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Abstract: A challenge of the computer vision community is to understand the semantics of an image that will allow for 

higher quality image generation based on existing high-level features and better analysis of (semi-) labeled 

datasets. Categorical labels aggregate a huge amount of information into a binary value which conceals 

valuable high-level concepts from the Machine Learning models. Towards addressing this challenge, this 

paper introduces a method, called Occlusion-based Latent Representations (OLR), for converting image labels 

to meaningful representations that capture a significant amount of data semantics. Besides being information-

rich, these representations compose a disentangled low-dimensional latent space where each image label is 

encoded into a separate vector. We evaluate the quality of these representations in a series of experiments  

whose results suggest that the proposed model can capture data concepts and discover data interrelations. 

1 INTRODUCTION 

Deep Learning (DL) advancements during the last 

years offer powerful frameworks for mapping dataset 

instances to binary labels and thus allow the building 

of powerful classifiers for several seemingly difficult 

tasks (Touvron et al., 2019), (Simonyan & Zisserman, 

2015), (K. He et al., 2016), (Szegedy et al., 2017). 

Classification models are usually simpler and more 

successful in their task than generative models. 

Likewise, transforming the instances of a dataset to 

meaningful representations is harder than 

transforming them into binary vectors because it 

requires the preservation of data semantics. 

Compressing the dataset instances into binary 

numbers results in the condensation of data 

interrelations to a degree that they become 

undetectable and not re-constructible anymore. For 

example, the value of a binary label can be calculated 

by a classifier by combining the features detected 

during the forward propagation of the data through 

the model’s layers. At the level where the label is 

calculated (i.e., the model’s output) every feature and 

data characteristic has already been processed into 

some high-level data abstraction. More importantly, 

the high-level concepts do not contain qualitative 
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information or any other statistical information that 

describes the degree based on which some instance 

complies with a specific label. On the contrary, a  label 

described by a distribution instead of a binary label 

mitigates the problem of blurred-out statistics and 

context unawareness. The contribution of this paper 

involves the investigation of suitable DL models 

which allow the calculation of meaningful vectors 

from the labels of a dataset with the information 

provided by a classifier trained with these labels. For 

this purpose, a Siamese neural network is employed, 

where the information of the classifier combined with 

input image occlusion enables the Siamese model to 

extract discriminating features and calculate 

meaningful label distributions. We call our method 

Occlusion-based Latent Representations (OLR). This 

work’s main contribution is a simple but effective 

methodology for learning appropriate label 

distributions that contain enough semantic 

information and can be exploited in various ways as 

demonstrated in a series of experiments. OLR builds 

latent representations in a supervised manner (using 

labels) that have a major advantage: latent subspaces 

disentanglement. Each latent representation links 

directly to one problem label and automatically 

constitutes that label’s set of exclusive factors of 



variation. 

The rest of the paper is organized as follows: 

Section 2 describes related work. Section 3 describes 

the methodology followed while Section 4 presents 

various experiments assessing the quality and 

effectiveness of the approach. Then, Section 5 

discusses the results and Section 6 concludes the 

paper. 

2 RELATED WORK 

Different studies applied a variety of strategies for 

label enhancement and/or efficient separation of the 

effect that each label has on the data . 

2.1 Label Distribution Learning and 
Label Enhancement 

Hinton et al. (2015) suggested raising the temperature 

coefficient of the SoftMax units at the output of the 

classifier to increase the entropy of the labels’ 

distribution. In this way, label distribution becomes 

less stringent and reveals otherwise unobservable 

instance properties. Of course, this strategy can be 

applied only after the model is trained and it allows 

instance representation with relaxed class 

probabilities, i.e., a  vector containing the probability 

of each class. Label distribution learning (LDL)  

(Geng, 2016) aims at a  similar outcome, i.e., a  vector 

representing the degree to which each label describes 

an instance. LDL maps each instance to a label 

distribution space but requires the availability of the 

actual label distribution before-hand, something 

which is highly impracticable in real-world  

applications. Label enhanced multi-label learning 

(LEMLL) (Shao et al., 2018) suggests a framework 

incorporating regression of the numerical labels and 

label enhancement that does not require the 

availability of the label distribution. LEMLL jointly 

learns the numerical labels and the predictive model 

taking advantage of the topological structure in the 

feature space (label enhancement). 

2.2 Attribute-Editing Models 

Attribute-editing models are also relevant, in the 

sense that they target specific attributes of the 

instances. Some recent attribute-editing models 

manipulate face attributes and generate images with a 

set of desired (or undesired) characteristics while 

preserving at the same time almost all other image 

details. Given an image and the desired 

characteristics (labels), an image is generated that 

satisfies the given characteristics while resembling 

the initial image in every other detail. Fader networks 

(Lample et al., 2017) enforce an adversarial process 

that makes the latent space of the labels invariant to 

the attributes. Generally, the attribute-independent 

latent representation is very restrictive, leading to 

blurriness and distortion (Lample et al., 2017). Shen 

and Liu (Shen & Liu, 2017) proposed a model that 

learns the difference between images before and after 

the manipulation, i.e., a  residual image holding the 

difference of the pixel values due to attribute-editing. 

An interesting approach applying an encoder-decoder 

architecture is by (Guo et al., 2019), which 

compresses the original image to a latent 

representation that has predefined placeholders for 

the different problem classes. The model is trained 

using different image pairs, editing the individual 

placeholders according to the corresponding binary 

labels of each image, preserving only the ones that are 

set in the image label vector, and making zero every 

other. Edited representations pass through the 

decoder to reconstruct the original image. Besides the 

two edited representations, MulGan created two more 

representations by exchanging the editable 

placeholders between the two representations. The 

representations with the attributes exchanged pass 

through a label classifier and a real/fake 

discriminator. The latter uses an adversarial loss 

aiming to produce more realistic images. AttGan (Z. 

He et al., 2019) uses an encoder-decoder architecture 

but additionally applies conditional decoding of the 

latent representation based on the desired attributes 

(i.e., class labels). AttGan also applies a 

reconstruction, using both classification and 

adversarial loss. The reconstruction preserves the 

attribute-excluding details, classification loss 

guarantees correct attribute manipulation while 

adversarial loss aims to achieve realistic image 

generation. Authors of AttGan also suggested that 

symmetric skip connections between the encoder and 

the decoder, like the U-Net architecture (Ronneberger 

et al., 2015), improved their model’s performance. 

Liu et al. (M. Liu et al., 2019) made some significant 

modifications to the AttGan architecture for further 

improving the results obtained. The authors of 

STGAN, after conducting several experiments, 

suggested that skip connections can improve the 

reconstruction of the original image but at the same 

time may harm attribute-editing. Their effect can be 

driven to a win-win compromise using selective 

transfer units that control the information flow from 

the encoder to the decoder. They also suggested using 

a difference attribute vector instead of the whole 

actual target attribute vector (having a −1 for 



removing an attribute and a +1 for adding an 

attribute). 

 

2.3 Disentangled Representations 

According to Bengio (Y. Bengio, 2013), a  change in 

one dimension of a disentangled representation 

causes a change in one variation factor while being 

relatively invariant to changes in other factors. 

Disentangled representations have been studied both 

in the context of semi-supervised learning (Hsu et al., 

2017), (Denton & Birodkar, 2017), and unsupervised 

learning (Higgins et al., 2017), (Kurutach et al., 

2018), (Kim & Mnih, 2018). Semi-supervised 

approaches require knowledge about the underlying 

factors of the data which is a  significant limitation. β-

VAE (Higgins et al., 2017) is a disentangling 

approach based on the Variational Autoencoder 

(VAE) (Kingma & Welling, 2014) and achieves 

latent space disentanglement by applying a slightly 

different VAE objective function with a larger weight 

on the Kullback–Leibler (KL) divergence between 

the posterior and the prior. While the β-VAE is 

appealing mainly because it relies on the elegant 

framework of the VAE, it offers disentanglement to 

the cost of generated image quality. Kim and Mnih 

(Kim & Mnih, 2018) proposed encouraging the 

VAE’s representations distribution to be factorial 

which improves upon β-VAE. InfoGAN (Kurutach et 

al., 2018) is a popular alternative that enhances the 

mutual information between the latent codes and the 

generated images. 

3 METHODOLOGY 

Our approach for turning the problem labels to 

distributions involves the use of information from a 

model trained on the classification task. Such a 

classifier compresses the information of an image 

down to labels and outputs probabilities of label 

occurrence for an input image. We further use a 

Siamese network (Neculoiu et al., 2016),(Sahito et 

al., 2019),(Mueller & Thyagarajan, 2016),(Benajiba 

et al., 2019) which receives two images and the 

product of their label probabilities to adapt its output 

𝐸 accordingly, as illustrated in Figure 1. The output 

of the Siamese network  comprises L vectors of size k, 

with L being the number of problem labels and 𝑒𝑙 ∈
𝑅𝑘  being the row vector component of E 

corresponding to label 𝑙 . Effectively, the Siamese 

output is a  matrix holding much less information than 

the original input 𝑥 ∈ 𝑅ℎ×𝑤×3 , where h, w are the 

height and width of the 3 channels of the image 

respectively. We generally assume that 𝐿 × 𝑘 ≪
ℎ × 𝑤 × 3. The output consists of L distributions in 

vector form, one for each problem label. Since these 

vectors constitute compressed representations of the 

input, we will refer to them as image embeddings 

from this point on.  

For the Siamese model to learn the embeddings 

properly, we sample pairs of images from the dataset 

calculating their label probabilities using a classifier 

previously trained on recognizing the labels. The 

probability outcomes of the two images are multiplied 

in an element-wise fashion to obtain a value for the 

overall probability of each label being evident in the 

image pair. Each training example comprises a triplet 

of two images and the joint probability vector of their 

labels (the product of the classifier’s probabilities for 

the two images). The Siamese network receives the 

two images of each triplet and calculates two 

embeddings, one for each image. Then, it calculates 

the dot products between the vector components 𝑒𝑙  of 

the two embeddings. Assuming the two embeddings 

matrices 𝐸1 , 𝐸2 ∈ 𝑅𝐿×𝑘, the dot product is calculated 

between the rows of the two matrices resulting in a 

vector  𝑢⃗ ∈ 𝑅𝐿  . The loss function of the Siamese 

model is equal to the Mean Squared Error (MSE) 

between  𝑢⃗  and the joint probability vector in the 

triplet. In other words, the dot product between the 

label embeddings of the two images should be equal 

to the joint probability vectors as calculated by the 

classifier. This means that images tha t share a 

common label should produce embeddings of the 

specific class that have a high dot product. 

Regarding the proposed approach, there are two 

main issues to address. The first has to do with the 

Siamese model architecture and the way it is designed 

to have an output in the form of matrix E. The second 

issue concerns the calculation of appropriate joint 

probability vectors. Regarding the Siamese 

architecture, after several convolutional and pooling 

layers, we apply a special layer that comprises several 

feature maps that form label-specific groups. The 

number of groups is equal to the number of problem 

labels so that each label is represented by a certain 

number of feature maps 𝑘 . The number of feature 

maps representing a label is equal to the 

dimensionality of each embedding’s vector 𝑘 and the 

size of the special layer is 𝑓 × 𝑓 × (𝐿 × 𝑘) , with f  

being the width/height of the feature maps. At the 

output of this layer, an average pooling layer is 

applied which calculates the average value of each 

feature map. Consequently, the output of the average 

pooling layer is 𝐿 × 𝑘 × 1 and through a reshaping 

operation, the output can be transformed to the 



embedding’s shape L × k. The last layers of the 

Siamese network are displayed in Figure 1. 

The concern for calculating appropriate joint-

probability vectors is related to the classifier’s 

tendency to output a high probability (close to 1) for 

the correct class and a low probability (close to 0) for 

the incorrect classes. This results in calculating joint 

probabilities that are either close to 1 or 0 which does 

not empower the Siamese model to learn the data  

 

Figure 1: Final layers of the Siamese model. After several 

convolutional and pooling layers, the label-specific layer 
consists of L groups of k feature maps. The next layer is an 

average pooling layer followed by a reshape operation 

which formats the output matrix to a shape of  𝐿 × 𝑘 , so that 

there is a vector (embedding) of size k  for each of the L 

classes. According to the architecture, each problem label 

has its feature maps which represent its statistics. 

 

Figure 2: Training process of the Siamese model. Two 
images are randomly chosen from the dataset and occlusion 

rectangles are applied at random positions on them. These 

rectangles are of different dimensions and have a height and 

width randomly chosen from a range of values that are 

between 0.33 and 0.66 of the image height and width (the 

occlusion rectangles shown in the figure are smaller for 
cosmetic reasons). Next, the two occluded images are 

classified, and the resulting label probabilities are 

multiplied to form a joint label probability. The two 

occluded images and the joint probability vector form a 

triplet that is used for the training of the Siamese model. 
Both images go through the model and produce two image 

embeddings 𝐸1 , 𝐸2. A dot product operation applies to the 

vector components of the embeddings resulting in a vector 

of L elements. The MSE between the joint probability of the 

triplet (obtained from the classifier) and the dot product of 

the embeddings’ vectors constitutes the loss of the training 

procedure. 

interrelations. The Siamese model becomes 

inefficient when its training relies on over-confident 

or binary vectors. Additionally, when joint 

probabilities lie close to the extreme probability 

values (0 or 1) the Siamese model is more prone to 

overfitting and thus may not properly consider feature 

correlations and interactions. Two ways for raising 

the entropy of the classifier’s output were considered: 

a) The first applies a strategy used in model 

distillation (Hinton et al., 2015) by raising the 

temperature parameter of the SoftMax function at the 

output of the classifier which relaxes the label 

distribution and communicates more information 

about the input b) The second approach is based on 

applying random partial occlusion to the input to 

make the classifier less confident about its 

predictions. Experiments showed that occlusion 

works better in the sense that it prevents the Siamese 

model from overfitting and encourages the discovery 

of feature correlations and the calculation of more 

expressive distributions. The degree of the occlusion 

on the images of each triplet (the percentage of the 

occluded image surface) can be determined 

experimentally for the problem at hand. We 

discovered that randomly selected occlusion 

rectangles of width and height ranging from 33% to 

66% of the image dimensions have a positive effect 

on the training of the Siamese model. Figure 2 shows 

the training process of the Siamese model. 

4 RESULTS 

We evaluate the proposed method on the CelebA 

dataset (Z. Liu et al., 2015). The dataset contains 

more than 200,000 images of faces, each annotated 

with 40 binary labels (either an attribute exists or not). 

Images are cropped and resized to 178 × 178 × 3 

pixels. In several cases, cropping removes part of the 

person’s neck thus 2 labels requiring view on the 

specific (low) image region are not considered: 

“wearing necklace” and “wearing necktie”. This 

reduces the number of problem labels to 38. 

Randomly selected 190,000 images are used in the 

training set (≈ 95%) while the remaining images are 

kept for the test set (≈ 5%). No pre-processing has 

been applied to the images. Each label embedding has 

a size of 32 which means that each image is 

compressed to a representation of size 38 × 32. After 

training the model and calculating the embeddings for 

each image in the dataset the quality of the 



embeddings is evaluated through various experiments 

discussed in the following sub-sections. 

4.1 Using the embeddings to train a 
linear classifier 

A linear classifier was trained based on the CelebA 

dataset using the calculated embeddings, to assess 

their quality. The performance of the convolutional 

classifier that the Siamese model relies on for its 

training was used as a baseline. This comparison can 

provide some useful insights on whether the 

calculated embeddings are indeed capturing the data 

relations. The linear classifier for this experiment has 

a single layer comprising of 38 neurons representing 

the classes of the dataset. Each of these neurons uses 

the sigmoid activation. The embeddings calculated by 

the Siamese model 𝐸 ∈ 𝑅𝑁×38×32 (N is the size of the 

training set) are used as input to this linear model. The 

linear classifier has a classification success rate of 

91.6% on the test set while the convolutional 

classifier has a success rate of 94 .2%. This slight  

performance decrease is the cost of obtaining 

embeddings that capture data inter-relations, as will 

be shown briefly. 

 

Figure 3: Examples of original CelebA images that are 

accompanied by vague labels, shown under the images. 
OLR does not adopt this labeling. Generally, the Siamese 

embeddings are more resilient to such cases than a 

convolutional classifier in the sense that they adopt a label 

only if they discover strong feature correlations with other 

images having the corresponding label. 

The patterns classified incorrectly by the linear 

model (trained on the embeddings) but, at the same 

time, classified correctly by the convolutional 

classifier were further analyzed. In essence, these 

cases belong to the 2.6% of the test set that reflects 

the success rate difference of the classifiers in 

comparison. It turns out that the CelebA dataset 

contains several wrong or ambiguous labels that the 

Siamese embeddings did not adopt. Some examples 

of questionable cases are shown in Figure 3. The 

Siamese model seems to be reluctant to associate 

vague labels with false evidence (features). On the 

contrary, the convolutional classifier tends to learn 

the ambiguous labels acting obediently in an eager to 

satisfy fashion. 

4.2 Correlations between the 
embeddings’ distributions 

In this experiment, the correlations between the 

embeddings were examined to investigate 

empirically whether the depicted label distributions 

are meaningful. Figure 4 shows the Pearson 

correlation coefficients between the distributions’ 

norm value. When a label is detected, the 

corresponding embedding’s norm-value tends to 

increase, reflecting the presence of such a 

characteristic, otherwise, the norm-value is very 

small. The high values of the vector reveal an attempt 

to describe the evident label through the calculated 

distribution. Some interesting and well-anticipated 

correlations are revealed, for example, the positive 

effect that big lips (0.3) and wearing lipstick (0.7) 

may have on considering a person being attractive. 

Other interesting correlations are between baldness 

and attractiveness (−0.2), double chin and gray hair 

(+0.5), being young and bald (−0.3), high cheekbones 

and attractiveness (0.3), being male and having a big 

nose (0.6), being male and having a heavy makeup 

(−0.8) and the tendency to consider a smiling person 

attractive (0.2). Small steps towards the pursuit of 

beauty are being made here. 

4.3 Principal Components Analysis of 
the embeddings’ distribution 

Principal component analysis (PCA) was applied to 

the embeddings focusing on the label “Mouth slightly  

open”, to further analyze the results and evaluate the 

characteristics of the distribution as obtained from 

OLR. This specific label was selected because almost 

half of the images in the dataset contain it, hence there 

is much information available for analysis. Moreover, 

this label can be effortlessly detected in an image and 

its detection does not rely on subjective judgment, for 

example, the label regarding “attractiveness”. The 

PCA applied on the “Mouth slightly open” 

embeddings of all images in the dataset revealed that 

the first component (eigenvector) explains 67 .5% of 

the data variance while the second component 

explains another 4.1% of the data variance. Given the 

large quantity of variance explained by the first  
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component, only this component was selected in this 

experiment. The projections of the “Mouth slightly 

open” embeddings of all images in the dataset on this 

single component were sorted in increasing order of 

magnitude. This results in a list of projections and 

their corresponding images, starting from images that 

have a smaller projection on the first principal 

component moving towards images that have a larger 

projection and thus comply with the selected label 

“Mouth slightly open”. Figure 5 shows some ordered 

images from this experiment. A higher value of the 

principal component projection signifies more 

confidence in the label “open mouth” being evident. 

 

Figure 5: Images corresponding to different projection 

values of the “Mouth slightly open” embeddings on the first 

principal component of the specific label’s embeddings set 

(displayed in increasing order). In the top row, the images 
correspond to ranking locations which are 20,000 positions 

apart (ranking positions 0-80,000). From that point on, 

images satisfy the “Mouth slightly open” attribute (almost 

50% of the images in the dataset have the specific label).  

The second row shows images corresponding to the ranking 
positions 100,000-180,000. The actual projection value is 

shown on top of each image. 

4.4 Using the embeddings for 

reconstructing the images 

In this experiment, each image is compressed to its 

representation. If a  label is evident in an image, its 

corresponding vector output imprints the phenotype 

of the specific label in the image. Each dataset image 

has an average of eight non-zero labels, which means 

that the average embeddings’ size effectively 

describing an image is 8×32 = 256 out of the total 

38×32 = 1216 numbers of the model’s output. The 

validity of this analysis relies on the fact that any label 

not evident in an image is described with a zero (or 

near zero) vector, so only the active labels get a non-

zero vector value. Given the input image sizes 

(178×178×3 = 95052 ), the model compresses the 

input by more than 370 times, representing the images 

with only 𝑝̅ × 32 numbers, where 𝑝̅  is the average 

number of evident labels in the images (nonzero 

labels). Due to the huge compression rate, 

reconstructing the image in a way that the imprinted 

face is recognized as being the same face shown in 

the input image is a challenging task. The Mean 

Squared Error (MSE) loss for the image 

reconstruction process has some interesting 

properties but also tends to create blurry images and 

annoying artifacts (Wang & Bovik, 2009) (Zhao et 

al., 2017). The very large compression factor applied 

in the embeddings amplifies these disadvantages. The 

MSE or any other norm-based distance error does not 

account for the structure and the characteristics of an 

image, such as the statistics among pixel values. On 

the contrary, such losses produce reconstructions 

which, in the general case, only approximate the raw 

pixel values in the training images. A better 

reconstruction could be obtained by using a loss 

function that accounts for pixel statistics reflecting 

the structure of the images like the structural 

similarity loss function (SSIM) (Wang et al., 2004). 

The SSIM loss function considers three basic image 

components: luminance, contrast, and structure. 

SSIM is a perceptua l-based loss function that 

considers some factors that are closer to what humans 

perceive when they look at an image. It seems 

unlikely that humans perceive an image’s content by 

making pixel-level calculations in a way like what 

norm-based losses do. In practice, the SSIM loss 

function measures the similarity between two images 

based on factors that encode the perceived change in 

structural information. The SSIM between two 

images x and y is calculated on various windows of 

size N as follows: 

𝑆𝑆𝐼𝑀(𝑥 ,𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 +𝑐1) (𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
    (1)  

with 𝑐1 and 𝑐2  stabilizing the division and 𝜇𝑥, 𝜇𝑦, 𝜎𝑥
2, 

𝜎𝑦
2  and 𝜎𝑥𝑦  calculated as: 

𝜇𝑥 =
1

𝑁
 ∑𝑥𝑖

𝑁

 ,   𝜇𝑦 =
1

𝑁
 ∑𝑦𝑖  

𝑁

 

  𝜎𝑥
2 =

1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥)

2
𝑁  ,   𝜎𝑦

2 =
1

𝑁−1
∑ (𝑦𝑖 −𝜇𝑦)

2
𝑁     

  𝜎𝑥𝑦 =
2𝜎𝑥 𝜎𝑦 + 𝑐2

𝜎𝑥
2 + 𝜎𝑦

2+ 𝑐2

 

SSIM acts on the luma (brightness) of the images 

and does not consider chrominance. For that reason, 

SSIM is applied separately on each of the three color 

channels of the image. To achieve even better 

chromatic reconstruction, the MSE loss was also used 

in conjunction with the SSIM, in a way that allows 

relative freedom to each loss function’s application. 

This degree of freedom is accomplished by applying 

the two losses on different layers of the reconstruction 



model, allowing both SSIM and MSE to operate on 

different value scales. More specifically, the SSIM 

loss is applied first to the output of layer Conν2Dout, 

which has a size of 176 × 176 × 3 as shown in Table 

1. A pixel was removed from each side (top/bottom 

height and left/right width) of the dataset images to 

match the size of the model’s output. Next, a  rescaling 

layer (Rescale) puts the pixel values back to the range 

y ∈ [0,1] by applying the following operation on the 

output of the previous layer x: 

𝑦𝑖 =
𝑥 𝑖 − 𝑚𝑖𝑛(𝑥)  

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
                       (2) 

Then, the MSE loss is applied at the last layer after 

the SSM loss is scaled by a factor α. The total loss 

function between the reconstructed image y and the 

original image x that corresponds to an input 

embedding e is: 

𝐿𝑒 = 𝛼 SSIM(𝑥, Conv2𝐷𝑜𝑢𝑡)  + (1− 𝛼)MSE(𝑥,𝑅𝑒𝑠𝑐𝑎𝑙𝑒)     (3)  

The reconstruction model is trained with the 

RMSProp optimizer and a learning rate of  1 × 10−4. 

Parameter 𝑎  of equation (3) is set to 0.5. Some 

reconstructions based on the test set embeddings are 

shown in Figure 6 next to the original images that 

produced the embeddings.  

Table 1: Architecture of the reconstruction model 

Layer Output 

Size (map 

height, 

channels) 

Parameters 1  
(kernel, 

channels, stride, 

padding) 

Flatten (1216)  

Dense (18432)  

Reshape (6,512)  

Conv2DT (12,128) (3,128,2,same) 

Conv2D (12,64) (3,64,1,same) 

Conv2DT (24,64) (3,64,2,same) 

Conv2D (22,64) (3,64,1,valid) 

Conv2DT (44,64) (3,64,2,same) 

Conv2D (44,64) (3,64,1,same) 

Conv2DT (88,64) (3,64,2,same) 

Conv2D (88,64) (3,64,1,same) 

Conv2DT (176,64) (3,64,2,same) 

Conv2D (176,32) (3,32,1,same) 

Conv2D𝑜𝑢𝑡  (176,3) (3,3,1,same) 

SSIM  

(x 2, Conv2D𝑜𝑢𝑡 ) 

1  

Rescale 

(Conv2D𝑜𝑢𝑡) 

(176,3)  

MSE 

(x 2, Rescale) 

1  

1 All activation functions are ReLUs. 
2 Input image 

The reconstructions suggest that the embeddings 

hold significant information from the original images, 

despite the huge compression. More specifically, the 

reconstructions generally tend to preserve the general 

facial structure, individual characteristics, pose, and 

facial expressions. This behavior is interesting for the 

following reasons:  

a . The reconstruction model and the Siamese 

network (which is responsible for extracting the 

embeddings) are separately trained with different 

objective functions and there is no co-adaptation 

between their tasks. However, these models can be 

joined to form an implied underdetermined 

autoencoder that significantly compresses the 

original image to a  small internal representation 

(embedding) and then decode it to reconstruct the 

original image. 

b. All images illustrated in Figure 6 belong to the 

test set which means that the models (embeddings’ 

extraction model and reconstruction model) have 

never seen them before. These images were not used 

during the training of these models. 

It must be noted that the image embeddings 

contain significantly less information than the 

original image (∼ 370 times less information). The 

model maintains an important degree of similarity 

between the reconstructions and the original images 

despite the high compression ratio. 

 

Figure 6: Several embeddings’ reconstructions compared to 

the original images that produced the embeddings. Each 

pair of images consists of the original image on the left and 

the reconstruction on the right (3 pairs per row). Most 
reconstructions tend to preserve facial structure and 

characteristics, pose, and facial expression information. 

The original images belong to the test set and were not used 

during the training of the Siamese model or the 

reconstruction model. 



4.5 Using the Embeddings for Image-
Editing 

Since the calculated embeddings are converted to a 

distribution (or distributions of the various problem 

labels), we can extract and apply inferred statistical 

properties to the data. More specifically, it is assumed 

that the 32-dimensional (32−d) vectors representing a 

specific class (out of the 38 dataset classes) are points 

on a normal probability distribution. Then, all 32−d 

vectors corresponding to a specific class are used to 

calculate the distribution function of the specific 

problem label. For example, the embeddings’ 

distribution of the “wearing eyeglasses” class is 

calculated from the group of images that satisfy the 

specific label. Let 𝐸𝑖  be the embedding of an image 

having a size of 38×32 and 𝑒𝑖
𝑙

 be the 32−d vector 

component that corresponds to a  single class 𝑙 from 

the 38 classes described by the embedding. The mean 

of the distribution formed by the class 𝑙  vector 

components 𝑒𝑙  of all N images in the dataset that 

satisfy the specific label (𝑦𝑖
𝑙  = 1) is calculated by  

𝜇𝑙 =
1

∑ 1𝑁
{𝑦𝑖

𝑙=1}

 ∑ 𝑒𝑖
𝑙

𝑁

𝑖  

{𝑦𝑖
𝑙=1}

                       (4) 

where {.} is a qualifier function that allows 

consideration only of terms that satisfy the enclosed 

condition. The covariance matrix of the normal 

distribution 𝛴 ∈ 𝑅𝑘×𝑘 , where k is the vector 

dimensionality (32), is calculated in a matrix form 

with: 

    𝛴 = 𝑐𝑜𝑣[𝑋, 𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])(𝑋 − 𝐸[𝑋])𝑇 ]        

= 𝐸[𝑋𝑋𝑇 ] − 𝐸[𝑋]𝐸[𝑋]𝑇             (5) 

Approximating the distribution of each class with a 

normal distribution allows drawing samples of 

candidate vectors representing an instance of the 

specific class. Such vectors can replace the values in 

the embedding’s placeholder 𝑒𝑖
𝑙 of the specific class 𝑙 

in an image embedding 𝐸𝑖 . The reconstruction of the 

modified embedding resembles a possible instance of 

the dataset that belongs to the specific class. For 

example, the embedding of an image that does not 

satisfy the label “mouth slightly open” may be 

modified by inserting a vector  𝑥  sampled from the 

embeddings’ distribution of the label “mouth slightly  

open” to the placeholder 𝑒𝑙  that corresponds to the 

specific label 𝑙. After making the assignment 𝑒𝑙 := 𝑥 , 
passing the modified embedding through the 

reconstruction model generates an image like the 

original image which additionally satisfies the 

specific label. In other words, the face in the image  

 

Figure 7: Examples of generating images with a property 
removed or added. The original image is shown on the left 

column, the reconstruction of its unmodified embedding in 

the 2nd column, and the reconstruction of its modified 

embedding in the 3rd column. The desired property added 

or removed by modifying the embedding is shown in the 
rightmost column. A plus (“+”) prefix indicates the 

replacement of the appropriate embedding’s placeholder 

with a vector sampled from the normal distribution of the 

embeddings that satisfy the specific characteristic (label). A 

minus (“-”) prefix indicates the replacement of the 
appropriate embedding’s placeholder with a zero vector. 

The images belong to the test set. 



remains very similar but additionally has the “mouth 

slightly open” property. Respectively, the phenotype 

of a label can be removed by filling the embedding’s 

placeholder that corresponds to the specific label with 

zeros or by replacing the values of the placeholder 

with a vector sampled from the distribution of the 

specific label after being scaled down to a small norm 

value. Vector upscaling can also be applied when 

adding a specific property to an embedding by 

replacing a placeholder with an upscaled vector. In 

this way, the effect of adding a specific property is 

increased and the phenotype change can be more 

evident. Figure 7 shows several cases of sampling the 

embeddings distributions for generating images with 

specific characteristics or for removing specific 

characteristics from images. 

Interestingly, the modified embeddings generate 

images of faces that are very similar to the 

reconstructed images when using the original 

unaltered embeddings. Additionally, the new image 

has the desired characteristic added to the embedding 

of the image. This experiment suggests that the 32-d 

vector components of 𝑒𝑙  encode the various image 

properties in an effective manner.  

The degree of an edited characteristic can also be 

controlled by adjusting the magnitude of the sampled 

vector. For example, to add an emphasized phenotype 

of a specific label to an image, the magnitude of the 

sampled vector may be increased by multiplying the 

vector with a scaling factor 𝑠 > 1 . The opposite 

(reduction of the vector’s magnitude) tends to add 

mild phenotypes. Figure 8 shows that increasing the 

magnitude of the sampled vectors makes the edited 

characteristic more evident. 

 

Figure 8: The edited characteristics become more evident 
when the added vector is upscaled by a certain factor to 

increase its magnitude. In the first row, a vector is sampled 

from the “chubby” distribution and used to edit the original 

image. The rightmost image shows the result of editing the 

embeddings with a vector multiplied with a scaling factor 

𝑠 = 1.5. In the second row, the editing vector is sampled 

from the “narrow eyes” distribution. 

5 DISCUSSION 

OLR aims to calculate the representations of each 

problem label while preserving the evident label 

correlations. It does not explicitly address attribute-

editing nor representing the instances in terms of 

single-value class probabilities. In a sense, OLR has 

some similarity with MulGan (Guo et al., 2019) in the 

way specific labels get a fixed placeholder in the 

latent distribution. It is different from AttGan (Z. He 

et al., 2019) and STGAN (M. Liu et al., 2019) in the 

sense that the latent distribution of our model 

comprises solely of label representations and does not 

contain any other components that encode general 

image details. Essentially, OLR encodes all image 

information in the label distributions while preserving 

the attribute correlations. Moreover, OLR constructs 

the label distributions without utilizing an adversarial, 

reconstruction, or classification loss. It does this by 

simply applying a supervision signal sourced from the 

actual image labels. Avoiding the use of a 

reconstruction loss enables the model to maintain the 

correlations between the labels and to depart from 

adapting according to specific image details. Various 

experiments were performed (see Sections 4.1-5), to 

demonstrate that OLR tends to build an understanding 

of the semantics of the data distribution.  

Regarding the experiment of training a linear 

classifier (Section 4.1), using a dot product for 

applying the labeling on the calculated features of the 

Siamese model is the key operation that differentiates 

OLR from the conventional way of making the 

classification with a fully connected classifier 

attached to a convolutional feature extractor. Usually, 

the classifier consists of many neurons and accepts as 

input the features detected from the preceding 

convolutional layers and forms complex non-linear 

relations to satisfy the output labeling. In other words, 

the fully connected layers at the end of the 

conventional classifier combine the calculated 

features in uncontrolled and arbitrary ways under one 

criterion: fitting the labels available. On the other 

hand, the embeddings calculated by OLR satisfy a 

probabilistic criterion: images that share labels 

produce embeddings’ distributions that are similar in 

the dot-product sense. The proposed method produces 

label distributions that have non-zero values only if 

specific features are detected in images having the 

same label. In this way, the proposed approach 

validates its perception of images and its decisions 



regarding the conformance of each image to a label. 

This conformance must be “justified” in the sense that 

the compressed content vector of a specific label must 

have a considerable probability of occurrence in other 

images having the same label. 

The correlation results between the embeddings 

(Section 4.2) suggest that OLR can calculate 

embeddings that capture the relations between the 

different problem labels. While these interrelations 

are seemingly easy for humans to infer, establishing 

these logical links is not an easy task for machine 

learning (ML) models. Further, principal components 

analysis on the embeddings (Section 4.3) 

demonstrates that the projection on the principal 

component of the embeddings’ set of each label 

reflects the way the phenotype of the specific 

characteristic is imprinted on the data . 

Moreover, image reconstruction from the 

embeddings (Section 4.4) demonstrates that the 

learned representations can be transformed back to 

the images that produced them. Despite the very small 

size of the embeddings in comparison to the original 

data and the discard of a huge amount of information, 

the calculated embeddings are still able to maintain 

enough information to reproduce a decent version of 

the input. Finally, using the embeddings for image 

editing  (Section 4.5) shows that the proposed method 

provides label distributions that can be exploited in 

various ways for semantically-aware image editing: 

an instance of a characteristic may be sampled from 

the specific distribution and added to an image while 

another characteristic may be removed from an image 

by significantly reducing (or eliminating) the 

magnitude of the respective distribution. The 

phenotype of the edited characteristic (characteristic 

intensity) can be controlled by modifying the 

magnitude of the sampled instance. 

While nothing is restraining the OLR from 

working with problems that have fewer labels or a  

single label per image, its full potential unravels when 

dealing with problems having many labels per image. 

However, despite that OLR indirectly uses labels, it 

is still limited due to its reliance on supervisory 

information. Another limitation arises from the fact 

that, during the experiments, the image embeddings 

were not allowed to adapt and were used as input data 

rather than intermediate/learnable features. As such, 

they did not adapt depending on the task of each 

experiment and therefore they were not specialized in 

tackling the specific problems. On one hand, using 

unspecialized representations for a variety of tasks 

stresses their quality, but on the other hand, it 

produces worse results which makes the task-specific 

assessment of the model more difficult. For example, 

a  comparison between the results of the attribute-

editing experiment (Section 4.5) and the results of 

analogous models is highly unfair because our 

experimental model uses embeddings that have been 

learned without considering the task under study. 

Future work aspires to address this limitation. 

Finding a latent space in which we are fully aware 

of what each variable controls, is a  step forward in the 

research direction of semantically-aware deep 

learning and computer vision in general. OLR applies 

latent space factors’ disentanglement, which is 

derived from its architecture and training procedure. 

Every latent representation has a non-zero magnitude 

only if its respective label is evident in an image. 

Occlusion-based supervision drives the model into 

building representations that reflect its degree of 

belief that an image complies with a label. More 

importantly, these representations encapsulate image 

semantics as suggested by the conditional 

reconstruction experiment (Section 4.5). Converting 

labels to meaningful vectors is especially useful in 

many aspects. Both main ML regimes (supervised 

and unsupervised learning) can benefit from 

exploiting the information distilled in label 

representations. As shown in the experiments 

conducted, OLR builds label embeddings with 

appealing properties that may be harvested by ML 

methods. 

In future work, we plan to add an adversarial loss 

(Goodfellow et al., 2014) to the training of the 

decoder to improve the quality of the reconstructed 

images. Specifically, a  discriminator will be added at 

the output of the decoder and trained with real and 

generated images. Optimization of a loss based on 

both MSE and real/fake adversaries has been used 

before. FSRGAN (Chen et al., 2018) uses this 

technique and achieves the current perceptual state-

of-the-art in face super-resolution task for x8 

upscaling. Another interesting direction would be to 

modify the model for directly outputting distributions 

instead of plain representations. This would resemble 

variational autoencoders (Kingma & Welling, 2014) 

which use a (normal) distribution for their latent 

space. Converting the image labels to distributions 

would be helpful for the attribute editing application 

in terms of sampling an attribute point and controlling 

the degree of the attribute phenotype in the generated 

image (high probability samples of an attribute should 

produce an emphasized attribute in the output image). 



6 CONCLUSIONS 

We have presented a simple method for calculating 

effective representations of labels that capture the 

relations among them, using a Siamese network and 

a dataset of human faces. Several experiments were 

conducted revealing the potential of the proposed 

methodology and its ability to provide meaningful 

label embeddings. The results of the experiments 

suggest that the small size of the calculated 

embeddings does not prevent them from maintaining 

sufficient information regarding the semantics of the 

data. Moreover, the experiments performed indicate 

the big potential of methods that transform labels into 

information-rich vectors. 
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