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Abstract— This paper presents an bio-inspired event-based
perception scheme for agile aerial robot maneuvering. It tries to
mimic birds, which perform purposeful maneuvers by closing
the separation in the retinal image (w.r.t. the goal) to follow
time-to-contact trajectories. The proposed approach is based
on event cameras, also called artificial retinas, which provide
fast response and robustness against motion blur and lighting
conditions. Our scheme guides the robot by only adjusting
the position of features extracted in the event image plane to
their goal positions at a predefined time using smooth time-
to-contact trajectories. The proposed scheme is robust, efficient
and can be added on top of commonly-used aerial robot velocity
controllers. It has been validated on-board a UAV with real-time
computation in low-cost hardware during sets of experiments
with different descent maneuvers and lighting conditions.

Index Terms— event camera, aerial robots, perception sys-
tems, visual servoing, IBVS, tau theory, feature tracking.

I. INTRODUCTION

The new advances in aerial robot technology have moti-
vated intense research effort in performing faster and more
agile maneuvers. Agile aerial robot maneuvers face relevant
perception problems. First, the perception systems should be
efficient enough to provide the required high control rates,
often constraining the applicability of most planning-based
robot navigation approaches. Image-based visual servoing
methods directly use measurements obtained in the image
plane to efficiently guide the robot. They provide remarkable
results [1] [2] but are limited by the intrinsic nature of
visual cameras, which are sensitive to lighting conditions
and are severely affected by motion blur originated by the
robot motion or vibrations. In this paper we use event
cameras, which provide high dynamic range and temporal
resolution, being insensitive to motion blur. A good number
of successful techniques have been proposed in the last years
evidencing their suitability, see e.g. [3]. The advantages of
event cameras in many applications have attracted the man-
ufacturers’ interest causing a decrease in the camera weight
and cost. We are interested in perception-based methods
designed to be executed with low-cost hardware on top of
standard velocity aerial robot controllers without significant
modifications. Although many successful control methods
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have obtained outstanding results for aggressive maneuvers,
see e.g. [1] [4], they are out of the scope of this paper.

This paper presents an event-based perception scheme
for agile aerial robot maneuvers. It has a strong biolog-
ical inspiration and tries to mimic birds, which perform
perching and landing by matching the retinal separation of
the images of their feet and the goal following time-to-
contact trajectories [5], [6]. Event cameras mimic biological
retinas in performing fast-response asynchronous data-driven
light acquisition with high insensitivity to motion blur and
lighting conditions. Besides, our scheme guides the robot
using Tau theory by adjusting the position of features in
the event image plane to their goal positions at a predefined
time using smooth time-to-contact trajectories. This work
has been developed in the context of the ERC Advanced
Grant GRIFFIN project, which aims to develop aerial robots
capable of navigating, perching and manipulating objects.

The proposed scheme guides the robot to perform Tau
theory trajectories using event-based line features, which are
caused by objects frequently found in many scenarios such as
cables, pipes, windows, among many others, and can be more
robustly detected than event-based punctual features such
as corners. The scheme includes two main modules. First,
straight lines are efficiently tracked combining fast-response
event-by-event line tracking with robust event-image line
extraction. The second module uses the tracked lines in
the event camera plane to directly compute the velocity
commands to the robot low-level controller such that the
tracked lines describe the desired time-to-contact trajectories
in the image plane. The scheme is robust, efficient and can
be added on top of commonly-used aerial robot velocity
controllers. It has been validated with on-board real-time
computation in low-cost hardware in sets of experiments with
different types of descent maneuvers and lighting conditions.

The rest of the paper is organized as follows. Section II
briefly summarizes the main works in the topics addressed
in the paper. The event-based line tracker and Tau guiding
methods are presented in Sections III and IV, respectively.
Section V shows the experimental validation. Section VI
concludes the paper and highlights future research.

II. STATE OF THE ART

The biological Tau-theory [7] states that humans and
animals, specially birds, rely on the time-to-contact to guide
most of their purposeful movements. There is evidence that
pigeons adjust the breaking during landing and perching
keeping constant the rate of change of τ [5], i.e. an approx-
imation of the time-to-contact. It has been postulated that
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animals do not require cognitive processing for Tau-theory
guidance, it is available at neural circuit level [7].

Recently, a number of works have explored Tau-theory
for performing motions that close an action-gap (i.e the
separation between the current state and a goal state), by
controlling the time-to-closure τ at the current closure rate.
Tau-theory has been used to endow robots with guidance
capabilities [8] and to perform short-distance maneuvers such
as breaking [9], landing [10] and perching [11]. Works [8],
[9] employed Tau-theory to guide the movement of multi-
rotor Unmanned Aerial Vehicle (UAV) providing remarkable
results for autonomous navigation, docking and landing.

Two different approaches can be distinguished in Tau-
theory based guiding, Tau-dot methods and intrinsic Tau
guidance methods. Tau-dot methods are used for smoothly
decelerate to zero contact velocity. A number of works have
approached Tau-dot strategy for unmanned aerial [9] [11]
and ground vehicles [12]. Tau-dot strategy has also been used
for simulating bird-like landing and perching maneuvers in
order to provide sensor measurements [13]. The work in [11]
extended Tau-dot guidance strategy to close a gap with non-
zero final velocity with a rotary-wing MAV. The gap closure
was approached in three stages, acceleration, deceleration
and constant velocity tracking the reference τ while keeping
the perch within the field of view.

Our work falls within the so-called intrinsic-Tau guidance,
which computes the robot trajectories starting from an initial
state with zero velocity and acceleration, and closing the gap
with zero final velocity and acceleration in a predefined time
interval, see e.g. [6], [14]. Additionally, different works im-
proved standard intrinsic-Tau guidance systems by including
non-zero initial velocity such as [10], [15]. Other works have
explored intrinsic-Tau guidance during the planning stage.
The work [14] proposed an intrinsic-Tau guidance method
for multi-UAV collision avoidance detecting collisions be-
tween trajectories obtained using intrinsic-Tau guidance,
which are then re-planned using particle swarm optimization.

Most of the existing intrinsic-Tau methods guide the robot
closing the gap defined in space, which requires transforming
from image to space, which could affect guiding command
rate in fast maneuvers. The work in [11] use a vision system
build on top of an attitude controller to control the motion of
a MAV during the landing/perching maneuvers. However, the
method does not rely only on visual input and suffers from
the limitations of traditional cameras such as motion blur
or sensitivity to lighting conditions. Although not relying on
Tau theory strategies, a solution for the vertical landing of
UAVs was proposed in [16] using the optical flow obtained
from event-based vision, which overcomes the problems of
using traditional cameras.

The advantages of event cameras have motivated increas-
ing research interest of the robotics and computer vision
communities [3] [17]. A wide variety of methods have been
used for feature extraction [18], clustering [19], tracking [20],
optical flow computation [21], detect objects in motion [22],
and SLAM [23], among many others. A full review of event
processing methods can be found in [3]. Most existing event

processing methods group the temporally-close received
events in frames called event images. Event cameras provide
high noise level and processing event images allows reducing
noise impact. However, event-image processing does not
fully exploit the sequential and asynchronous nature of event
cameras and some methods (e.g. [24]) require including
mechanisms for cancelling motion blur.

Line detection using event cameras is a suitable alternative
to extract scene structure from the event stream. Lines from
a square are tracked in [25] as reference to estimate the
pose of a flying drone using the Hough transform [26].
Inspired on the line segment detector LSD [27] an event-
based approach detects and tracks lines by clustering events
[28]. Line detection is performed in [29] using event-based
visual flow and least squares. The method also provides
segment detection by estimating the endpoint of the detected
lines. Events are clustered in [30] to generate planes on
the spatio-temporal space that define possible lines, but as
reported, the method cannot track spinning lines. Although
these methods provide highly accurate line detection in their
experiments, they do not focus on line tracking nor on the
robustness in complex and unstructured scenarios, and few
of them have been validated onboard robots.

This paper presents a bio-inspired perception-based
method for aerial robot maneuvers. The contribution of this
method is two-fold. First, we present a robust and efficient
event-based line tracking method that fuses event-by-event
processing together with event-image processing, combining
the fast-responsivity of the former and the robustness of the
later. Second, an efficient intrinsic-Tau guidance method that
commands the robot using only features in the event camera
plane by adjusting them to match a set of reference features.
The scheme is designed to be executed on low-cost hardware
on top of standard aerial robot controllers.

III. ASYNCHRONOUS EVENT-BASED LINE TRACKING

We are interested in perception techniques for guiding
aerial robots in agile maneuvers consisting in moving the
robot from its initial pose to a goal pose. The robot goal
pose is defined w.r.t. a reference pattern that can be observed
with no occlusions during the full maneuver. The reference
pattern can be off-line predefined, e.g. the robot landing pad
in landing experiment, or can be online selected during the
robot navigation, e.g. to facilitate moving to a waypoint,
the navigation system selects as reference a pattern near the
waypoint. We assume that the reference pattern is defined by
a set of straight line segments. Lines are general features that
have been largely exploited in robot perception, see e.g. [31].
In our problem, a great variety of objects and scenarios can
originate lines in the event camera and, many of these objects
are actually used for a number of aerial robot maneuvers such
as landing or perching. Line features contain richer structure
and can be more robustly extracted than punctual features
such as corners.

This module tracks a set of straight lines in the image
plane using event processing. The events from the Dy-
namic Vision Sensor (DVS) of an event camera onboard the
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robot are received asynchronously with µs resolution. We
adopted an approach consisting in combining two types of
event-based processing with different temporal resolutions.
First, an event-by-event processing module analyzes every
new event received and provides fast-response, but noisy,
line tracking estimations. Second, an event-frame processing
module accumulates the N last events received and pro-
vides robust line tracking estimations. The final estimation
combines both modules using an efficient Extended Kalman
Filter (EKF) for each line tracked, providing fast-response
and robust line tracking. The line estimations from the
event-by-event processing are used in the EKF Prediction
stage and, those from the event-frame processing are used
in the Update stage. The EKF covariance matrices were
set to assign to the observations double reliability than the
predictions. To ensure the statistical consistency of the EKF,
event-by-event processing and event-image processing use
different events. The events received from the camera are
randomly sampled as in [22]. γe and γi are the percentages
of the input events that are sent to the event-by-event and the
image-event processing modules, respectively. Setting γe and
γi can be used to adjust the computational cost for running
on real time adapting to the scenario particularities and the
onboard hardware.

Each event is defined by e = (t, u, v, p), where t is the
time in which the event was triggered, (u, v) are the pixel
coordinates and p is the polarity of the brightness change,
i.e. either 1 or 0. Both event processing methods are based
on the Hough space representation [26]. In polar coordinates,
lines are expressed as ρ = u cos θ + v sin θ. Similarly, lines
are defined by l = (θ, ρ) in the Hough space. To reduce the
computational effort, the (θ, ρ) Hough space is discretized.

A. Event-by-event line tracker

The proposed event-by-event method is partially inspired
by the method described in [25] and includes mechanisms
to increase robustness without significantly increasing the
computational burden. The method is initialized with the set
L of lines that represent the reference pattern to track. Each
line l ∈ L is defined by a tuple (θl, ρl) in the Hough space
and by a set Pl of NP prototype events well distributed over
l in the image plane. For each line l, buffer Bl is used to
keep the actual and last prototype events representing l. To
prevent over-representation, the number of elements in Bl
corresponding to the same prototype event is bounded.
Pl is initialized as follows. First, the consistency of each

received event e = (u, v) with line l is evaluated in the
Hough space. The representation of e in the Hough space
is (θl, ρe), where ρe = u cos θl + v sin θl. If the distance
between (θl, ρl) and (θl, ρe) is low, e is assigned as be-
longing to line l. Next, to ensure a good distribution of
prototype events, e is added to Pl if the distance to its nearest
element in Pl is greater than a threshold. This procedure is
iterated until Pl contains NP prototype events. The events
in Pl are buffered in Bl and projected into a Hough space
of events. The parameters of the line (θl, ρl) are computed
as the centroid of the event Hough space originated by Bl.

Hence, each line l is characterized by (θl, ρl), Pl, Bl and,
for computational reasons, the event Hough space of Bl.

After initialization, the event-by-event line tracker pro-
cesses every new event e as follows. First, the consistency
of e with every line l is evaluated as described above. If
consistent with only one line l, e is assigned to l. Events
consistent with several lines are discarded to avoid contri-
butions from line intersections. Events not assigned to any
line are discarded. Next, if the distance between e and the
nearest prototype event in Pl is higher than a distance, e is
taken as spurious and is discarded. In order to enable line
updates with new events, if the distance between e and the
nearest prototype event in Pl is below a distance, Pl and Bl
are updated: the prototype event in Pl is substituted by e;
and e is added to Bl eventually deleting the oldest event in
Bl in case the number events corresponding to that prototype
exceeds the bound. The operation in one example is shown
in Figure 1.

(a) (b)

(c)

Fig. 1: Operation of event-by-event line tracking in one
example: a) input events received asynchronously and pro-
cessed –small red and blue dots– and events in Pl –big dots–
for the three tracked lines; b) tracked lines in the image plane;
c) zoomed event Hough space showing the tracked lines.

The updated line parameters (θl, ρl) are computed as the
coordinates of the centroid of the event Hough space origi-
nated by the elements in Bl, see Figure 1c. This computation
is efficient: the contribution of the new element in Bl is
added to the event Hough space and, the contribution of the
deleted element, removed. Finally, old elements of Pl and Bl
are deleted by using their timestamp. Notice that old element
check and deletion are also efficient due to the asynchronous
nature of events.

The operation of the method is summarized in Alg. 1. For
efficiency, it uses the Manhattan distance. Although performs
event-by-event processing, it has low computational cost
suitable for onboard execution in low-cost hardware.



This paper has been accepted for publication at the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, 2020. c©IEEE 2020

Algorithm 1: Asynchronous event-by-event line
tracking

Input: e, L
Output: L
candidates← 0
for k ← 1 to length(L) do

if belongToLine(e,k) then
candidates← candidates+ 1
l← k

end
end
association← False
if candidates = 1 then

Pl = getPrototypeList(l)
if nearToAnyPrototype(e, Pl) then

replacePrototype(e, Pl)
association← True

else if ¬ isFull(Pl) then
if fitsIn(e,Pl) then

addPrototype(e, Pl)
association← True

if association then
updateHoughSpace(e)
ekfPrediction(l)

end
end

B. Event-frame line tracker

This module extracts lines in event frames generated by
accumulating the last received events. This approach was
preferred over using frames with events accumulated in
a fixed time window since it naturally adapts the event
frame generation to the relative camera-scene motion: highly
dynamic scenes, which require faster response, trigger more
event-frames than static scenes. The method is efficient and
can be executed online and onboard with low-cost hardware.

This method extracts lines from the event-image and
associates them to the tracked lines. First, the Hough trans-
form is computed over the event image. Due to the Hough
space discretization, each line in the image plane provides
contributions to nearby locations. The centroids in the Hough
space are used to represent lines. Finally, these candidate
lines are associated to the tracked lines using minimum
Hough-space distance. The EKF is updated using the new
extracted lines as observation.

IV. TIME-TO-CONTACT VELOCITY GUIDANCE

This section presents a Tau-theory based method that uses
the lines tracked in the image plane to directly compute the
velocity commands to the robot such that the tracked lines
describe the desired time-to-contact (TTC) trajectories in the
image plane. We adopt an intrinsic-Tau guidance approach
that closes the gap to the goal in a predefined time and with
zero final velocity and acceleration. Unlike most existing
intrinsic-Tau methods used in robotics, the gap is defined
directly in the image plane, which enables fast response. In

our problem each gap is defined by the difference between
the actual features (lines extracted from the event camera)
and the goal features in image plane. Assuming calibrated
cameras and the target geometry being known, the position of
the goal features in the image plane can be easily computed
by projecting the reference pattern as if the robot were at
the goal pose. The computation of goal features is performed
only once before the maneuver starts. Closing the gaps will
drive the image features towards their goal positions, which
will result in the robot reaching the goal pose.

For clarity, we first describe the adopted intrinsic-Tau
guidance strategy for one only gap. For a given gap χ(t),
τ(t) provides a first order approximation of the time-to-
contact computed as τ(t) = χ(t)/χ̇(t), where χ̇(t) is the
gap closing rate at time t. By convention, χ(t) is always
negative and the gap is closing when χ̇(t) is positive.

For each feature at time t we can define the gap distance
χ(t), its closure velocity rate χ̇(t), and its closure accel-
eration χ̈(t). We focus in maneuvers that start at rest (i.e.
χ(0) 6= 0, χ̇(0) = χ̈(0) = 0), accelerate to a peak velocity
and then, decelerate to end the movement at rest at time
Tg (χ(Tg) = χ̇(Tg) = χ̈(Tg) = 0). These type of motions
are of interest for many time-constrained maneuvers such as
landing and perching. As reported in [9], the above intrinsic
Tau-guidance trajectory can be computed as follows:
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where k determines the trajectory kinematics. In particular,
selecting k ∈ (0, 0.5] ensures χ(Tg) = χ̇(Tg) = χ̈(Tg) = 0.

We aim at closing the gaps for all features altogether by
using the concept of Tau-coupling [7]. One gap is declared
as main, typically that with the greatest gap distance at
t = 0, and the rest are declared as coupled. The evolution
of the main gap is computed with Eq. (1). Gap coupling
is characterized by κ, a constant that expresses the relation
between both gap closing rates such as τχ = κτζ . Therefore,
the trajectory of every coupled gap is obtained as follows:

ζ(t) = cχ(t)
1
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)
χ(t)

1
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,

(2)

where c = ζ(0)/χ(0)(1/κ) establishes the relation between
the main and the coupled gap.

Next, the robot velocity commands are computed using
Image-Based Visual Servoing (IBVS). As described above,
χ(t) and ζ(t) describe the desired gap distances to ac-
complish the intrinsic-Tau guidance maneuver: they are the
reference for our controller. Also, we can obtain the actual
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gap distances at a given time t by using the lines tracked
as in Section III and the goal lines. Let e(t) be a vector
with the difference between the actual gap distances and
the reference gap distances at time t. Each feature defines a
number of gaps, one for each feature parameter. In particular,
each tracked line defines two gaps, one in θ and one in ρ.
Hence, each tracked line creates two entries in e(t): the error
in ρ using the Euclidean distance, and the error in θ using
the circular distance. We adopted a simple control law (see
[32]) to compute the camera velocities ν(t) at time t:

ν(t) = −KJ∗e(t) + J∗ė(t), (3)

where K is a positive definite diagonal weighing matrix, ė(t)
is the error between the current gap closure velocities and
their reference values obtained using Eqs. (1) and (2), and
J∗ is the pseudoinverse of J , the Jacobian that describes
the variation of the gap distance as a function of camera
velocity, computed as shown below. We preferred to use a
control law with a derivative term in order to improve the
transient response and anticipate error cancellation. Notice
that ν(t) is expressed in the camera frame and has to be
transformed to the robot frame.
J is obtained as follows. Assuming features obtained with

normalized focal length, i.e. f = 1, the kinematics of line l
in the image plane can be expressed as l̇ = Jlν, where ν is
the camera (linear and angular) velocity vector and Jl is the
Jacobian that describes the variation of the line parameters
as a function of camera velocity. Jl can be computed as:

Jl =

[
λθs(θ) λθc(θ) −ρλθ −ρs(θ) −ρc(θ) −1
λρs(θ) λρc(θ) −ρλρ −c(θ)(1 + ρ2) s(θ)(1 + ρ2) 0

]
(4)

where s(·) and c(·) stand for sine and cosine and

λθ = (arccos θ − bs(θ))/d,
λρ = −(aρs(θ) + bρc(θ) + c)/d,

(5)

where aX+bY +cZ+d = 0 defines the plane in space that
contains the line. Although quite tolerant to a certain degree
of error in the plane parameters, a broad estimate of the line
depth is required. We compute the depth by derotating the
optical flow at the intersections between the tracked lines as
described in [33].

The gaps are defined by the lines extracted in the image
plane and the goal lines. Only the current line features are
affected by the camera velocities while the goal lines are
constant. Hence, Jl, the Jacobian of a line, represents the
variation of the gap distance with the camera velocity. J can
be computed by concatenating row-wise the Jacobians Jl for
all tracked lines. Each line contributes with two rows in J ,
one for θ and one for ρ. A minimum of three non-colinear
lines is required to have a full rank J . However, higher
number of lines enhances accuracy and prevents potential
temporary co-linearity between lines along the maneuver.

Standard multirotors are underactuated and require tilting
in the direction they desire to translate. To compensate for
these rotations the image coordinates are re-projected into
a virtual image plane as in [2]. The robot roll and pitch
angles (φ and ϕ) are estimated using an Inertial Measurement

Unit (IMU). Assuming null translation in the x and y axes
between the camera and robot coordinate frames, the re-
projection of image coordinates (u, v) into the virtual image
plane ϑ can be computed as:uϑvϑ

f

 = βRφϕ

uv
f

 , (6)

where Rφϕ is the rotation matrix associated to the robot roll
and pitch angles, and β ensures the re-projection in an image
plane with focal length f using:

β = f/

(
[0 0 1]Rφϕ

uv
f

) (7)

Re-projection could not be necessary when the robot
moves slowly or is endowed with a non-underactuated con-
troller such as [34]. However, our scheme is designed to be
valid on most multicopters, which are typically underactu-
ated.

V. EXPERIMENTAL RESULTS

The proposed scheme has been validated in sets of ex-
periments performing different descent maneuvers and with
different lighting conditions. The aerial platform includes a
DJI Flamewheel F450 frame with a PixRacer autopilot. A
DAVIS 346 event camera was mounted pointing downwards
(−90o pitch rotation) and a low-cost Khadas VIM3 board is
used for logging and real-time computation, see Figure 2.
The method was implemented in C++ on top of the UAL
abstraction layer [35] using ROS Kinetic and the ASAP
event processing scheme [36]. The output of the proposed
method was used as input of the default PX4 velocity-based
low-level controller. The experiments were performed in a
testbed equipped with 24 OptiTrack Primex13 cameras that
provided millimeter accuracy robot pose estimations, used
only as ground truth for evaluation.

Fig. 2: Aerial robot used in the experiments.

A. Preliminary Experiments

First, we evaluated the accuracy and robustness of the line
tracking method and confirmed the suitability of its execution
rates for robot guiding. The performance of the line tracker
was robust to reasonable values of its parameters. The size
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Fig. 3: Visual image and event image with the tracked lines
taken in the safety net scenario.

of Pl was chosen as 6 and, the size of Bl, as 20. Further, γe
and γi were set to 0.6 and 0.4 respectively to enhance com-
putation without losing robustness. For these experiments,
event images were obtained by accumulating 2,000 events
as a trade-off between robustness and computational effort.

The accuracy of the line tracking method was evaluated
by measuring the error between the resulting tracked lines
and the ground truth (GT) lines extracted applying the well-
known Canny edge detector on the visual images provided
by the Davis APS sensor. The tracking error was measured
as the mean distance between the pixels detected by Canny
as belonging to the GT lines and the lines tracked by our
method. We want to asses the accuracy at line tracking,
not the line detection capabilities. Our line tracking method
was initialized with the GT lines and during the rest of the
experiment, it was fed only with events from the Davis DVS
sensor as described in Section III. The mean error, estimated
averaging more than 20,000 different line tracking, was lower
than 2.23 pixels, which was sufficient for our scheme.

Next, we evaluate the robustness of our method in highly
cluttered environments, when different objects partially oc-
clude the tracked lines: flying objects, office background and
the testbed safety net. Figure 3 shows a visual image and one
event image with the tracked lines taken from the experiment
in the safety net scenario, which is particularly hard since the
net originates many line-distributed spurious events. Table I
shows the duration of the cluttered scenes and the lifetime of
the lines tracked. In all cases the lines were robustly tracked.

TABLE I: Robustness of line tracking lifetimes with different
cluttered environments.

Duration (s) LifeTime (s) %
Flying Object 15.5 14.82 96
Office 35.06 32.02 91
Protection Net 18.48 14.58 78

Additionally, we evaluate the execution rates performed
by our proposed line tracking method running onboard
the Khadas VIM3 and, compared it versus two other line
extractors. Method1 applies the Hough transform on visual
images from the DAVIS APS sensor. Method2 extracts lines
from event images. The three methods were executed for the
same experiment simultaneously tracking 4 lines. Table II
shows the execution rates of the line tracker and the resulting
command rates of the full guiding system. Running in the
low-cost Khadas VIM3 board, the proposed line tracking

TABLE II: Execution times and control command rates of
Method1, Method2 and the adopted line tracker.

Method1 Method2 Adopted method
Line extraction 38 Hz. 68 Hz. 348 Hz.
Line extraction +
TTC guidance 37 Hz. 67 Hz. 339 Hz.

method provided average execution rates of 348Hz enabling
control command rates of 339Hz, both significantly higher
than those of Method1 and Method2. It is worth noting that
the execution times of Method2 and the proposed approach
are not constant (i.e. they are asynchronous) and these values
are average values from our experiments. Therefore, their
performance depends on the scene dynamics and can reach
frequencies significantly higher at times while providing
lower rates when the scene is static. However, these rates
were valid to perform all the robot guiding experiments.
Additionally, we empirically evaluate the scalability of the
system and conclude that the computational cost of both
algorithms (i.e. line extraction and TTC guidance) grows
linearly with the numbers of lines. Although using a very
high number of lines reduces the performance of the pro-
posed method, one can choose the number of lines to track
beforehand in order to provide the sufficient command rate
required for the desired maneuver.

B. Event-based Tau Guidance Experiments

A total of 180 descent maneuvers were performed covering
different initial and goal poses, maneuver’s duration Tg ,
and lighting conditions. The selected values of Tg ensured
that the robot spatial velocities were lower than the low-
level controller safety bounds, 2m/s in our case. The well-
known camera retreat issues [33] of the IBVS method were
prevented by selecting a rotation between the initial and
goal robot poses lower than π/4. Although multiple initial
and goal configurations were evaluated, all experiments were
performed with the same parameters. The gain of the image-
based control law is set to 0.2 in all the diagonal entries, i.e.
K = 0.2I6x6. We selected κ = 1 to ensure that coupled gaps
close at the same time that the main gap. Also, k = 0.5,
which determines the gap trajectory kinematics was set to
ensure that gaps are closed with final zero velocity and
acceleration.

Figure 4 shows the gap evolution along a maneuver in
which the robot covered a distance of 1.5m in Tg = 2s. It
is worth noting that the maneuver starts and finish at zero
velocity and, therefore, it requires reaching a maximum ve-
locity close to the safety bounds, i.e. 2m/s. The experiment
was performed with 4 lines, i.e. 8 gaps. For brevity we show
only four gaps: a) the main ρ gap χ(t), b) an example θ gap
ζ1(t) and, c) and d) the ρ coupled gaps that best ζ2(t) and
worst ζ3(t) reduced the gap at Tg . The y-axis represents
the gap distance assuming unitary focal length. The gap
trajectory predicted using intrinsic-Tau guidance strategy is
shown in red, and the evolution of the actual gap resulting in
the experiment, in blue. Closing θ gaps only involves robot
rotations in Yaw angle, hence TTC trajectories can be easily
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Fig. 4: Evolution of 4 gaps along a maneuver: a) main ρ gap,
b) a θ gap, c) and d) the best and worst ρ coupled gaps.

followed with low error (Figure 4b). Closing ρ gaps is not
that accurate since it involves robot spatial translations in X,
Y and Z axes. The main gap (Figure 4a) was closed more
accurately than the coupled gaps. Although not all the ρ gaps
might be fully closed at Tg , they are consistently reduced in
a smooth way within the time constrains. The average ρ and
θ gap closing error at Tg were 0.32 pixels and 0.5o in the
event camera image plane. In the maneuver the robot follows
a smooth spatial evolution. Figure 5 shows the 3D trajectory
followed by the robot and the distance between the robot and
the goal position along the trajectory. After Tg the robot pose
had an error (Euclidean distance) over the goal robot pose of
10.4cm, measured with the OptiTrack. Similar performance
was also noticed in all the maneuvers performed.

The error in reaching a robot goal pose depends on the
duration of the maneuver. Figure 6 shows the average robot
error when performing the same trajectory using different of
Tg ∈ [2, 10]s. The errors were obtained averaging the results
in 20 maneuvers for each value of Tg . All the maneuvers
were performed with the same method parameters, including

Fig. 5: Left) 3D trajectory followed by the robot. Right)
Spatial robot-goal distance along the maneuver.
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Fig. 6: Average robot spatial error in reaching the goal pose.

the control law gain K. Figure 6 shows that the error
decreases as the value of Tg increases. With low values of Tg ,
the adopted method provides stronger velocity commands.
The limitations in the responsiveness to the velocity com-
mands of the controller (PX4 in our case) implemented on
the robot is more noticeable with low values of Tg . This
error could be reduced in case of running a IBVS method
after the trajectory has ended (i.e. t > Tg) so that the error
is reduced during hovering.

Different experiments were performed for a variety of
lighting conditions including, in pitch dark. Figure 7 shows
two maneuvers with different lightning conditions. Figures
7a and 7b show the trajectories followed by the UAV
and Figures 7c and 7d show initial and goal line features
for the same trajectories of both maneuvers. Although the
experiments were performed under pitch dark (see video
support material), Figure 7b was edited to allow the visibility
of the scene. No performance impact was detected when the

(a) Good lighting experiment. (b) Dark lighting experiment.

(c) Initial line features. (d) Goal lines features

Fig. 7: Experiments in illuminated and dark scenarios.
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UAV operated in different lightning conditions, even in pitch
dark scenes, which has higher spurious event rates than well-
illuminated scenes.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a bio-inspired perception-based
method for aerial robot maneuvers. It is based on event
cameras, also called artificial retinas, which provide fast
response and robustness against motion blur and lighting
conditions. The scheme tries to mimic birds, which perform
purposeful maneuvers, such as landing and perching, by
matching the separation of the retinal image and the goal,
following time-to-contact trajectories.

Our scheme includes two main modules. First, a event-
based line tracking method combines event-by-event and
event-image processing, providing fast-response and robust
line estimations. Second, an efficient intrinsic-Tau guidance
method commands the robot adjusting the features in the
event camera plane to a set of reference features and, thus,
describing smooth TTC trajectories. The scheme has been
designed to be online executed onboard low-cost hardware
using standard aerial robot controllers. It has been exper-
imentally validated with different descent maneuvers and
challenging lighting conditions. The adaptation and extension
of the proposed scheme to be used onboard ornithopter robots
is object of future work.
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J. Gonzalez-Jimenez, “PL-SLAM: A stereo SLAM system through the
combination of points and line segments,” IEEE Trans. on Robotics,
vol. 35, no. 3, pp. 734–746, June 2019.

[32] B. Siciliano and O. Khatib, Springer handbook of robotics, 2016.
[33] P. Corke, Robotics, vision and control: fundamental algorithms in

MATLAB R©. Springer, 2017, vol. 118.
[34] R. Carlos, J. Á. Acosta, and A. Ollero, “Command-filtered back-

stepping redesign for aerial manipulators under aerodynamic and
operational disturbances,” in Iberian Robotics Conference. Springer,
2017, pp. 817–828.
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[36] R. Tapia, A. Gómez Eguı́luz, J. Martınez-de Dios, and A. Ollero,
“ASAP: Adaptive scheme for asynchronous processing of event-based
vision algorithms,” in 2020 IEEE ICRA Workshop on Unconventional
Sensors in Robotics. IEEE, 2020.


	Introduction
	State of the art
	Asynchronous Event-based Line Tracking
	Event-by-event line tracker
	Event-frame line tracker

	Time-to-Contact Velocity Guidance
	Experimental Results
	Preliminary Experiments
	Event-based Tau Guidance Experiments

	Conclusions and Future Work
	References

