP=13 | TP=13
oveorp =091 EN=2 | FN=6 | FN=3 | FN=8

In Table VI, we present the TP and the false negative (FN)
matches for each of the different models of the dataset. The
TP matches are 100% for the original dataset and under the
presence of noise with o = 0.1. When the level of noise
starts to increase (> 0.1), the first false negatives start to

This work is licensed under a Creative Commons Attribution 4.0 License.

appear. Similar conclusions can be observed in Fig. 13. The
recognition rate decreases as the level of noise increases, but
nevertheless does not drop a lot, as even for a high amount of
noise (i.e., o = 0.5), the mean recognition rate remains high

(75%).

Fig. 11 shows the histograms representing the number of intra-
classes comparisons that have a certain value of dissimilarity
(x-axis). As we can observe, in the original dataset and in
the dataset that has been affected by o = 0.1 noise, the
dissimilarity factors are less than 0.4. As the amount of noise
increases, the dissimilarity factor also increases, affecting the
accuracy of object identification. Additionally, in Fig. 12, we
present the dissimilarity factor for different percentages of
occlusion for the different noisy datasets. As expected, the
dissimilarity factor depends on the percentage of the occlusion
of the query object, as well as on the level of noise.

3) Evaluation of Segmentation and Registration in Noisy and
Low Quality Scenes: Besides the fact that the UWAOR dataset
consists of models that have been affected by real noise due
to the limitations of the scanner device, we further investigate
more challenging situations of noisy and low quality scenes.
In Fig. 16, we present how the clustering method works under
different levels of Gaussian noise (0.1 - 0.5) and different
levels of visual quality (10% - 50% simplification). In Figs.
19, 20, we present some experimental results that show how
the performance of the broad-to-narrow registration is affected
by different levels of noise and different resolution. More
specifically, we applied different levels of Gaussian noise
[cg = 0.1, 0.3, 0.5] to the models, and then we followed the
same steps as in the original implementation of our approach.
Additionally, in Figs. 19, 20, we present how the low resolu-
tion quality of a scene could also affect the performance of
the alignment. In this experiment, we downsampled the scene
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total points simplification.

about 10%, 30%, and 50% of the original points (i.e., sim.
10%, sim. 30%, sim. 50%). The experiments show that the
alignment of noisy or low-resolution models is deteriorated,
as was anticipated. However, the figures and the results show
that the performance of the whole proposed pipeline is not
significantly affected (in a way to hinder correct matching and
registration).

4) Evaluation of the Narrow-Phase Registration: Besides the
evaluation of the matching process, which results to object
identification, we also evaluated the robustness of the reg-
istration process that allows the high-quality 3D model to
accurately replace the partially scanned model. Even if ob-
ject identification is always correct, accurate model-to-object
registration is not granted.

Figs. 14-15 present the rotation (e,) and translation (e;) errors
after the broad-phase and the narrow-phase registration of the
models in each scene. In the majority of the cases, the narrow-
phase registration reduces significantly the error of broad-

phase registration. Additionally, the broad-phase registration,
used as an initialization step, affects the results of the narrow-
phase registration, however the upper bound of the latter
remains limited even for inaccurate initializations.

In Fig. 17 we present the results of the broad-phase and the
narrow-phase registration for the “Chef” model of the 7¢"
scene and the “Chicken” model of the 49*" scene. We also
provide enlarged details for an easier comparison between the
approaches and heatmaps that visualize the mean squared error
between the position of the registered and the original models.
Many methods obtain high registration accuracy when applied
to full objects, however, they achieve a much lower accuracy
when used with partial objects [70]. Many approaches provide
good results only if there is a big overlap between the
input models. Other approaches have some constraints, like
equally sized models with respect to their number of vertices.
In Fig. 18, we present the registration results of different
state-of-the-art methods as applied in some partially-scanned
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Fig. 17. (a) Partially scanned segments of a scene (b) broad-phase registration
and heatmap visualization of mean squared error, (c) narrow-phase registration
and heatmap visualization of mean squared error, (d) enlarge details of broad-
phase registration, (e) enlarge details of narrow-phase registration.

scenes of the dataset. More specifically, the used methods for
the registration comparisons are: (i) Robust low-overlap 3-D
point cloud registration for outlier rejection (RLO) [71], (ii)
Discriminative Optimization: Theory and Applications to Point
Cloud Registration (DO) [72], (iii) Density Adaptive Point Set
Registration (DARE) [73] and (iv) Super 4PCS Fast Global
Point cloud Registration via Smart Indexing [74]. To note here
that for a fair comparison with all aforementioned approaches,
we firstly applied the model-to-object matching results ob-
tained by our method, and then used them for the narrow-
phase registration step. The experimental process shows that
our robustified weighted ICP-based method provides the most
accurate registration for all the models of the partial scenes.
Finally, in Fig. 21, we present the rotation €, and translation €;
error for each model presented in the 50 scenes of the UWAOR
dataset and in the 150 scenes of the Rodola et al. dataset [68],
for different competing methods.

V. CONCLUSIONS

In this paper, we presented a methodology for the identification
and registration of 3D objects in partially scanned and clut-
tered point clouds. The point clouds might include 3D objects
lying in arbitrary positions in multi-object scenes and include
noise and outliers. The whole multi-step methodology has
been designed to address many challenging subproblems with
the aim to reduce uncertainty in matching through dedicated
salient point detection and robustification techniques and to
optimize the mapping following a broad to narrow registration
strategy. The comparison of our method with other state-of-
the-art approaches has shown its superiority.

Our future plans include the semantic retrieval of objects
in order to complete all partial or low-quality objects of

13

the identified category (e.g., replacement of all partially-
observed cars in a cluttered point cloud scene acquired by
Lidar sensors, with high-quality car models from a database,
regardless of the possible different shapes and forms of the
cars). We furthermore aim to investigate the combination of
our methodology with non-rigid transformation that will allow
to map and replace partially observed deformable objects
which appear in different poses (e.g. the moving human body)
with the corresponding models of a database.
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