
This paper has been accepted for publication at IEEE International Conference on Robotics and Automation
(ICRA) Workshop on Unconventional Sensors in Robotics, Paris, 2020. ©IEEE 2020

ASAP: Adaptive Scheme for Asynchronous Processing of event-based
vision algorithms

R. Tapia, A. Gómez Eguı́luz, J.R. Martı́nez-de Dios and A. Ollero

Abstract— Event cameras can capture pixel-level illumination
changes with very high temporal resolution and dynamic range.
They have received increasing research interest due to their
robustness to lighting conditions and motion blur. Two main
approaches exist in the literature to feed the event-based
processing algorithms: packaging the triggered events in event
packages and sending them one-by-one as single events. These
approaches suffer limitations from either processing overflow
or lack of responsivity. Processing overflow is caused by high
event generation rates when the algorithm cannot process all
the events in real-time. Conversely, lack of responsivity happens
in cases of low event generation rates when the event packages
are sent at too low frequencies. This paper presents ASAP, an
adaptive scheme to manage the event stream through variable-
size packages that accommodate to the event package processing
times. The experimental results show that ASAP is capable of
feeding an asynchronous event-by-event clustering algorithm in
a responsive and efficient manner and at the same time prevents
overflow.

Index Terms— event camera, aerial robots, perception sys-
tems, event-based processing, asynchronous computation

I. INTRODUCTION

The advent of event-based cameras has motivated in-
creasing research interest in their application to robotics.
Event cameras are neuromorphic sensors that capture the
asynchronous illumination changes at pixel level and µs
resolution. They provide high dynamic range and are insen-
sitive to motion blur. Additionally, they are lightweight and
have low power consumption. A good number of successful
techniques have been proposed in the last years evidencing
their capabilities [1].

The current trend in robotics is to group the received
events in frames, i.e. event images. Processing of event
images enables the design of complex and elaborated tech-
niques, similar to those from traditional computer vision.
However, that approach does not always fully exploit the
sequential and asynchronous capabilities of the data stream
provided by event cameras. For instance, event images can
create motion blur in some cases and, some works, e.g.
work [2] implemented specific mechanisms to mitigate it.
Asynchronous event-by-event processing usually has higher
computational needs [3], [4] and is sometimes combined with
event images for high-level processing, see e.g. [5].

This work was supported by the European Research Council as part
of GRIFFIN ERC Advanced Grant 2017 (Action 788247), AERIAL-
CORE project (H2020-2019-871479), and ARM-EXTEND (DPI2017-8979-
R) project funded by the Spanish National R&D Plan.
The authors are with the GRVC Robotics laboratory, University
of Seville, Seville 41092, Spain email:rautaplop@alum.us.es,
{ageguiluz, jdedios, aollero}@us.es

Fig. 1: Aerial robot based on DJI Flamewheel F450 equipped
with a DAVIS 346 event camera and a low-cost Khadas VIM3
used for on-board computation.

Two main approaches exist in the literature to feed the
event-based algorithms: using event packages and single
events. Most of the existing frameworks, such as YARP
[6] and Dynamic Vision System [7], rely on packaging
the triggered events and transmitting them as output of the
camera in packages. While these mechanisms prevent the
algorithms’ communication overhead, they are not efficient
when the algorithm is capable of processing the events in one
package before the next package is received. Differently, the
work in [8] presented a framework for single-event handling
that consists of three modules: an I/O library, a computation
toolbox, and a visualization tool. Although event buffers
were still used for camera communication, their framework
suppresses the use of buffers between the tools. Although
single-event delivery is efficient when the algorithm can
process the events faster than they are received, feeding the
algorithm at a temporal resolution of µs can result in the
computational overflowing.

Therefore, there is a trade-off between responsiveness and
the risk of system overflow when feeding the event-based
algorithms using single events or event packages. While static
scenes generate a low number of events per second and
allow the use of some event-by-event algorithms, dynamic
and complex scenes often generate huge amounts of events
in short periods. Additionally, event perception is largely
influenced by the movement of the robot [9]. Therefore, real-
time computation on-board a robot might not be possible
for certain scenarios and hardware specifications. such as
that used on the aerial robot shown in Fig. 1, which is the
robot that has performed the experiments reported in this
paper. In particular, the processing capability of aerial robots



This paper has been accepted for publication at IEEE International Conference on Robotics and Automation
(ICRA) Workshop on Unconventional Sensors in Robotics, Paris, 2020. ©IEEE 2020

γ filter Packaging Algorithm

∆t

e eγ E

Compute
event rate

R

Event
camera

ASAP

Fig. 2: Simplified scheme of ASAP for adaptive event pack-
aging.

is limited mainly by their payload. In consequence, UAVs
are often equipped with on-board computers with moderate
computational resources, such as that installed on the aerial
robot used in the reported experiments, which is shown in
Fig. 1. This issue is even more relevant in flapping-wing
robots since their payload limitations are more severe than
in multi-rotors [10].

This work presents ASAP, a scheme to adapt the event
packaging such that an asynchronous event-by-event algo-
rithm can process the events as soon as possible without
overflowing.

II. METHOD DESCRIPTION

The proposed method relies on two main mechanisms.
First, the size of the event packages is chosen according
to the time required by the algorithm to process the last
packages. Second, when the hardware limitations preclude
the algorithm to process all events (i.e. for a maximum
package size), some events are discarded in order to avoid
overflowing. Our work [11] explored the effect of discarding
events in a random manner to reduce computational cost and
showed that the method could work using only 20% of the
full event stream without significantly affecting the algorithm
performance. ASAP adopts this approach and makes use
of a random event discard procedure to reduce the risk of
overflowing an even-by-event processing algorithm.

Figure 2 shows the proposed adaptive event packaging
scheme. The first mechanism makes use of a close-loop ap-
proach to adapt the size of the event packages by considering
time devoted by the asynchronous event-by-event algorithm
to process the event package. A closed-loop mechanism es-
tablished between modules Packaging and Algorithm adapts
the size of the event packages according to the time required
by the algorithm for processing the previous event package.
The objective of this mechanism is to synchronize (i.e. make
equal) the time required by the algorithm to process the
events contained in the package and the temporal difference
between the newest and oldest events in that package.

The second mechanism is designed for cases in which the
rate of the triggered event stream is too high to be processed
in real-time by the event-by-event processing algorithm.
Relying on the findings in [11], this mechanism (i.e. γ
filter module) performs a random event discard procedure
to reduce the risk of algorithm overflowing. R is the rate
of events after event filtering by this module. The filtering
rate γ is dynamically adapted such that the filtered event

Fig. 3: Experimental scenarios. Left) Aerial robot used for
the UAV on-board evaluation experiments. Right) Pattern
used for the event overflow experiments.

rate R is within a range that the algorithm can process in
a responsive manner. If R is higher than an upper bound a,
the γ filter increases the number of discarded events using
a simple adaptive criterion. a was selected experimentally
analyzing three types of scenarios with different event rates:
low motion –low event rate– moderate motion and high
motion scenarios. a was selected as an average event rate
value suitable for most scenarios.

III. EXPERIMENTAL RESULTS

This section presents the experimental evaluation of ASAP
when processing the events with the asynchronous event-
based clustering method presented in [11]. Two experiments
were performed: highly abrupt camera motion and UAV
on-board evaluation. The first experiment was performed
manually using a DAVIS346 event camera oriented such that
the pattern in Fig. 3-right was in the camera field of view
during the whole experiment. The vibration speed of the
camera was increased progressively during 5 s. Figure 4
shows the number of events per package, the value of R and
the value of γ along the experiment. We selected a = 5 ·106.
With low vibration level, packages included very few events.
As vibration level increased, more and more events were
transmitted in each package using γ = 1. When the event
rate exceeded the boundary a = 5 · 106, γ was reduced to
balance the filtered event rate (R) with the time required

Fig. 4: Results in highly abrupt motion experiments.



This paper has been accepted for publication at IEEE International Conference on Robotics and Automation
(ICRA) Workshop on Unconventional Sensors in Robotics, Paris, 2020. ©IEEE 2020

Fig. 5: Experimental results in UAV on-board evaluation.

by the algorithm to process the event package running on
the specific hardware, and thus adapting to the particular
implementation.

Additionally, the performance of ASAP was evaluated on-
board an UAV in an indoor scenario as shown in Figure
3-left. The experimental setup consists of a DAVIS346 event
camera installed on-board a DJI Flamewheel F450 frame
with a PixRacer autopilot (see Fig. 1). A low-cost Khadas
VIM3 board is used for real-time running the event-based
clustering method described in [11] and for logging the
results. ASAP was implemented in C++ on top of the UAL
abstraction layer [12] using ROS Kinetic and the PX4 low-
level controller. In the experiment, the UAV flew over several
chairs as shown in Fig. 3-left. The number of chairs increased
as the UAV moved towards the goal and hence, the number
of events generated over time also increased (see Fig. 5-top).
However, the event rate never exceeded the threshold a and,
therefore, the full event stream (i.e. γ = 1, no events were
discarded) was packaged –and also on-line processed by the
clustering algorithm– during the whole experiment.

Moreover, Fig. 5-bottom shows the difference between
the time required by the clustering algorithm described in
[11] to process a package and the time difference between
the newest and oldest events in that package. As long as
the time difference remains negative, real-time processing is
guaranteed as the algorithm will always process a package
before the next one is received. Thus, ASAP is capable of
adapting the size of the packages to keep the time difference
negative –preventing the algorithm from overflowing– and

near zero –synchronizing algorithm executing and event
packaging, which ensures responsive event processing.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents ASAP, an adaptive scheme for dy-
namic event packaging that enables responsive event process-
ing while preventing processing overflow. The experimental
results show that the proposed approach regulates the event
stream fed to an event-by-event clustering algorithm and it
is capable of filtering upon saturation. Our future work will
focus on enhancing the scheme response to abrupt changes
in the event stream and on evaluating the scheme in a wider
range of asynchronous event-based algorithms.

REFERENCES

[1] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, et al., “Event-
based vision: A survey,” arXiv preprint arXiv:1904.08405, 2019.

[2] N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam,
C. Fermüller, D. Scaramuzza, and Y. Aloimonos, “Evdodge: Embodied
ai for high-speed dodging on a quadrotor using event cameras,” arXiv
preprint arXiv:1906.02919, 2019.

[3] R. Li, D. Shi, Y. Zhang, K. Li, and R. Li, “Fa-harris: A fast and
asynchronous corner detector for event cameras,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019.

[4] I. Alzugaray and M. Chli, “Asynchronous corner detection and track-
ing for event cameras in real time,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3177–3184, 2018.

[5] V. Vasco, A. Glover, E. Mueggler, D. Scaramuzza, L. Natale, and
C. Bartolozzi, “Independent motion detection with event-driven cam-
eras,” in 2017 18th International Conference on Advanced Robotics
(ICAR). IEEE, 2017, pp. 530–536.

[6] A. Glover, V. Vasco, M. Iacono, and C. Bartolozzi, “The event-
driven Software Library for YARP — With Algorithms and iCub
Applications,” Frontiers in Robotics and AI, vol. 4, p. 73, 2018.

[7] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-dof pose
tracking for high-speed maneuvers,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 2761–2768.

[8] A. Marcireau, S. H. Ieng, and R. B. Benosman, “Sepia, tarsier
and chameleon: a modular c++ framework for event-based computer
vision.” Frontiers in Neuroscience, vol. 13, p. 1338, 2019.

[9] A. Pequeño-Zurro, D. Shaikh, and I. Rañó, “Temporal changes in stim-
ulus perception improve bio-inspired source seeking,” arXiv preprint
arXiv:1903.10279, 2019.

[10] A. Gómez Eguı́luz, J. P. Rodrı́guez-Gómez, J. Paneque, P. Grau, J. R.
Martinez De-Dios, and A. Ollero, “Towards flapping wing robot visual
perception: Opportunities and challenges,” in IEEE RED-UAS, 2019.

[11] J. P. Rodrı́guez-Gómez, A. Gómez Eguı́luz, J. R. Martı́nez-de Dios,
and A. Ollero, “Asynchronous event-based clustering and tracking for
intrusion monitoring in uas,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020.

[12] F. Real, A. Torres-González, P. Ramón-Soria, J. Capitán, and
A. Ollero, “Ual: An abstraction layer for unmanned aerial vehicles,”
in 2nd Intl. Symposium on Aerial Robotics, 2018.


	Introduction
	Method description
	Experimental Results
	Conclusions and Future Work
	References

