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Abstract—Convolutional Neural Network (CNN) is a specific
type of algorithm that has become dominant in image recognition
and classification. Currently, there is a tendency to migrate CNN
implementations from the cloud to the edge (closer to the data
source) in order to reduce both latency and communication
bandwidth and at the same time, increase security and system
efficiency. Field Programmable Gate Array (FPGA) is a good op-
tion for implementing CNN in the edge, since even the lowest cost
FPGAs have a good energy efficiency and a sufficient throughput
to enable real-time applications. In this paper, key concepts about
CNN are reviewed. Next, the most popular compression methods
used in the CNN training phase are described. Finally, we present
the most popular frameworks for hardware accelerator design
and key hardware optimization techniques used by many of those
frameworks to enable CNN inference on resource limited devices.

Index Terms—CNN, FPGA, edge, AI

I. INTRODUCTION

Artificial Intelligence (AI) is a science that aims to provide
machines with some degree of intelligence. Machine Learning
(ML) is a branch of AI in which machines learn in order to
achieve a certain goal without being explicitly programmed to
do so [1], [2]. Nowadays, this type of algorithm is present in a
wide range of applications, namely in digital assistance, fraud
detection, medical image analysis and autonomous driving [3].
In order to learn, ML algorithms must undergo a training
phase, in which the parameters are adjusted according to a
given dataset. After the training phase, the algorithm can be
used by the machine to extract information from new data -
this process being called inference. Although ML algorithms
are sufficient to solve most simple problems, Artificial Neural
Network (ANN), often with multiple hidden layers, known
as Deep Neural Network (DNN), are best suited for solving
problems with a higher degree of complexity. Figure 1 depicts
the hierarchy of the AI science [4].

The most common DNN architectures are Feedforward
Deep Neural Networks, also known as Multilayer Perceptrons
(MLP) [5]–[8], CNN [9], [10], and Recurrent Neural Network
(RNN) [11], [12]. MLP are mainly used for approximation
tasks, being suitable for processing tabular data (e.g. paramet-
ric tables). CNN are used to extract features from structural
data (e.g. images) as convolution operations are reasonably
insensible to simple geometric variations (i.e. translation,
rotation, scaling) and distortion [13]. Finally, RNN are mostly
used for correcting and predicting sequential data (e.g. audio)
[14].
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Figure 1: Artificial Intelligence landscape.

Traditionally, these networks are trained and implemented
in the cloud, where computational and energy resources are
virtually unlimited. However, inference in the cloud presents
several problems: 1) the system becomes dependent on the
network; 2) confidential data is transmitted, reducing system
security; 3) redundant data may be transmitted since the
processing is done in the cloud, wasting bandwidth; and 4)
latency may prevent real-time inference. These problems can
be mitigated if the inference is performed close to the data
source or the inference request (e.g. sensor, mobile device or
network node), i.e., in the edge.

Unlike what is seen in cloud, DNN inference in the edge is
hampered by the limited amount of computational and energy
resources, and at the same time pushed for delivering high
throughput and low latency. For this reason, there has been
a growing interest in developing compression methods able
to reduce hardware and energy footprint of DNN accelerat-
ors for real-time edge inference. Depending on the required
compression, there may be a loss of accuracy so the designer
should choose the most appropriate model and compression
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Figure 2: FPGA implementation trends according to published
papers [15].

Table I: CNN Implementation Solutions Comparison [23]
CPU GPU FPGA ASIC

Adaptability
(to a variety of situations)

High Medium Low None

Compute Power Medium High High Medium
Latency Medium High Low Ultra Low
Throughput Low High High High
Parallelism Low High High High
Power efficiency Medium Low Medium High

techniques according to the application requirements.
Very simple CNN models could be implemented in Central

Processing Unit (CPU) but in terms of throughput and latency
CPU perform poorly. The use of Graphics Processing Unit
(GPU) offer higher throughput, but incur in a high energy
footprint. Application Specific Integrated Circuit (ASIC) have
an optimal performance in terms of throughput, latency and
energy efficiency, but Non-Recurring Engineering (NRE) and
production costs are high. FPGA are a cheaper alternative,
offering high performance in terms of throughput, latency
and energy efficiency. Also, they have the advantage of being
reconfigurable, which allows the DNN model to be updated
and/or adjusted after initial deployment (Table I).

In recent years, there has been a growing interest in using
FPGA to implement neural networks accelerators, especially
CNN, in both edge and cloud. In fact, the number of confer-
ence and journal articles available on IEEExplore [15] related
to FPGA and CNN is significantly higher than the number
of articles related to FPGA and other DNN architectures
(Fig. 2). Although many of these works are focused on
the implementation of CNN in high performance FPGA, it
is already very common to find implementations in limited
resources devices (suitable for the edge) [16]–[22], which is
the focus of this work.

This document aims to describe various techniques for
CNN model compression, optimization and implementation
in resource limited FPGA. In chapter II, basic DNN and
CNN concepts are presented. In chapter III, the most com-
mon CNN model compression techniques are discussed and,
finally, chapter IV describes the landscape of automated imple-
mentation frameworks and optimization techniques for FPGA
inference in the edge. Conclusions are given in chapter V.
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Figure 3: Artificial Neural Network (ANN) diagram

II. NEURAL NETWORKS BACKGROUND

CNN is a type of ANN that resort to convolutional layers,
pooling layers and fully-connected layers. Basic concepts
common to all ANNs are introduced in section II-A while
key CNN concepts are presented in section II-B. Finally, the
most popular and innovative CNN topologies, are described
in II-C.

A. Artificial Neural Networks

ANN is inspired by the human brain, and its structure
consists of an input layer, an output layer and one or more
hidden layers. ANN with more than one hidden layer is
referred to as DNN. All layers of an ANN are made up of
artificial neurons interconnected to neurons in the neighboring
layers (Fig. 3). The input layer receives input data and the
output layer delivers the prediction result generated by the
network. The hidden layers process the data so that predictions
are generated. The output of each layer (except for the last)
is called Output Feature Map (OFM) or activation map. All
layers, except the first one, receive the OFM of the previous
layer, in this case called Input Feature Map (IFM).

The internal structure of an artificial neuron is illustrated
in Figure 4. A summation is applied to the product of the N
entries (xi) by the N weights (wi) and the independent bias
(bias). The result of the sum is then passed by an activation
function (ϕ) that produces the output of the neuron (y), also
called activation, as shown in equation (1).

y = ϕ(·) = ϕ(x1×w1+x2×w2+· · ·+xN×wN+bias) (1)

There are several activation functions (ϕ), which should be
chosen according to the application [24]. The most commonly
used activation functions are the Rectified Liner Unit (ReLU)
and Softmax. ReLU is the most popular in hidden layers as
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Figure 4: Artificial neuron structure.

it usually outperforms other activation functions. When the
network is used to make multi-class predictions it is common
to use the Softmax function in the last layer. This function
returns the probability of the predicted label belonging to a
given class.

ANN prediction capability is acquired during the training
stage. A representative set of labeled data feeds the network,
and the error between the real and the predicted label will,
in an iterative way, be used to update network parameters
(backpropagation) [25]. At the end of the training phase, the
model can be implemented to make predictions (inference)
based on a given input. To help the designer in this process
and increase productivity many open-source software libraries
and deep learning frameworks have been released. Toolflows
like TensorFlow, Keras, Caffe, PyTorch and others, provide
high-level APIs and execution models to efficiently design and
train neural networks [26].

B. CNN Key Concepts

CNN resort to convolution operations to automatically and
efficiently extract features from structured data [27]. Convo-
lution operations are implemented by sliding a filter (kernel),
with N ×N weights, across an IFM (or an image channel if
the convolution is the first to be computed). Figure 5 illustrates
the convolution process. A 3× 3 kernel slides over the input
data, and outputs a convolution value for each position. After
the convolution operation, data is passed through an activation
function, here omitted for simplicity.

CNN also include pooling and fully connected layers (FC).
The first serve to sub-sample the image, reducing the com-
plexity of the CNN and the risk of overfitting [28]. The
most common pooling strategies are max pooling and average
pooling. Figure 6 illustrates this process: in max pooling the
highest value of a region is passed; while in average pooling
the average of all values in the region is passed. FC layers
are used to classify the features extracted in the convolution
layers. In these layers all artificial neurons are connected to
all previous layer’s activations.

The number of parameters and operations on CNN is not
evenly distributed across the layers. Convolutional layers are

Figure 5: Convolution with a 3×3 filter kernel: center-kernel;
left-input data; right-output convolution value [29].

Figure 6: Pooling: max pooling (right) and average pooling
(left) [30].

responsible for most operations (approximately 98%) and
most parameters are associated with FC layers (approximately
93%), the remaining layers have a small contribution to the
number of networks parameters and operations. Therefore,
compression (section III) and optimization (section IV) tech-
niques have a greater impact if applied in these layers. These
intrinsic characteristics are shared among most of the CNN
models [31].

C. CNN architectures

In recent years, several CNN network architectures have
been proposed for different application requirements and con-
straints. Figure 7 illustrates the compromise between through-
put and accuracy of some architectures for image classification
using ImageNet dataset. The area of each circle is proportional
to the required implementation memory (in Mega Bytes). As
shown, there is a large number of alternative architectures
with different performance and computational requirements. In
this section we briefly review some of the most popular CNN
architectures, showcasing their performance achievements but
also their resource requirements [30], [32]–[35]. Most of these
models (and their pre-trained weights) are also offered by
deep learning frameworks and/or have shown success in com-
petitions like the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC).

LeNet-5 [36] is seen as the classic architecture of CNN,
having been designed for classification of handwritten digits.
The network inputs 32×32 grayscaled images and consists of
five hidden layers - the first three are convolutional and the last
two are FC. With 60k parameters LeNet-5 achieved a test error
of less than 1% in all its variants. Due to the results achieved,
LeNet boosted the development of many other architectures
and variants.
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Figure 7: Throughput vs TOP-1 accuracy in popular CNN
architectures [37].

AlexNet [38] was the first CNN to achieve good results
for large image classification (227 × 227), serving as a basis
for future implementations. This network consists of eight
layers, five of which are convolutional and three are FC.
Several innovative techniques were implemented, including the
use of ReLU as an activation function in the hidden layers,
to speed up the training process, and the dropout and data
augmentation strategy to prevent overfitting. In 2012 AlexNet,
got a TOP-5 validation error1 of 16.4% in ILSVRC using
ensemble prediction2 and training data from the 2011 dataset.
Individually, an AlexNet gets a TOP-5 validation error of
18.2% with 60M parameters.

VGG [39] achieved better results than AlexNet by increas-
ing the number of hidden layers (depth). The authors propose
VGG configurations with different depths, ranging from 11
to 19 deep layers, VGG-11 and VGG-19 respectively. It was
demonstrated that the use of reduced kernels (e.g. 3 × 3) in
cascade produces the same effect as a larger kernel (e.g. 5×5),
using less parameters. In ILSVRC-2014 an ensemble of 7
VGG networks managed to achieve a TOP-5 validation error
of 7.3%. A VGG-19 can achieve TOP-5 validation errors of
8.0% with 144M parameters.

GoogLeNet [40] was the winner of the ILSVRC-2014. This
architecture introduced Inception Modules which, among other
innovations, uses kernels of different sizes in order to extract
features with different scales. The results achieved in ILSVRC-
2014 were based on ensemble prediction, which guaranteed a
TOP-5 validation error of 6.67% using a set of 7 models and

1TOP-5 Validation Error: when the correct label is not contained in the five
most likely predicted labels

2Ensemble Prediction: the final output is the result of averaging the
individual outputs of several independently trained models.

reducing the parameters by around 12× when compared to
to AlexNet. Individually, a GoogLeNet model can achieve a
TOP-5 error of 10.07%.

In 2015, an ensemble ResNet [41] won the ILSVRC
competition with a TOP-5 validation error of 3.57%. This
architecture uses additional shortcut connections, which skip
one or more layers in order to eliminate the vanishing-gradient
problem3. Individually, a ResNet with 152 layers gets a TOP-5
validation error of 4.49%, with 60M parameters [33].

In DenseNet [42] all layers are connected to the following
layers. These networks can reduce the vanishing-gradient
problem, are efficient in relation to the number of parameters,
allow feature reuse, and improve their propagation. DenseNet
can achieve better accuracy than RestNet using fewer paramet-
ers and computations. A DenseNet with 201 layers gets a TOP-
5 validation error similar to that of a ResNet-101 (≈ 6.34%),
using about 20M parameters (about half the parameters of
ResNet-101).

SqueezeNet [43] was designed with the objective of main-
taining the accuracy of known CNN models, while reducing
the number of parameters. This architecture introduces the Fire
Module consisting of a squeeze layer, which uses 1× 1 filters
instead of 3 × 3 filters to reduce the number of parameters,
followed by an expand layer, which applies 1×1 convolutions
in parallel to 3 × 3 convolutions. This architecture achieved
a TOP-5 validation error of 19.7%, comparable to AlexNet’s
TOP-5 validation error, with only 1.2M parameters.

MobileNet [44] was designed to be deployed on mobile
devices and embedded vision applications. MobileNet uses
separable convolutions in order to reduce architectural com-
plexity in exchange for some reduction in accuracy. A Mobi-
leNet with 224 hidden layers got a TOP-5 validation error of
10.5% on ImageNet with 4.2M parameters.

Some architectures, such as ResNet and DenseNet, aim to
achieve high accuracy leading to a reduction in throughput
and, in general, to an increase in network size. Other architec-
tures, such as SqueezeNet and MobileNet, exchange accuracy
by a reduced network complexity, enabling real-time inference.
Although any model can be compressed and optimized, these
lighter architectures are generally preferred for inference in the
edge, where resources are limited and accuracy requirements
are less stringent.

III. MODEL COMPRESSION TECHNIQUES

CNN inference in the edge usually requires the use of a set
of compression techniques that, if correctly applied, lead to a
drastic reduction of used resources with variable degrees of
accuracy loss. These techniques are most commonly applied
during training and can be divided into 3 categories: pruning;
quantization; and encoding.

A. Pruning

Pruning is a strategy that aims to suppress weights and/or
activations that have a negligible impact on the model accuracy

3Vanishing-Gradient Problem: During the training process a portion of the
error is used to update the weights of an ANN. Sometimes this portion is too
small making it hard to effectively train an ANN.
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(a) Original neural network. (b) Sparse Neural Network.

Figure 8: Pruning effect on a generic neural network. [45].

[45]. Figure 8 illustrates the pruning process of a generic DNN.
The sparse network (Fig. 8b) results from the suppression of
neurons and synapses from the original network (Fig. 8a).
Pruning can be structural or non-structural, depending on
whether it is applied to a weight or a layer, respectively [46].
Also, it can be applied to neurons or connections during the
training phase (static pruning) or during inference (dynamic
pruning) [47], although static pruning is the most effective
and common approach.

Static pruning suppresses network parameters that do not
meet a certain criterion. Usually, the model is (re)trained
after the first pruning so that the remaining parameters are
fine-tuned. The (re)training process aims to approximate the
accuracy of the sparse and original networks [45], and usually
is very successful. In [45], authors implement a static pruning
strategy, and they manage to achieve a parameter reduction
of 9× and 13× for AlexNet and VGG-16, respectively, with
negligible accuracy loss.

While static pruning is applied in the training stage, dy-
namic pruning is applied during the inference. Depending on
the model input (e.g. images with different qualities), different
structures can be suppressed targeting to the smaller possible
computational footprint. Although this technique can be ad-
equate in some applications [48], globally it does not provide
the same performance and compression (in computational
resources and memory) when compared to a model that has
undergone static pruning during the training phase.

B. Quantization

After training, CNN parameters are traditionally represented
with a 32-bit floating point format (FP-32). However, most
CNN implementations do not require this much precision [49]
and quantization can be used to represent weights and/or activ-
ations using fewer bits. This reduces memory, bandwidth and
energy at the expense of a possible loss of network accuracy.
It can be done after training (Post Training Quantization), or
it can be considered during the training phase (Quantization
Aware Training), with a lower accuracy penalty [47].

In [50], authors show that quantizing up to 2 bits in fully-
connected layers and up to 4 bits in convolutional layers has a
negligible impact on the network accuracy. In the same paper
authors show that a quantization with 8 bits in convolutional

(a) Compression in FC layers
(b) Compression in convolutional
layers

Figure 9: Quantization and pruning effect [50].

layers and 5 bits in the FC layers has no negative impact on the
network accuracy (Fig. 9), and results in a 18× compression
rate. Although quantization has proven to be a very effective
compression technique, it should be noted that different types
of layers show different sensitivities to quantization, with
convolutional layers being the most sensitive to this operation.

Extreme quantization has also been proposed to radically
compress CNN models, maximizing efficiency in terms of
memory and resource requirements in exchange for a degrad-
ation of accuracy. One or two bit quantized neural networks
exchange accuracy for a high model compression [51], being
good candidates for real-time deep learning implementations
on FPGA and ASIC due to their bitwise efficiency.

Binary Neural Network (BNN) resort to 1-bit quantization
in both weights and activations. This technique allows the
implementation of convolution operations using binary op-
erations (XNOR and bit-count), which makes it possible to
reduce the size of networks and memory accesses. In [52]
the authors quantized AlexNet achieving a TOP-5 accuracy of
60.1% on ImageNet with compressions of 32× in memory.
The authors in [49] also achieved a compression of 32× by
applying a quantization strategy for weights and activations
on an AlexNet, achieving a TOP-5 accuracy of 69.2% on
ImageNet. The same authors also explored the possibility of
using 1-bit quantized weights and multi-bit single-precision
activations to improve accuracy. To differentiate from BNN,
these were called Binary Weight Network (BWN).

Ternary Weight Neural Network (TWN) have also been
proposed and shown to have better accuracy than BNNs with
similar computational complexity [53]. The weights of this
type of network are coded with the value -1, 0 and +1, making
its hardware implementation very efficient (since the additional
value (zero) does not participate in the computations). The
results show that TWN achieve compression rates 2× lower
than BWN, but with a degradation of the TOP-5 accuracy of
only 1.8% with a ResNet-18B on ImageNet.

C. Encoding

Encoding takes advantage of parameter distribution to com-
press the model. In fact, after the training phase there are
many parameters that share the same value. If the network is
quantized, the sharing of values is even more accentuated,
which makes encoding more advantageous. In addition to
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having shared values, knowing their distribution provides an
opportunity to optimize their storage [50].

There are several techniques proposed to this end. One
of these techniques is based on cluster aggregation, enabling
compression levels of 9× with negligible losses in accuracy
[54]. Another possibility is to use source codes, such as
Huffman codes [50], where variable length binary codes are
used to represent symbols, with the most common symbols
being encoded with fewer bits (Fig. 10). Because the Huffman
encoding is lossless, this technique does not degrade the
accuracy of the network. In [50], authors take advantage of the
distribution of weight values after quantization and pruning
and employ Huffman encoding to achieve compressions of
8× and 18× for AlexNet and VGG-16, respectively, without
accuracy degradation.

IV. CNN IMPLEMENTATION IN RESOURCE LIMITED FPGA

To deploy trained and compressed models in resource lim-
ited FPGA, the designer must choose the right methodology
to efficiently convert his model to a hardware design. He
may be worried about throughput, energy efficiency, hardware
footprint, development time or design portability. At this
section, different implementation frameworks and optimization
techniques are discussed.

A. FPGA Accelerator Frameworks

FPGA accelerators exploit different levels of parallelism
to increase throughput and enable low-cost real-time infer-
ence. Accelerator architectures can be generally classified
as Single Computation Unit (SCU) or streaming. SCUs are
very flexible as they can execute different networks using the
same hardware. However, the hardware is not tailored to the
target network and thus is not as optimized as in streaming
architectures. Streaming accelerators offer a good throughput-
latency tradeoff but at the cost of a larger hardware footprint,
making these architectures better suited for smaller or highly
quantized networks.

The most relevant FPGA vendors, Xilinx and Intel, offer
AI development environments based on optimized IP cores,
tools, libraries and models, making it simpler for users without

FPGA knowledge to develop deep-learning inference applic-
ations. Vitis AI, from Xilinx, supports model quantization
and prunning and other more sophisticated optimizations such
as layer fusion, instruction scheduling, and memory tiling.
Subsequent compilation tools enable DNN algorithms to be
deployed in their Deep Learning Processor Unit (DPU) -
a programmable engine with a specialized instruction set.
OpenVINO toolkit offers a similar inference workflow for Intel
Vision Processing Units (VPU) accelerators. Although very
powerful, these AI development environments are generically
based on SCUs, so they are not optimized for a specific
network and usually target sophisticated hardware SoC FPGA.

Regarding streaming architectures, Xilinx Research Labs
have also recently released an experimental framework (FINN)
to automate the creation of fully customized inference engines
for design space exploration in extreme quantized networks,
both for the edge and cloud [55] [56]. CHaiDNN is also a
fixed point precision open source accelerator framework from
Xilinx, but specifically targeting the more sophisticated Xilinx
UltraScale MPSoCs [57]. It uses High Level Synthesis (HLS)
and runs convolutional layers in the FPGA and fully connected
layers on CPU, therefore its architecture resembles a custom
architecture rather than a streaming architecture.

HLS based toolkits, such as Vivado HLS or Intel FPGA
OpenCL SDK, are also very popular in generating FPGA-
based hardware designs from a high level of abstraction.
Nevertheless, the efficiency of these HLS tools depend on the
designer proficiency to map and schedule low-level primitive
operations [58]. To circumvent this, hls4ml [59] has been
developed to automatically generate streaming accelerators
using Vivado HLS. By supporting Keras, Tensorflow, PyTorch
and Onnx models as inputs, hls4ml provides a means to
obtain customized hardware implementations of CNN, requir-
ing minimal hardware design expertise. Other works have
also resorted to HLS tools [60] [61], OpenCL based tools
[62], or other less popular tools [63], to describe custom
neural networks in a high-level programming language, and
then algorithmically compile that code down to a Register
Transfer Level (RTL) design specification. The end goal is
to implement FPGA-based CNN accelerators with reduced
human intervention. However, most of these frameworks are
not targeting resource limited FPGA as the target is to build
high-performance accelerators [64].

HADDOC2 [65] and DNNWEAVER [66] are also open-
source frameworks to implement CNN hardware accelerators
in Xilinx and Intel FPGA. They take Caffe high level de-
scription as input and automatically generate Hardware De-
scription Language (HDL) code. In HADDOC2, the streaming
architecture is generated following the exact topology of the
network, so there are no configurable parameters. On the
contrary, DNNWEAVER favors flexibility over customization
with its SCU approach, but inefficiencies are introduced due to
control mechanisms that resemble those of a processor. Other
FPGA accelerator frameworks were proposed to generate
synthesizable hardware, but are not publicly available [67] [68]
[69] [70].
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Figure 11: Illustrating loop unrolling technique with an un-
rolling factor of 2 [72].

B. Optimization Techniques

When resorting to HLS tools, low level optimization tech-
niques are required. Loop unrolling (or unfolding) is one of
those techniques that is used to parallelize a set of sequential
instructions [71], whenever there is independence between
iterations. This technique is usually associated with an un-
rolling factor (or unrolling parameter), which determines how
many parallel tasks are executed in one iteration. Figure 11
illustrates the unrolling of a loop with an unrolling factor of
2. The original loop, with N iterations, is executed in N clock
cycles, while the unrolled loop is executed in half that time.
The disadvantage associated with this technique is the greater
use of hardware resources and, consequently, of energy, which
is relevant if the size of the loop or unrolling factor is large
[72].

Pipelining is a technique that allows a task to be executed
without the previous one being completed, that is, as soon
as the necessary data for its execution is available. It can be
applied whenever the following N tasks do not depend on
data provided by the executing task. The Initiation Interval
(II) defines the number of clock cycles between the beginning
of consecutive tasks. Figure 12 illustrates the process of
pipelining of a loop with an II of 1 clock cycle. The tasks for
the next iteration start running as soon as it is possible to do a
new read, compute, or write. Pipelining allows the designer to
improve throughput without increasing the hardware resources
[73].

Tiling methods, also known as loop tiling or loop blocking,
aim to optimize external memory access times by efficiently
storing data in cache tiles with temporal and/or spatial depend-
ence in the processing cycles [74]. These methods change the
order of data access in external memory so that they can be
stored in internal memory until used [75]. Figure 13 illustrates
the loop tiling process. If all rows and columns of a structure
are loaded, it would not be possible to store that information
in internal memory. Using the tiling strategy, small blocks of
data can be loaded and stored in internal memory until they
are needed in computations. Tiling requires data to be stored
in memory with the organization imposed by this technique,
otherwise its use can reduce the efficiency of memory accesses
[74].

The Winograd algorithm is also a popular technique to
reduce the hardware footprint of convolution operations. It
optimizes the hardware implementation of convolutions by re-
ducing the number of multiplications, and replacing them with

Figure 12: Pipelining technique with 1 clock cycle Initiation
Interval [72].

Figure 13: Tiling strategy illustrated. [76]

addition operations [77]. Although this algorithm reduces the
number of computations, it increases the necessary bandwidth,
being only beneficial for small kernels and steps strides [74].

V. CONCLUSION

This paper reviews fundamental AI concepts, CNN model
compression techniques and presents an overview of FPGA
Accelerator Frameworks, that should guide a system designer
aiming to implement CNN models in limited resources FPGA.
The CNN architecture should be chosen based on the applica-
tion, taking advantage of the compromise that exists between
accuracy and throughput. During the training and implement-
ation phases, compression and optimization strategies can be
adopted to reduce the hardware requirements.

In the training phase, pruning, quantization and coding
strategies can be used together to significantly compress the
model with limited accuracy degradation [50]. The (re)training
of the network after applying techniques that cause loss
of information, such as pruning and quantization, causes a
negligible or inexistent loss on the model’s accuracy. The use
of lossless coding methods allows the model to be further
compressed without affecting its accuracy.
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In the implementation phase, techniques can be adopted to
increase the throughput of the network, such as the paralleliz-
ation of operations and the efficient use of available memory.
These compression and optimization strategies, along with
growing landscape of automated implementation frameworks,
will continue to fuel the implementation of complex CNN in
FPGA with reduced resources. Hence, CNN inference is no
longer linked with computation exclusively in cloud, but being
increasingly present in the edge paradigm.
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