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ABSTRACT Real-world environment, where images are acquired with digital camera, may be subject to
sever climatic conditions such as haze that may drastically reduce the quality performance of sophisticated
computer vision algorithms used for various tasks, e.g., tracking, detection, classification etc. Even though
several single image de-hazing techniques have been recently proposed with many deep-learning approaches
among them, a general statistical framework that would permit an objective performance evaluation has not
been independently introduced yet. In this manuscript, certain performance metrics that emphasize different
aspects of image quality, output ranges and polarity, are identified and combined into a single performance
indicator derived in an unbiased manner. A general methodology is thus introduced, as a framework for
objective performance evaluation of current and future dehazing tasks, through an extensive comparison
of 15 single image de-hazing techniques over a vast range of image data sets. The proposed unified
framework shows several advantages in evaluating diverse and perceptually meaningful image features but
also in elucidating future directions for improvement in image dehazing tasks.

INDEX TERMS Haze, single image de-hazing, deep-learning, generative adversarial network (GAN),
convolutional neural network, bench-marking, survey, computational-performance, computer vision, image
processing.

I. INTRODUCTION
Image capturing is the first step in an imaging pipeline and
plays an important role in providing input with an acceptable
level of quality that will not compromise the performance
of existing computer vision and image processing tasks,
i.e., classification, object detection, details extraction etc. The
quality of the captured image may be degraded not only by
noise generated by the device sensor but also by environ-
mental conditions such as fog, rain drops, haze, illuminations
conditions etc. affecting visibility of objects, details etc. and
drastically compromising the recognition capability of com-
puter vision and image processing tasks.

Atmospheric haze in particular, is generated by particles
that attenuate light passing through them. These particles
cause light absorption and scattering, so as only a certain
percentage of the reflected light reaches the camera sen-
sor. This results in an acquired image of reduced visibility
and color shift when compared to an image acquired under
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standard sunlight environmental conditions and it drastically
reduces the performance of state-of-the-art object detection
algorithms as shown in Figure 1. De-hazing techniques for
single images exist. They provide an attempt to enhance the
hazy image by solving the so called light scattering model,
as described in Section II. They can be divided in two main
categories. Methods that use image prior features to con-
straint the solution of the scattering model and methods that
use a black-box approach where deep-learning is used to limit
the constraints required by the prior features approaches (see
Section II).
While methods in the first category are more or less under-

stood in a probabilistic context, themethods in the second cat-
egory exhibit a well known dependency to the data sets used
for their training. Even though the performance of the second
group is typically measured on unseen images with cross
validation techniques, a hidden bias to certain choices, data
sets or parameters is generally difficult to quantify. The
contribution in this paper is in introducing a framework for
objective evaluation using diverse performance metrics uni-
fied under a statistical context. Existing benchmark data sets
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FIGURE 1. Images acquired under different environmental conditions -
(a) without haze, while (b) with haze. The image in (b) clearly shows
reduced visibility where objects and details are less visible, and color
shift where colors in various areas are desaturated, when compared to
the ground truth (a). Applying state-of-the-art object detection algorithm
only few persons in the haze image are detected (b). Images from the
RESIDE 2018 data set [3].

with different characteristics are integrated and by means of
the proposed statistical framework, a comprehensive perfor-
mance evaluation is performed, between the most popular
de-hazing methods at a scale not seen before for this particu-
lar problem. Formethods based on deep learning in particular,
fusing testing data sets affects the hidden bias in training /
cross validation choices. Indeed, different data sets with types
of images ranging from indoor to outdoor settings, low to
high resolutions, synthetic to real haze, as well as different
haze levels are used to check the level of dependency of deep
learning methods to their original training sets.

Five objective metrics are used, providing a mixture of
orthogonal criteria in performance evaluation, namely, detec-
tion of structural changes, color distortion and identifying
visibility changes. Two reference-less metrics predict losses
in naturalness [1] thus estimating the quality of an image in a
way that is consistent with human perception [2].

The proposed framework addresses the unification prob-
lem of these metrics by introducing a general statistical
framework, one that provides a unique performance indicator,
derived in an unbiasedmanner. The generality of the proposed
frameworkmakes it possible to incorporate current and future
single image de-hazing techniques into a uniform objective
evaluation.

The rest of the paper is structured as follows: the sin-
gle image de-hazing problem formulation and related-work
are described in Section II. A total of 78K images with
different characteristics, i.e., indoor, outdoor, synthetic and
real haze, as well as dense haze, different haze levels, syn-
thetic and real images, are used and described in Section III.
Section IV provides the methodology used for the analysis of
the results, including quality evaluation as well as analysis of
the computational performance. Final remarks are discussed
in Section VI.

II. SINGLE IMAGE DE-HAZING, PROBLEM FORMULATION
AND CURRENT METHODS
A simple way to model the scattering of light into a medium
is the so called classical atmospheric scattering model:

I (x) = J (x)t(x)+ A(1− t(x)), (1)

where I is the hazy image, J is the recovered haze free
radiance scene, while A and t are the global atmospheric
light and the medium transmission coefficients respectively.
The medium transmission coefficient describes the portion
of the light that is not scattered and reaches the camera. The
first term in eq. 1, describes the scene radiance decay in
the medium and is called the direct attenuation term. The
remaining term is the airlight and it is responsible for the color
shift in the image due to the scattered light in the medium [4].
In the case of homogeneous atmosphere, the transmission
t is expressed as an exponential function of the scattering
coefficient of the atmosphere β and the scene depth d :

t(x) = expβ(x)d(x) . (2)

The above scattering model is typically used to synthesize
haze images starting from a free-haze image, and it is used
as the base model for the majority of single image de-hazing
techniques. Based on the physical model described in eq. 1,
the haze free image J is recovered by estimating, first the
transmission term (t), then the coefficient A. This is achieved
either by making use of an image prior and imposing specific
constraints or by using data-driven approaches, e.g., deep-
learning. Eq. 1 describes an ill-posed problem due to the
fact that the number of unknown variables is larger then the
number of equations. Moreover, the so called airlight-albedo
ambiguity where the albedo term is not constant over all
pixels of the haze image, gives rise to a large number of
undetermined degrees of freedom as noted by Fattal [5].
A solution to this problem would be to impose con-
straints either on image properties or on the computation
of the coefficient terms t and A in eq. 1. For example,
Fattal [5], [6] imposed constraints on the estimation of the
albedo term making it easy to estimate the depth term (d).
Other constrains can be imposed in the formulations of the
light and object chromaticity as well as on the atmospheric
light (A) [7]. Dark channel prior (DCP) [4] can be used to
constraint the computation of the transmission term (t).White
balancing the input image may assume that the haze can be
represented with perfect withe and constraint the so called
atmospheric veil, as defined in [8].

Tang et al. [9] extended the DCP concept considering
other haze image features as constraints, e.g., local maximum
contrast, saturation and hue disparity. Chen et al. [10] use
DCP to recover the transmission term t and Total Gener-
alized Variation (TGV) for refining, when DCP is not pre-
cisely estimating it. Scene transmission term t , can also be
estimated imposing boundary constraints on the radiance
cube combined with a weighted L1 norm based contextual
regularization, as proposed in [11]. A global image prior,
sensitive to dependencies created from the use of a wrong
||A||, is proposed by Sulami et al. [12] introduced a simple
procedure for recovering ||A|| by minimizing these depen-
dencies. Zhu et al. [13] observed that the difference between
brightness and saturation can approximately represent the
concentration of haze. Using this color attenuation prior, they
derive the depth map (d) by proposing a linear model and
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learning the parameters of the model with a supervised learn-
ing method. Berman et al. [14] proposed a new non-local
prior to recover the depth map (d). The key concept is to
assume that colors of a haze-free image are well approxi-
mated by a few hundred distinct colors and each one can be
represented as a line in the RGB space (haze-line). Alterna-
tively, to solve the albedo and depth ambiguity, the haze input
image can be modeled by two statistically independent terms,
scene albedo and depth. The dependency between these two
terms and the input haze image can be modeled using a prob-
abilistic model based on factorial Markov random field [15],
[16]. Fattal [6] used a Markov random field for producing a
complete and regularized transmission term (t), given noisy
and scattered estimates.

Imposing specific constraints to haze removal, as shown
in the above prior-based techniques, has the advantage of
effectively formulating an ill-posed problem while simulta-
neously reducing computational complexity. However, these
constraints may be easily violated when treating real-world
images. Moreover, input parameters that could work for a
large variety of images may be difficult to estimate. This
makes the proposed solution often unpractical, especially
when a realistic reconstruction of the image is required.
In these cases, artifacts are often visible as shown in Figure2.

Fusion based techniques can be used to overcome the
need of estimating the depth term (d), thus avoiding its
costly refinement processes, and so estimate directly the
free-hazy image. To achieve this, one can start from the haze
image, derive a number of enhanced images, i.e., through
gamma correction [17]–[19], contrast enhancement [20] or
by extracting statistical features [21] and then fuse or merge
them into a haze-free image.

Multi-scale blending may also be used to improve the
overall quality of the final haze-free image [17], [20], [21].

Avoiding the estimation of the depth term, makes
fusion-based techniques a good alternative to the prior-based
methods. However, these approaches share similar drawbacks
with prior-based methods. Indeed, the enhancement of the
derived-from-the-hazed input images, can be seen as impos-
ing constraints that are difficult to estimate in a large variety
of images.Moreover, multi-scale blending increases the com-
putational complexity.

Imposing constraints (image priors) in the estimation of
model coefficients described in eq. 1, provide solutions that
fail when these priors are violated. Unfortunately this is
usually the case in real-world images. To overcome this prob-
lem, deep-learning approaches have been considered to either
learn the mapping between the transmission term (t) and its
haze input image [22]–[25], or directly generate the haze-free
image [26]–[40]. However, as will be shown hereinafter,
deep-learning approaches suffer from increased dependency
to their training sets and thus their generalization capability
may be questioned across diverse datasets.

Previous bench-marking on single image de-hazing algo-
rithms exist. Ancuti et al. [41] analyzed the performance
of 6 existing single image de-hazing techniques using a

FIGURE 2. (top) - Example result from Kratz et al. [15] and Fattal [5], clear
color shift artifacts are visible. (bottom) - Quality comparison among the
DCP [4] technique and its fast version DCP_F . Visible halos artifacts,
around objects, are produced with the fast version.

small number of objective metrics, e.g., SSIM [42] and the
CIE color difference formula 1E2000 [43]. The data set
used is the D-haze [44], which provides a small number
of images that are both indoor and outdoor where haze is
produced synthetically. Li et al. [45] bench-marking, com-
pares 11 de-hazing techniques of which 2 are deep-learning
approaches. Recently, Li et al. [3] provided a bench-marking
on a large data set, RESIDE 2018 [3], comparing 9 de-hazing
techniques, of which 3 are deep-learning approaches. They
used 4 objective metrics of which 2 are no-reference met-
rics. They were also concerned whether de-hazing can help
task-oriented computer vision approaches, i.e., object detec-
tion, in the sense of improving the performance of object
detection in the presence of haze. Such a metric was incor-
porated in their bench-marking. We share the same concern
in this work. A similar metric has been incorporated in the
proposed framework.

III. IMAGES DATA SETS
To demonstrate the proposed statistical framework, a sub-set
of 34 state-of-the-art de-hazing techniques, shown in Table 1,
was selected. The selection was based on the availability of
their original code and in the case of deep-learning based
approaches, the availability of their trained model. For some
of these methods the code/trained network model is either
not provided or not accessible [6], [7], [20], [24], [25], [28],
[30]–[35], [37], [38], [40], [46], thus these methods were
excluded, to avoid own implementations not intended by the
authors. This leaves a subset of 17 techniques of which 6
are based on deep-learning techniques. Preliminary testing,
among these 17 techniques, has shown that Fattal [5] and
Kratz and Nishino [15] methods have difficulties to find
suitable input parameters for all type of images used. Figure 2
shows several artifacts in the de-hazed images, i.e., color
shift, over saturation etc. as also confirmed in [45]. As over-
coming this problem was not trivial to us, nor a method
was suggested in the paper, these two techniques were also
excluded.
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FIGURE 3. Examples of images belonging to the data sets used in this bench-marking: frame color indicate free-haze (red) and haze (blue) image.

TABLE 1. Original pool of de-hazing techniques where 15 techniques
have been selected. Red text indicates methods that in preliminary tests
have provided poor results due to the difficulties of finding common
parameters setting for all input images.

Concerning DCP, a fast solution is also available in
its paper. Both solutions were preliminary tested. Results
in Figure 2, show visible halos artifacts around objects when
the fast solution is used. Based on this result, only the

TABLE 2. Characteristics of data sets used in the proposed framework.

results of the original solution [4] is provided here. For the
computational evaluation, however, see Section V-C, the fast
solution is also included. This is reducing to 15 the number
of de-hazing techniques tested here. For all techniques the
original code was used, with default input parameters.

To present the proposed framework for objective evalua-
tion, the 15 aforementioned de-hazing techniques have been
used, together with a vast range of images from several
existing benchmark data sets. To the best of our knowledge,
this makes the largest data set used in the literature so far
in de-hazing activities, constituted of approximately 78K
images.

The data sets incorporated in the proposed framework
were carefully chosen to represent a wide range of real
life conditions, capturing scenarios, diverse image features
and in the case of RTTS, high quality annotations neces-
sary for testing object recognition performance after haze
removal. In Tables 2 and 3 the main characteristics of these
data sets are shown and some of these images can be
inspected in Figure 3. They comprise indoor and outdoor
images at different resolutions, images with different degrees
of haze, including dense haze but also annotated images
needed for the task-driven evaluation as will be discussed in
Section V-D.

A. D-HAZY DATA SET
The D-haze data set [41] provides two sets of images.
Two existing data sets, Middleburry [49] and NYU-Depth
V2 (NYU) [50], provide the depth map. Real-world ground
truth images with synthesize haze, employing Koschmieder’s
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TABLE 3. Data sets used in our bench-marking.

physical model [51] of light transmission in hazy scenes
have been augmented under the assumption that atmospheric
intensity and haze density are uniform. Table 3 shows the
number of images belonging to the two subsets and their
resolution.

B. NTIRE DATA SET
The NTIRE data set series includes three collections of data,
developed between 2018 and 2020 [44]. At the time of this
writing the 2020 version was not available for testing. NTIRE
data sets are the only ones that provide hazy images of very
high resolution and this is the reason they were selected here.
Hazy images are generated using real haze produced by a
professional hazemachine (see Table 3). All NTIRE data sets
consist of indoor (I-haze) and outdoor (O-haze) images [44]
as well as dense uniform haze (De-haze) [48] images. Each
scene includes a MacBeth color checker, allowing more pre-
cise image color calibration and better assessment of perfor-
mance. Moreover, since images are captured in a controlled
environment, both haze-free and hazy images are captured
under the same illumination conditions.

C. RESIDE β DATA SET
D-hazy and NTIRE data sets provide mainly indoor images.
In order to enrich with further content including indoor,
outdoor and annotated images the RESIDE data set was also
selected together with the Outdoor Training Set (OTS) and
the Task-driven Testing Set (RTTS) (see Table 3 ). OTS
extends the number of outdoor images with different haze
levels, e.g., 35 haze levels for a total of 72K images. RTTS
provides a large annotated data set, necessary to address
whether de-hazing is capable of increasing the performance
of existing computer vision algorithms. In RESIDE dataset
the haze has been synthetically added using the atmospheric
model described in eq. 1 with atmospheric light (A) and
atmospheric scattering coefficient (β) varying in the range of
[0.8, 1.0] and [0.04, 0.2] with a step of 0.5 and a variable step
of 0.02 and 0.04 respectively.

IV. EXPERIMENTS AND ANALYSIS
The proposed framework is evaluated in the next section
through experimental results that compare the performance
of single image de-hazing techniques. The aim is to introduce
a unifying benchmark that will incorporate many diverse data

sets with different aspects of image quality. The merit of such
a framework is demonstrated in the conceptual results regard-
ing dependency to training sets, computational constraints but
also in understanding whether haze removal is sufficient for
improving the performance of computer vision task-driven
applications.

In Section V, a qualitative comparison using a total of 5
objective metrics is described. In Section V-C, various tests
on the computational performance are presented. Finally,
in Section V-D a bench-marking on a task-driven computer
vision application, related to an object detection task is
reported.

V. PERFORMANCE EVALUATION
In the proposed framework, five objective metrics have been
used. Among them, Peak to Signal Noise Ration (PSNR),
measures the noise ratio in the image signal and Structural
Similarity Index (SSIM) [42] measures structural changes
within the image.

Despite the fact that these objective metrics provide a
useful indication of image quality, they have limited use in
predicting the probability that a specific change in an image
is visible or not to an average observer. Thus, the so called
HDR-VDP metric [52] is also used, which through imple-
mentation of important aspects of the human visual system is
capable to predict the visibility changes as well as the qual-
ity degradation with respect to the reference image. More-
over, two non-reference objective metrics, BRISQUE [1] and
IQVG [2] are also used, where the quality of an image is esti-
mated automatically, in a way that is consistent with human
perception and without any prior knowledge of the reference
image. These will help to understand whether the evaluation
is consistent across different types of objective metrics.

The higher the value of the PSNR, SSIM, HDR-VDP and
IQVG metrics, the higher the image quality, whereas the
inverse holds for the values of the BRISQUEobjectivemetric.

This certain combination of metrics introduced by the pro-
posed framework were chosen to emphasize different aspects
of image quality and allow for an objective evaluation. Their
combined effect is assessed in the context of a statistical
treatment that objectifies the results, leading to a single per-
formance indicator, derived in an unbiased manner from all
five metrics. By converting raw metric scores into z-scores
and rank methods according to their mean z-score from all
metrics, one achieves a standardization of values that aids
the comparison between metrics of different scales or widely
different ranges measured on the same scale. The standard-
ization process used hereinafter is now described in distinct
steps:

Let i indexing methods, j indexing metrics:

1) Calculate the mean value for each metric and denote µj
2) Calculate the standard deviation for each metric and

denote it σj
3) Calculate the distance of every raw score from the

respective mean, measured in standard deviations e.g.
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TABLE 4. Standardized values (z-scores) of prior based methods
comparative performance with overall performance indicators. Each entry
is the number of standard deviations by which the method’s score was
above or below the mean score of all methods for that metric. BRISQUE
values have been negated to be consistent with other metrics where
positive entries show better performance than negative entries. Rows
labeled MEAN hold the means of the respective columns. These numbers
serve as performance indicators for the various methods. Outdoor and
indoor environments are treated separately. An overall score, as the mean
of all indoor and outdoor scores from all data sets, is calculated
in Table 5. Green to red color scale means best to worst in the row.

TABLE 5. Ranking of 9 prior-based dehazing techniques based on their
combined outdoors-indoors overall perforce across all tested data. Each
column hold the means of Table 4. AMEF exhibits the best mean
performance across all data sets. Standard deviations measure the
method’s sensitivity to the data sets. The MEAN STD is calculated to
measure the overall degree of dependency of prior methods’
performance to different data sets and will be compared to the MEAN
STD of deep learning based methods.

for the raw score of method i with metric j, denoted by
rij, the respective standardized score is denoted by sij
and equals rij−µj

σj
4) For eachmethod i, calculate the average of its standard-

ized scores sij, j ∈ metrics and use this single number
as a performance indicator for method i

For the BRISQUE metric, the calculation in 3 is
negated: sij =

µj−rij
σj

to be consistent with the other
metrics, in that positive numbers indicate better perfor-
mance. Standardization results for prior based and deep
learning based methods are shown in Tables 4-5 and 6-7
respectively.

A. INDOOR VS. OUTDOOR ENVIRONMENT
The environment where the image is taken may influ-
ence an algorithm’s performance. To verify this, images
described in Section III, have been further divided into
two groups representing two distinct types of environments,
indoors and outdoors. Based on the normalization strategy
of the proposed framework, standardized scores with com-
bined metric performance indicators are shown, for prior
based and deep learning de-hazing techniques respectively.
An outdoor-indoor overall combined ranking is provided
in Tables 5 and 7 for prior-based and deep learning techniques
respectively.

Among prior-based methods, AMEF (Artificial
Multiple-Exposure Image Fusion) [17] provides an over-
all better quality performance, considering both types of
environments. AMEF performs haze removal by fusing
artificially under-exposed images. Initially, the original
hazy image is artificially under-exposed via a sequence
of gamma-correction operations. The resulting set of
multiply-exposed images is merged into a haze-free image
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FIGURE 4. Performance graph of 9 prior-based dehazing techniques
based on their mean score from 5 objective metrics. The data for each
method are the columns in Table 5.

through a multi-scale Laplacian blending scheme. Even
though AMEF is the winner among prior based methods,
its performance degrades when only the outdoor dataset is
considered. There, DCP is the combined (from all metrics)
winner among the prior-based methods, but it is never the
winner for a single metric. This reveals the usefulness of
the proposed framework, as conclusions can be drawn from
a global perspective that unifies different aspects of perfor-
mance. As one also observes, DCP gives consistently good
results (above average) for outdoors environment, in relation
to all other metrics.

Also in relation to the different metrics, ATML is perform-
ing very well when HDR-VDP is used but its performance
degrades in all other metrics, in both indoor and outdoor envi-
ronments. This clearly indicates that relying on the results of a
singlemetricmay lead towrong interpretations. Onemay also
notice differences in performance when a data set belonging
to the same type of environment, either indoor or outdoor is
used. For example, BCCR performs considerably well, simi-
lar to AMEF, for the indoor environment of NTIRE2019 data
set. However, its performance degrades, in the same environ-
ment (indoors), when the NTIRE2018 data set is used. This
may be due to the different type of haze provided by these
two data sets, e.g., dense vs. no-dense haze. This can also be
easily deduced from figure 4.

In the case of deep-learning, one may notice higher
variability in performance among different data sets and
objective metrics when compared to prior based methods,
as shown in Table 6. The overall winner method for deep
learning based methods is AOD (All-in-One Dehazing Net-
work). It is a convolutional neural network designed on a
re-formulated atmospheric scattering model. Instead of esti-
mating the transmission matrix and the atmospheric light
separately, AOD directly generates the clean image through
a light-weight CNN that optimizes a combined, (transmis-
sion matrix/atmospheric light) parameter named K. AOD is
composed of two parts: a K-estimation module that uses
five convolutional layers to estimate the combined param-
eter K, followed by a clean image generation module that

TABLE 6. Standardized values (z-scores) of deep learning based methods
comparative performance with overall performance indicators. Each entry
is the number of standard deviations by which the method’s score was
above or below the mean score of all methods for that metric. BRISQUE
values have been negated to be consistent with other metrics where
positive entries show better performance than negative entries. Rows
labeled MEAN hold the means of the respective columns. These numbers
serve as performance indicators for the various methods. Outdoor and
indoor environments are treated separately. An overall score among the
deep learning methods, as the mean of all indoor and outdoor scores
from all data sets, is calculated in Table 7. Green to red color scale means
best to worst in the row.
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FIGURE 5. Results comparison - Image selected from the RESIDE data set
processed with 9 image prior based de-hazing techniques and compared
to the free-haze (a).

consists of an element-wise multiplication layer and several
element-wise addition layers to generate the recovery image
via the modified atmospheric scattering model involving the
optimized parameter K. The K-estimation module is the crit-
ical component of AOD, being responsible for estimating the
depth and relative haze level. AOD even though the winner
among deep learning methods, shows significant variability
among different metrics, data sets and environments. It is
worth noticing that the performance of certain deep-learning
methods is severely affected by the data set used e.g.CYD and
FFA in Figure 8.

Examples of dehazing are shown in Figures 5 and 7 for
image prior and deep-learning based techniques respectively.
One observes how haze may not be completely removed
(TFV,AOD), introducing clear artifacts (CY_D, BCCR), con-
trast distortion (ATML, GRM, DCP) and washing out details
as in NLD.

FIGURE 6. Objective evaluation varying - left: β levels keeping A fixed to
the value of 0.8; - right: varying A levels keeping β fixed to the value of
0.04, for both metrics HDR-VDP and IQVG.

FIGURE 7. Results comparisons - Image from the RESIDE data set and
processed with the 6 deep-learning based de-hazing techniques. The
original free-haze image is shown in Figure 5.

B. VARYING β AND A
Atmospheric light A and the scattering coefficient of the
atmosphere β are playing a role in generating a color shift and
adding haze into the free-haze image. RESIDE 2018 data set
provides a set of images where 35 levels of haze distortion are
added to the free-haze image, e.g., 5 levels of A and 7 levels
of β.

Firstly, how the quality of the de-hazed image may
be influenced by β was investigated, using the levels of
[0.04, 0.06, 0.12, 0.2] where A has been fixed to 0.8. Then,
we investigated how the quality of the de-hazed image may
be influenced by the parameter A in the range of [0.8, 1.0]
with a step of 0.5, where β is fixed to the value of 0.04.
This means testing all de-hazing methods used here, on 9
different data sets constituted of 2, 061 images each, in a
total of 18, 549 images under all 6 objective metrics. Due
to the high computational time required to perform this
test, analysis was restricted to the 2 best performing tech-
niques (AMEF [17] and AOD [26]), belonging to the prior
based and deep learning based de-hazing techniques respec-
tively, using 2 objective metrics; HDR-VDP for full reference
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TABLE 7. Ranking of 6 deep learning dehazing techniques based on their
combined outdoors-indoors overall perforce across all tested data. Each
column hold the means of Table 4. AOD exhibits the best mean
performance across all data sets. Standard deviations measure each
method’s sensitivity to different data sets. The MEAN STD is calculated to
measure the overall degree of dependency of deep learning methods’
performance to different data sets and will be compared to the MEAN
STD of prior based methods.

FIGURE 8. Performance graph of 6 deep learning dehazing techniques
based on their mean score from 5 objective metrics. The data for each
method are the columns in Table 7.

and IQVG for no-reference. The plots for HDR-VDP and
IQVG objective metrics are shown in Figure 6 (left) when
varying β.

One may notice here an interesting result. De-hazing tech-
niques reproduce a suitable output image independently from
the β value, the haze level applied to the free-haze image.
Differences of just two points in the quality score, predicted
by the two metrics, is not perceivable by the human visual
system. The plots for varying A are shown in Figure 6 (right)
as above. It may also be noticed that tested de-hazing tech-
niques are capable of maintaining a suitable de-hazed image
quality, independently from the level of color shift introduced
by parameter A.

C. TIME ANALYSIS
To assess the efficiency of the proposed framework, com-
putational times of the tested methods have been registered.

FIGURE 9. CPU time, in seconds, of each de-hazing technique for
predicting the free haze image, varying the image resolution from
256 × 256 to 1536 × 1536 pixels.

Due to memory management issues, the size of the input haze
image varied from 256 × 256 to 1536× 1536 pixels. CY_D
was excluded from this test, due to its hard requirement for
an input image of 256 × 256 pixels. All experiments were
performed on a Linux machine equipped with an Intel CPU 4
Core i.5− 7500 (2.40 GHz) with 16 Gb of memory and Intel
GPU HD Graphics 630(Kaby Lake GT2).

Based on their computational performance, de-hazing
techniques were separated in two broad classes, one with
the techniques having very high computational cost shown
in Figure 9 (left) and the other class with the techniques
that were faster, shown in Figure 9 (right). Some of the
slow techniques have issues related to memory manage-
ment when image resolution goes above 1024 × 1024 for
ATML and 1280 × 1280 for DEFADE. Large improvement
in computational cost is achieved by the techniques shown
in Figure 9 (right), where DCP_F, AMEF, CAP and AOD are
the ones with the fastest performance. However, there were
cases where DCP_F produced halos artifacts around objects,
as shown in Figure 2.

Time analysis must be assessed in relation to the computa-
tional complexity of the techniques used. For simplicity and
without loss of generality, an input matrix of dimensions n×n
is considered. Prior-based and fusion-based approaches may
vary in their computational complexity, from O(n), when a
simple subtraction or addition on the input image is required,
to that of O(n3logn) when filtering and/or pre-processing
of the input image are necessary, i.e., gamma-correction,
Gaussian pyramid or other type of filtering. For deep-learning
approaches, the computational complexity is considered for
the inference process (forward propagation). Let n be the
dimension of the input vector. Without loss of generality,
one can consider each convolutional layer to correspond to
a matrix multiplication, with matrix dimensions n × n and
an activation function that follows. These are the two main
operations performed at each layer. A matrix multiplication
has a complexity of O(n3), while for the activation func-
tion the complexity is of O(n). Considering n numbers of
layers, having the same number of weights and parame-
ters, the total computational complexity for a deep-learning
approach under the above assumptions is O(n4).

D. TASK-DRIVEN EVALUATION
The proposed framework incorporates a task driven eval-
uation using the annotated data set available in RESIDE
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TABLE 8. Task-driven results for 5 object detection techniques on the
original hazed images of the RTTS data set and on the de-hazed images
obtained with the AMEF, DCP, M_NN and AOD de-hazing techniques. The
results are the Mean Average Precision (mAP) among all objects.

2018 as was also discussed in Section III. This annotated
part is called RTTS and includes 4, 322 images, of which 35
images have been removed for memory management issues
related to some of the tested de-hazing techniques, (e.g.,
DCP), reducing the total number of images to 4287. To reduce
the required computational cost only the two best techniques
for each category were tested, e.g., AMEF and DCP, for prior
based techniques, M_NN and AOD for deep-learning based
techniques.

Traditional object detection was performed both on the
original hazed RTTS image, as well as the resulting from
each of the four best methods de-hazed image and the results
were compared to discover whether any method of dehazing
helped recognition. Tensorflow Object Detection API [53],
was used. For object detection, the methods used were:
SSD [54], FRCCN [55] as feature extractors and mobilnet
v1 and v2 [56], inception v2 [57] and resenet_101 [58]
deep-learning networks. All object detection methods have
been trained on the COCO2012 data set [59]. The dataset used
for object detection consists of 5 different annotated objects,
person, bicycle, car, bus and motorbike; and the metric used
for evaluation was the one used in the PASCAL Visual
Object Classes Challenge 2012 (VOC2012) [60]. The results
are reported in Table 8 as Mean Average Precision (mAP)
among all objects. Column labeled Haze holds the results
of detection on the corresponding haze images before
dehazing.

AMEF provides an overall improvement in all cases except
FRCCN resenet_101, while DCP provides either limited or
equivalent improvement when compared to the performance
on the original RTTS haze data set (ground truth). M_NN
and AOD are not improving the performance. This may due
to the fact that state-of-the-art de-hazing techniques are not
always capable to completely remove haze from the input
image, as shown in Figure 10. Often these techniques may
introduce other types of artifacts that may mislead certain
computer vision applications. Future de-hazing techniques
therefor need to be designed with a specific application in
mind. A general-purpose de-hazing technique is very difficult
to design due to two major factors. First, imposed design
constraints may not be generalized on various applications
as a general-purpose technique will require. Second, design
imposed constraints on specific computer vision tasks may
not be able to take advantage of the improved quality of the
de-hazed image.

FIGURE 10. Task-driven comparison: either haze is not removed
completely or blocking artifacts are injected in the de-hazed image.

E. DEPENDENCY TO TRAINING SETS
The choice of training/testing data sets affect the perfor-
mance of all methods as is demonstrated in the experiments.
However, this dependency is stronger in the deep learning
based approaches as was initially suspected. To measure this
dependency, the mean standard deviation of the standardized
scores of Tables 4 and 6 has been calculated for prior based
and deep learning methods respectively. As is shown in the
respective Tables 5 and 7, the mean standard deviation of
deep learning methods is greater than that of the prior based
methods. This proves that the performance of deep learning
methods is more dependent to the data sets used for training.
This result is not surprising since this dependency is well
known for all Neural Network architectures and it emerges
as an advantage of the prior based methods in dehazing tasks.
As an example of such a behavior, one observes in Table 7
and the resulting Figure 8, FFA and CY_D exhibiting high
variability in performance, depending on the data set used for
testing. On the other hand, according to the results reported
in Table 5 and the resulting Figure 4, prior based methods
seem more consistent in performance across different data
sets.

VI. CONCLUSION
A general framework for an objective evaluation of
dehazing techniques has been introduced in this paper.
It consists of a selection/fusion of several data-sets and
performance metrics in a unifying context of statistical
origin.

The framework was validated by means of a collection of
state of the art dehazing techniques. Several advantages of the
proposed framework were revealed in identifying diverse per-
formance characteristics and objectifying global evaluation
results.

The framework can be used to evaluate current and future
dehazing techniques in an unbiased manner, on different
aspects of performance and image capturing conditions.
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