
This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

Asynchronous event-based clustering and tracking for intrusion
monitoring in UAS

J.P. Rodrı́guez-Gómez, A. Gómez Eguı́luz, J.R. Martı́nez-de Dios and A. Ollero

Abstract— Automatic surveillance and monitoring using Un-
manned Aerial Systems (UAS) require the development of per-
ception systems that robustly work under different illumination
conditions. Event cameras are neuromorphic sensors that cap-
ture the illumination changes in the scene with very low latency
and high dynamic range. Although recent advances in event-
based vision have explored the use of event cameras onboard
UAS, most techniques group events in frames and, therefore,
do not fully exploit the sequential and asynchronous nature
of the event stream. This paper proposes a fully asynchronous
scheme for intruder monitoring using UAS. It employs efficient
event clustering and feature tracking modules and includes
a sampling mechanism to cope with the computational cost
of event-by-event processing adapting to on-board hardware
computational constraints. The proposed scheme was tested on
a real multirotor in challenging scenarios showing significant
accuracy and robustness to lighting conditions.

Index Terms— event camera, asynchronous, intrusion moni-
toring, surveillance, UAS, clustering, feature tracking.

I. Introduction

Unmanned Aerial Systems (UAS) have been proposed
as ideal tools for surveillance and monitoring of large
areas in applications such as border surveillance [1] or
intruder detection [2], among others. Automatic surveillance
and intruder detection in large, complex and unstructured
scenarios face relevant problems. Lighting conditions are a
severe problem in automatic visual-based systems. Besides,
different cameras are usually required for operating day and
night, involving higher UAS payload, energy consumption or
on-board computational needs and, hence, reducing the flight
time. Motion blur is also a significant constraint in many
UAS vision-based systems, e.g. in highly dynamic scenarios
[3], new-generation aerial platforms, such as ornithopters [4]
[5] [6], or simply in applications where poorly-maintained
UAS originate strong mechanical vibrations.

In this paper, we apply event cameras for intruder mon-
itoring. Event cameras provide high dynamic range and
temporal resolution. They are insensitive to motion blur,
lightweight and have low power consumption. A good num-
ber of successful techniques have been proposed in the last
years evidencing the capabilities of event cameras [7]. The
current trend in robotics is to group the received events in
frames, i.e. event images. Processing of event images enables
designing complex and elaborated techniques for computer

This work was supported by the European Research Council as part of
GRIFFIN ERC Advanced Grant 2017, Action 788247 and ARM-EXTEND
(DPI2017-8979-R) project funded by the Spanish National R&D Plan.
The authors are with the GRVC Robotics laboratory, University of Seville,
Seville 41092, Spain email: {jrodriguezg, ageguiluz, jdedios,
aollero}@us.es

Fig. 1: Intrusion monitoring example of the proposed scheme
in UAS-based experiments.

vision in robotics. However, this approach does not always
fully exploit the sequential and asynchronous capabilities of
the data stream provided by event cameras. In fact, event
images can create motion blur in some cases and some
techniques, e.g. [8], include specific mechanisms to reduce it.
Asynchronous event-by-event processing usually has higher
computational needs and is mainly adopted for low-level
processing techniques, e.g. feature detection [9] or tracking
[10]. Some schemes combine asynchronous methods for low-
level processing with others based on event images for high-
level processing [11], but they do not always fully exploit
either the advantages of event cameras.

This paper presents an asynchronous event-based scheme
for intrusion monitoring with UAS. It integrates efficient
feature tracking and event clustering methods, among others.
All of them perform event-by-event processing, resulting
in a fully asynchronous processing. The scheme includes
mechanisms to differentiate events generated from the scene
background from those corresponding to moving objects.
This is a common problem of using event cameras onboard
robotic platforms, especially on UAS. Special attention has
been devoted to its design in order to enable on-line on-board
execution. The proposed scheme has been implemented in
ROS and validated in UAS-based experiments performed in
complex and unstructured scenarios during the day and night
with one and several intruders, see Figure 1.



This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

The contribution of this paper is three-fold. First, a
fully asynchronous scheme for intruder monitoring using
UAS is presented. It can be tuned to run in real time
adapting to the hardware computational constraints. Sec-
ond, two asynchronous methods for feature tracking and
event clustering are presented. Third, code and datasets
will be released in order to contribute to the development
of event-based vision community (https://grvc.us.es/
davis-dataset-for-intrusion-monitoring/).

The rest of the paper is organized as follows. Section II
briefly summarizes the main works in the topics addressed in
the paper. The proposed asynchronous event-based scheme
for UAS surveillance is presented in Section III, along with
its main components. Section IV presents the experimental
validation and robustness analysis of the proposed scheme.
Section V concludes the paper and highlights future research.

II. State of the art

The advent of event cameras has recently attracted sig-
nificant research interest in the robotics and computer vision
communities [7]. Some works have explored the use of event-
based vision for surveillance tasks, mainly for pedestrian
detection [12] [13]. The work in [12] proposed a method
for face detection and high speed video reconstruction. A
Bayesian inference approach was proposed in [13] to fuse
the output of two YOLO classifiers fed with frames and event
images. Both works assumed static cameras which severely
constrains their use in robotics applications.

The use of event-based vision systems on real robots
requires methods capable of coping with the camera mo-
tion. The work in [14] proposed a contrast maximization
process to estimate the rotational motion of the camera
using event images formed through polarity addition. The
optical flow of the events was used in [15] to segment
the scene by clustering motion-compensated images into
objects according to their velocity. Motion compensation was
also used in [16] to provide a cluster association for each
event while estimating the motion parameters of the objects
through an optimization process. Recently, the work in [17]
developed the first approach for event-based independent
motion detection using Neural Networks to estimate the
camera egomotion and segment both depth and pixel motion.
However, the performance of these methods onboard real
robots was not evaluated.

A method to detect and track a moving circle (i.e. a
ball) using a Hough transform approach and optical flow
information from windows of a fixed number of events was
implemented in an iCub robot [18]. Their method was later
extended in [19] to enhance the tracking robustness using
a particle filter. Another work using an iCub robot was
presented in [11]. It detected and grouped corner features
in order to predict the expected camera motion distribution
as a function of the robot joint velocities using a ν-SVM.
Their method performed asynchronously for corner detection
and tracking while the independent motion detection was
performed in a synchronous manner, i.e. the robot joint
velocities were updated every 10 ms. A model of the affine

transformation between two consecutive event images was
used in [20] to compensate for the global motion of a Micro
Aerial Vehicle (MAV) and, the resulting events were assumed
to represent the moving objects. In [21], an autonomous
MAV landing approach based on the optical flow of event
frames obtained from a downwards-pointing DVS sensor was
presented. Recently, the work in [8] proposed a high-speed
dodging system for UAS. A Deep Learning solution used
event images to detect independent moving objects, estimate
their 3D motion, and avoid collisions.

Although the output of event cameras are asynchronous
event streams, all the above techniques group the temporally-
close received events in frames called event images. Hence,
they do not fully exploit the advantages of event cameras
and, in fact, some of them (e.g. [8]) include motion blur
cancellation mechanisms. Various asynchronous event-by-
event processing methods have been proposed for feature
detection [9] [22] [23] [24], feature tracking [10] [25], clus-
tering [26], pose tracking [27], and visual inertial odometry
[28]. Particularly relevant for this paper is the asynchronous
localization approach developed in [27] onboard a multirotor.
The authors were capable of tracking the 6-DoF pose of
the drone during high speed maneuvers by looking at a
previously known planar shape on a wall. Although these
works provide reliable solutions, their application on real
robots navigating in realistic, complex and unstructured sce-
narios is still an under-researched area. This paper presents
an asynchronous event-by-event processing scheme designed
for and validated onboard a UAS in a realistic unstructured
scenario.

III. The ProposedMethod

We are interested in monitoring intruders in complex
and unstructured scenarios using UAS equipped with event
cameras. The scenarios are assumed static but intruders move
in the scenario. That is the case in many applications, e.g.
night surveillance in factories or perimeter monitoring. The
event cameras on moving UAS generate events from static
objects in the scenario but the events generated by the
intruders can be distinguished due to their different spatio-
temporal properties. We assume that intruders originate
nearby corners in the event stream, e.g. caused by limbs
in human and animal intruders, or by ground-aerial robots.
Hence, intruders create groups of events close to corners with
globally consistent motion in the scenario.

The diagram of the proposed scheme is shown in Figure
2-a. All the modules in the scheme perform event-by-event
processing, resulting in a fully asynchronous scheme, which
can fully exploit the sequential nature of events. The events
from the Dynamic Vision Sensor (DVS) of a DAVIS 346
camera onboard the UAS are received asynchronously. Event
cameras use Address Event Representation (AER) to return
information based on pixel intensity variation with a resolu-
tion of µ seconds. Each event is defined by e = (t, u, v, p),
where t is the time in which the event was triggered, (u, v) are
the pixel coordinates and p is the polarity of the brightness
change, i.e. either 1 or 0.

https://grvc.us.es/davis-dataset-for-intrusion-monitoring/
https://grvc.us.es/davis-dataset-for-intrusion-monitoring/


This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

(a)

(b) (c) (d) (e)

Fig. 2: (a) Scheme of the proposed asynchronous scheme.
Results from each developed module: b) corner tracking, c)
APM, d) event clustering and, e) intruder monitoring.

The first module in the scheme performs corner detection.
Among the corner detection methods available online we
adopted *eFast [24], a modified version of the method
described in [29] due to its compromise between accuracy,
false positive rate, and computational efficiency [9]. Then,
the corners detected are separated by polarity and tracked to
remove inconsistent and noisy corners. An example of the
corner tracking output is shown in Figure 2-b. Although some
asynchronous corner tracker methods have been proposed
[10] [30], we preferred to develop a new method –described
in Section III-A, adapted to our problem and more efficient.

On the other hand, the events should be grouped in
nearby regions. We use the asynchronous event clustering
method described in Section III-B. It includes accuracy-
efficiency trade-off mechanisms that enable easy adaptation
to a given problem providing higher flexibility than existing
asynchronous clustering methods. If the event camera was
static, the event clustering module would suffice for detecting
intruders. However, the event camera is not static and many
events are originated by the static objects in the scenario. We
adopt the term of Attention Priority Map (APM) from neuro-
science research [31] for a module that captures the regions
that triggered more events within a time frame (see Section
III-C). Hence, the events originated by moving objects are
assigned with higher attention priority, see Figure 2-c, than
those generated by static objects in the scene. Intruders create
groups of events close to corners with consistent motion in
the scenario. Hence, the clustering module groups the events
with high priority and the corners correctly tracked by the
corner tracking module, see Figure 2-d. Finally, the proposed
scheme monitors the relevant clusters (i.e the intruder) by
tracking their centroids, see Figure 2-e where the intruder is
marked with a green square. If a cluster is not updated in a
consistent manner or contains less than a certain number of
corner tracks, it is considered noisy and is filtered out.

Algorithm 1: Asynchronous event-based feature tracking
Parameters: ν
Input: f
Output: F̂
τ←− UpdateFeatureBuffer(f,B1,S)
if ActiveFeatures(f,S) > ν then

M←− SearchCandidates(F̂,A,f) . Find matches in F̂.
if M , Ø then

F̂←− TrackUpdate(f) . Update F̂ by f.
else

F̂←− NewTrack(f) . Add a new feature to F̂
end

end
F̂←−CleanTracker(M, τ) . Remove old features

A. Asynchronous Event-based Feature Tracking

The aim of this module is to follow active features on the
scene for intruder monitoring. The corner tracking method
described in [10] uses tree graphs to save information of the
previous corners followed by a track. It reports remarkable
accuracy. However, performing data association using all the
vertices in a sub-tree and refining the tracking position is
too computationally costly in our scheme with several asyn-
chronous event processing modules. We designed a tracking
method that reduces the computational needs at the cost of
a slight reduction in pixel location accuracy, which is not
critical in our case. Algorithm 1 shows the proposed event-
based asynchronous feature tracker. Each feature f = {t, u, v}
is defined by a timestamp t of the event that generated the
feature and its coordinates (u, v). The tracker categorizes new
features f as: (i) track update, candidates that match with at
least one of the previous tracked features; (ii) new track,
candidates considered as a new feature to track, and; (iii)
no track, discarded features. Tracked features are stored in
the list F̂ = [f̂1, . . . f̂n], where f̂i is the i-th feature tracked and
n is the number of tracked features.

The candidate evaluation consists of analyzing the oc-
currence of previous tracks f̂i in a neighborhood area A
around the candidate f. Previously tracked features within
the neighbourhood area s.t. f̂i ∈ A are appended to the
list of feature matches M. The candidate is categorized as
track update when M , Ø. In this case, the tracked feature
f̂i in M with the smallest index i (i.e the oldest track) is
updated by the candidate f in the list of tracked features
F̂. Otherwise, the candidate is categorized as new track
by adding f to F̂. Further, features from noisy events are
categorized as no track. Noise rejection is performed by
discarding candidates with a number of previous features
around f lower than a threshold ν using S, a spatio-temporal
distribution of the previous features. Thus, only features with
continuous occurrence are tracked. Non-noisy candidates are
assumed to have ν ≥ 2 previous features in its boundary.

Previously tracked features are removed from F̂ in two
cases. First, when a candidate f matches more than one
element of F̂, only the oldest tracked feature f̂i in M is



This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

updated and the remaining elements on the list are deleted
from F̂. Second, tracked features f̂ i with a timestamp lower
than the dynamic time reference τ are removed from F̂.
Hence, the algorithm cancels the tracks that are not updated
according to the dynamics of the scene. The dynamic time
reference τ is obtained by retrieving the oldest timestamp
from a fixed size buffer B1 containing the last m features.
This time-based forgetting horizon is preferred instead of
a fixed value since a fixed temporal interval is affected by
the velocity of the camera, as reported in [32]. S is the
2D representation of the locations of the features in B1.
Hence, an under-estimation of τ would entail an incomplete
representation while, an over-estimation, would originate
motion blur in S, as reported in [33].

B. Event Asynchronous Clustering for Scene Segmentation

The main role of this method within the proposed scheme
is to perform object segmentation in an event-cluttered
scenario. To exploit the sequential nature of AER data, a
method capable of grouping the events in an asynchronous
manner is required. Events are generally triggered at the
contour of the objects and, therefore, they are often distant
from the cluster centroid. The method described in [26] is an
asynchronous adaptation of mean-shift clustering that uses a
Gaussian kernel centered at the cluster centroid to decide if
events are assigned to the cluster. This approach works well
with clearly isolated objects but it is not designed for event-
cluttered unstructured scenarios such as in our problem. Our
method finds clusters of events with spatial continuity within
a dynamic time frame by analyzing the proximity of each
new event to a random sample of the events already assigned
to the cluster. The method shows high robustness in event-
cluttered scenarios, it does not require a-priori knowledge
and adapts to an arbitrary number of objects in the scene.

In a nutshell, our method evaluates the spatio-temporal
proximity of each new event to the existing clusters. If the
event is close to only one cluster, it is assigned to it and
the cluster is updated. If the event is close to more than
one cluster, the clusters are merged into one and the new
cluster is updated. If the event is not close to any existing
cluster, a new cluster is created. The method is shown in
Alg. 2. Similarly to the tracker in Section III-A, the method
keeps a buffer B2 with the m more recent events. The buffer
is updated with each new event. τ is the timestamp of the
oldest event in the buffer. τ is used as a time horizon that
adapts to the camera motion and scene dynamics.

A cluster c is defined by: its centroid µc, a weighted
average µ̂c and a list Θc of the events with a timestamp
greater than τ that were assigned to the cluster. The list
Θc is kept updated by removing the events with timestamp
lower than τ, so that each cluster can keep an updated
representation of a moving object. A cluster is removed when
all its assigned events are older than τ. When a cluster c is
updated with event e, its running weighted average µ̂c is
computed as:

µ̂c =
(
αx + (1 − α)µ̂c

)
/2, (1)

Algorithm 2: Asynchronous event clustering algorithm
Parameters: r, κ
Input: e
Output: µ
τ←− UpdateEventBuffer(e,B2)
UpdateClusters(τ); . Delete old events.
L←− EvaluateClusterProximity(e,r,κ)
if L = Ø then

CreateNewCluster(e)
else if Size(L) = 1 then

AddToCluster(e,L) . Add event to cluster.
else

MergeClusters(e, L) . Merge clusters & add event.
end
µ←− ComputeClusterCentroid(L)

where α ∈ [0, 1] is the weight parameter. We empirically
found that weighting the average towards the new event (i.e.
α � 0.5) improves the clustering performance since the
events of an object are consistently triggered at specific parts
of its contour during shorts period of time. We used α = 0.9
in the performed experiments.

The Manhattan distance between coordinates of the new
event e and µ̂c is used to evaluate event-cluster proximity.
Additionally, we evaluate the proximity between the event
and κ random samples drew from Θc, i.e. the list of events
assigned to that cluster. Event e is assigned to cluster c if
any of these distances is below a given threshold r (typically
r = 10). All clusters are evaluated and the clusters assigned
to e are included in list L. If L contains one only element,
the cluster is updated adding e to Θc and using Eq. (1). If L
contains more than one element, all clusters in L are merged
into one and the resulting cluster is updated with e. An event
with L = Ø creates a new cluster.

The value of κ, number of samples in the cluster contour
used to evaluate event-cluster proximity, entails a trade-off

between computational cost and clustering accuracy. In our
experiments, κ = 100 provided a good accuracy with low
computational cost, suitable for online execution.

C. Event-based Attention Priority Map

Existing event-based surveillance methods rely on static
cameras [12] [13]. Their implementation in moving robots
is limited: when the event camera moves, many events are
originated by static objects in the scenario, hampering the
detection of actual moving intruders. The proposed approach
relies on spatio-temporal information to differentiate the
events generated as a consequence of the robot motion from
those corresponding to a moving object. We assume that the
regions corresponding to moving objects trigger significantly
more events than static ones. We use the APM to capture
those regions within a time frame by defining Ω ∈ R2 with
a similar resolution than the event camera. The APM, Ω,
is updated asynchronously with each event e by increasing
the values in Ω in a l-sized window centered at coordinate
x = (u, v) of event e as follows:

Ωi j = Ωi j + l − D(x, y) + 1, (2)



This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

where D(·) is the Manhattan distance, y = (i, j), i ∈ [u −
l−1
2 , u + l−1

2 ], and j ∈ [v − l−1
2 , v + l−1

2 ]. Similarly, events
older than τ are forgotten, i.e. their values are removed from
Ω. Hence, the values of Ω represent the number of events
triggered within a region during a dynamic time frame. The
values in Ω are normalized in the range [0, 1]. An event at
coordinate x is considered to attract attention when Ωu,v is
greater or equal than a threshold ω ∈ [0, 1]. Thus, only events
with high attention priority are considered for clustering.

In order to improve the computational cost, the scheme
includes a mechanism to reduce the number of events that
are processed by APM. The event stream input to APM
is randomly sampled and only a percentage γ ∈ [0, 1] of
events were processed. Although an accuracy/computational
cost trade-off exists, event cameras onboard UAS generate
so many events that processing only a faction of them in
APM is a good choice to reduce the computational cost with
no significant influence on performance. This mechanism is
experimentally validated Section IV-B.

IV. Experimental Results

The proposed scheme has been validated in sets of ex-
periments in highly complex and unstructured scenarios for
different conditions including day/night operation and with
one/several intruders. The UAS used was a DJI Flamewheel
F550 Drone shown in Figure 2-top. The UAS was equipped
with a DAVIS 346 pointing at a pitch angle of −45 degrees
and an INTEL R© NUC6i7KYK2 for logging and online
computation. The total weight of the platform was 3.49 Kg.
The described event-based scheme was implemented in ROS
Kinetic. The following parameters were selected for all the
experiments performed: m = 100, κ = 100 and ω = 0.5.

The proposed feature tracking and event clustering meth-
ods were also validated in laboratory experiments in which
several laser light sources were projected on a canvas gener-
ating a continuous source of events. The events were taken
as input of the clustering method and also of the tracker
preventing potential feature detection failures. Different sets
of experiments were performed with different number of
lasers, different motion patterns and speeds. Their validation
was performed manually checking the consistency of their
results with the input events. In all experiments, the feature
tracker followed every laser light correctly, without any
tracking loss. When two or more laser lights crossed in the
scene, the tracker kept the older track and assigned a new
identifier to the rest of the features, as described in Section
III-A. The clustering method also successfully grouped all
the events generated by each laser light.

A total of 36 UAS-based outdoor experiments of the full
scheme were performed. In each experiment, an intruder
person moved in the surveillance area and tried to hide from
the drone to simulate escape or intrusion situations. We first
analyse performance in experiments performed during the
day under different lighting conditions. Figure 3-left shows
some intrusion monitoring results in day experiments in
which the intruder tracked is marked within a green window.
Our scheme processes only the DVS output of the DAVIS

Fig. 3: Intruder monitoring during four experiments. From
top-left: (i) daylight, (ii) night, (iii) multi-object, and (iv)
illumination changes. Cluster events and feature tracks are
represented by white and orange pixels respectively.

camera for intruder monitoring. We used the images from
the DAVIS APS combined with the events from the DVS
as ground truth for the method evaluation. The evaluation
was performed counting the number of false positives, false
negatives, true positives and true negatives on each of the
ground truth images. With these, we computed the Accuracy,
Precision and Recall metrics as defined in [34] to evaluate
the scheme detection success rate and noise rejection. The
average results obtained in all the Daylight experiments were
Accuracy=0.98, Precision=0.99 and Recall=0.97, see Table
I. These values demonstrate the expected good performance
of the scheme.

A. Robustness Analysis

The proposed scheme has to be robust to the different con-
ditions that can be found in typical surveillance applications.
We evaluated its performance in sets of experiments with
increasing degree of difficulty: a) experiments performed
during the night –where many intrusion events might happen,
b) multi-track experiments performed during the night with
several intruders in the scene –human intruder and a drone
intruder, and c) dynamic lighting experiments performed in
the night with strong temporal lighting changes caused by
either moving or flashing lights in the scene.

Figure 3 shows the results obtained in different sets of ex-
periments performed under these conditions: daylight, night,
multi-track and dynamic lighting. The average performance

TABLE I: Performance results by processing the complete
set of generated events.

Experiment Precision Recall Accuracy
Daylight 0.99 0.97 0.98

Night 0.97 0.96 0.97
Multi-track 0.96 0.96 0.95

Dynamic lighting 0.97 0.88 0.91



This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

Fig. 4: Performance results for all experiments. Accuracy, Precision and Recall as a function of γ.

metrics in Accuracy, Precision and Recall are shown in
Table I. The best performance was obtained in daylight
experiments. In night experiments, the lower signal-to-noise
ratio produced by the low illumination conditions originated
a slight performance degradation w.r.t. daylight of 1-2%.

In the multi-track experiments, having several intruders
moving in the scene could impact on the APM module
when one of them moves significantly faster than the rest.
Although we used two different types of intruders, their
speed difference was not enough and the APM performed as
expected. The very low difference in Accuracy and Precision
was caused by false positives originated from noise. The
dynamic lighting experiments were the most challenging.
They were performed during the night, and the pointing
of some light sources was moved in the scenario. Lighting
changes originate noisy events all around the scene that
hampered intruder monitoring as it is shown by the Recall
value. Despite these effects, the performance results were
still good and show the robustness of the proposed scheme
under rather challenging lighting conditions.

B. Real-time Feasibility

Asynchronous processing schemes fully exploit the se-
quential nature of the event stream but are more computation-
ally demanding since they require processing event-by-event.
The proposed scheme was carefully designed to enable its
on-line on-board execution even in cases of using hardware
with low computational capabilities. One relevant mechanism
adopted to reduce the computational cost is the sampling
of input events to the APM module. Parameter γ ∈ [0, 1]
is the percentage of the input events that are processed in
APM and hence, also in event clustering. γ should be set
to adjust the computational cost of the scheme for running
on real time adapting to the scenario particularities and the
hardware onboard the UAS. The results reported in Table I
were obtained with γ = 1.0.

Figure 4 shows the values obtained for Accuracy, Preci-
sion and Recall using different values of γ for each type
of experiments. In order to cancel the randomness of the
γ sampling, each experiment was repeated 10 times and
the results were averaged. Figure 4 shows the average
metrics obtained with all the experiments of each type. All
performance metrics tend to degrade due to the reduction
in the number of events processed by the event clustering
module. However, the performance decay is low and smooth
in all types of experiments for γ ≥ 0.2. These results validate

the use of γ to largely reduce the computational cost without
significant degradation. When γ = 0 the event clustering
module is only fed with the tracked corners from both
moving and static objects, which increases the number of
false positives, degrading the performance.

In all above experiments using γ = 0.2 the proposed
scheme processed each event in an average of 5.72µs in the
UAS onboard hardware. In average the camera generated
115,000 events per second, i.e. all the events generated in
one second were processed in 0.66s. Each daylight, night
and multi-track experiment was executed in real time along
the full experiment: the scheme was capable of processing
the event stream using 20% of the events for event clustering
while discarding the rest without significant performance
degradation. The same happened during the greater part of
the dynamic changes experiments, except the few occasions
in which a light source pointed directly to the event camera.
In these cases, the camera produced >175,000 events in one
second and the overloading events were discarded without
significant overall performance degradation.

V. Conclusions and FutureWork
This paper proposes a scheme for intrusion monitoring

using UAS equipped with event cameras. As event cameras
provide high dynamic range, our scheme is robust against
challenging illumination conditions. While previous works
either relied on event images or traditional cameras, this
paper presents an asynchronous event-based method for
intrusion monitoring that is resilient to motion blur by
performing event-by-event processing. The proposed method
was evaluated onboard a UAS equipped with a DAVIS346
sensor. The results showed significant robustness at monitor-
ing intrusions in real-time with high accuracy for a number
of challenging scenarios.

This work has been developed in the context of the ERC
Advanced Grant GRIFFIN project, which aims to develop
flapping-wing aerial robots capable of navigating, perching
and manipulating objects. The fast response of event cameras
provide the necessary capabilities for flapping-wing robots
(i.e. ornithopters), which perform faster than multirotors and
suffer from higher levels of mechanical vibration. Our future
work is to adapt and extend the proposed scheme to be used
onboard an ornithopter robot.

References
[1] S. Berrahal, J.-H. Kim, S. Rekhis, N. Boudriga, D. Wilkins, and

J. Acevedo, “Border surveillance monitoring using quadcopter uav-



This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. c©IEEE 2020

aided wireless sensor networks,” Journal of Communications Software
and Systems, vol. 12, no. 1, pp. 67–82, 2016.

[2] S. Rasmussen, K. Kalyanam, and D. Kingston, “Field experiment of a
fully autonomous multiple uav/ugs intruder detection and monitoring
system,” in 2016 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2016, pp. 1293–1302.

[3] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are we ready for autonomous drone racing? the uzhfpv drone
racing dataset,” in IEEE Int. Conf. Robot. Autom.(ICRA), 2019.

[4] S. Tijmons, G. C. de Croon, B. D. Remes, C. De Wagter, and
M. Mulder, “Obstacle avoidance strategy using onboard stereo vision
on a flapping wing mav,” IEEE Transactions on Robotics, vol. 33,
no. 4, pp. 858–874, 2017.

[5] J. P. Rodrı́guez-Gómez, A. Gómez Eguı́luz, J. R. Martinez De-Dios,
and A. Ollero, “ROSS-LAN: RObotic Sensing Simulation scheme for
bioinspired robotic bird LANding,” in Iberian Robotics conference.
Springer, 2019.

[6] A. Gómez Eguı́luz, J. P. Rodrı́guez-Gómez, J. Paneque, P. Grau,
J. R. Martinez De-Dios, and A. Ollero, “Towards flapping wing robot
visual perception: Opportunities and challenges,” in International
Workshop on Research, Education and Development on Unmanned
Aerial Systems (RED-UAS), 2019.

[7] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, et al., “Event-
based vision: A survey,” arXiv preprint arXiv:1904.08405, 2019.

[8] N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam,
C. Fermuller, D. Scaramuzza, and Y. Aloimonos, “Evdodge: Embodied
ai for high-speed dodging on a quadrotor using event cameras,” 2019.

[9] R. Li, D. Shi, Y. Zhang, K. Li, and R. Li, “Fa-harris: A fast and
asynchronous corner detector for event cameras,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019.

[10] I. Alzugaray and M. Chli, “Ace: An efficient asynchronous corner
tracker for event cameras,” in 2018 International Conference on 3D
Vision (3DV). IEEE, 2018, pp. 653–661.

[11] V. Vasco, A. Glover, E. Mueggler, D. Scaramuzza, L. Natale, and
C. Bartolozzi, “Independent motion detection with event-driven cam-
eras,” in 2017 18th International Conference on Advanced Robotics
(ICAR). IEEE, 2017, pp. 530–536.

[12] S. Barua, Y. Miyatani, and A. Veeraraghavan, “Direct face detection
and video reconstruction from event cameras,” in 2016 IEEE winter
conference on applications of computer vision (WACV). IEEE, 2016,
pp. 1–9.

[13] Z. Jiang, X. Pengfei, K. Huang, W. Stechele, G. Chen, Z. Bing, and
A. Knoll, “Mixed frame-/event-driven fast pedestrian detection,” in
2019 International Conference on Robotics and Automation (ICRA),
2019.

[14] G. Gallego and D. Scaramuzza, “Accurate angular velocity estimation
with an event camera,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, pp. 632–639, 2017.

[15] T. Stoffregen and L. Kleeman, “Simultaneous optical flow and
segmentation (sofas) using dynamic vision sensor,” arXiv preprint
arXiv:1805.12326, 2018.

[16] T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, and D. Scara-
muzza, “Event-based motion segmentation by motion compensation,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 7244–7253.

[22] V. Vasco, A. Glover, and C. Bartolozzi, “Fast event-based harris corner
detection exploiting the advantages of event-driven cameras,” in 2016

[17] A. Mitrokhin, C. Ye, C. Fermuller, Y. Aloimonos, and T. Delbruck,
“Ev-imo: Motion segmentation dataset and learning pipeline for event
cameras,” arXiv preprint arXiv:1903.07520, 2019.

[18] A. Glover and C. Bartolozzi, “Event-driven ball detection and gaze
fixation in clutter,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 2203–2208.

[19] ——, “Robust visual tracking with a freely-moving event camera,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 3769–3776.

[20] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1–9.

[21] B. J. Pijnacker Hordijk, K. Y. Scheper, and G. C. De Croon, “Vertical
landing for micro air vehicles using event-based optical flow,” Journal
of Field Robotics, vol. 35, no. 1, pp. 69–90, 2018.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 4144–4149.

[23] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based
corner detection.” in BMVC, 2017.

[24] I. Alzugaray and M. Chli, “Asynchronous corner detection and track-
ing for event cameras in real time,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3177–3184, 2018.

[25] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature track-
ing with probabilistic data association,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
4465–4470.

[26] F. Barranco, C. Fermuller, and E. Ros, “Real-time clustering and
multi-target tracking using event-based sensors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 5764–5769.

[27] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-dof pose
tracking for high-speed maneuvers,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2761–
2768.

[28] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual inertial
odometry,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, pp. 5816–5824.

[29] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based
corner detection.” in BMVC, 2017.

[30] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature track-
ing with probabilistic data association,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
4465–4470.

[31] C. Mo, D. He, and F. Fang, “Attention priority map of face images in
human early visual cortex,” Journal of Neuroscience, vol. 38, no. 1,
pp. 149–157, 2018.

[32] J. Wu, K. Zhang, Y. Zhang, X. Xie, and G. Shi, “High-speed object
tracking with dynamic vision sensor,” in China High Resolution Earth
Observation Conference. Springer, 2018, pp. 164–174.

[33] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[34] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference

on Machine learning. ACM, 2006, pp. 233–240.


	Introduction
	State of the art
	The Proposed Method
	Asynchronous Event-based Feature Tracking
	Event Asynchronous Clustering for Scene Segmentation
	Event-based Attention Priority Map

	Experimental Results
	Robustness Analysis
	Real-time Feasibility

	Conclusions and Future Work
	References

