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Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis
to thermogenesis in the mitochondria of brown adipose tissue
by catalysing a regulated leak of protons across the inner
membrane1,2. The functions of its homologues, UCP2 and UCP3,
in other tissues are debated3,4. UCP2 and UCP3 are present at
much lower abundance than UCP1, and the uncoupling with

which they are associated is not signi®cantly thermogenic5,6. Mild
uncoupling would, however, decrease the mitochondrial produc-
tion of reactive oxygen species, which are important mediators of
oxidative damage7,8. Here we show that superoxide increases
mitochondrial proton conductance through effects on UCP1,
UCP2 and UCP3. Superoxide-induced uncoupling requires fatty
acids and is inhibited by purine nucleotides. It correlates with the
tissue expression of UCPs, appears in mitochondria from yeast
expressing UCP1, and is absent in skeletal muscle mitochondria
from UCP3 knockout mice. Our ®ndings indicate that the inter-
action of superoxide with UCPs may be a mechanism for decreas-
ing the concentrations of reactive oxygen species inside
mitochondria.

As coenzyme Q (CoQ) has been identi®ed as a regulatory cofactor
for proton transport by UCP1 (ref. 9), UCP2 and UCP3 (ref. 10) in
liposomes, we tested the effect of CoQ in isolated mitochondria.
CoQ increased proton conductance in rat kidney (but not liver)
mitochondria that were oxidizing succinate. This increase required
fatty acids and was prevented by GDP. CoQ activated proton
conductance only when it was likely to be reduced to CoQH2.
Activation was abolished by superoxide dismutase, indicating that
CoQ might mediate uncoupling through the production of
superoxide11. To explore this possibility, we replaced CoQ by
xanthine plus xanthine oxidaseÐan exogenous system that gen-
erates superoxide. Proton conductance increased, indicating that
CoQ acted in mitochondria through the production of superoxide.

Incubating rat skeletal muscle mitochondria with xanthine plus
xanthine oxidase to generate superoxide increased proton conduc-
tance (Fig. 1a). This is seen as an increased rate of proton leak at
each membrane potential, resulting in a curve that is de¯ected
upwards. This increase was fully inhibited either by superoxide
dismutase, indicating that it was dependent on superoxide, or by
500 mM GDP (Fig. 1a). GDP had no effect on control mitochondria
(data not shown), con®rming previous results12.

The superoxide effect was abolished by bovine serum albumin
(BSA), which binds fatty acids (Fig. 1b), but restored by adding
palmitic acid in the presence of BSA (Fig. 1c), indicating that
activation by superoxide requires fatty acids. Proton conductance
that is activated by fatty acids and sensitive to GDP is characteristic
of uncoupling by UCP1 in brown adipose tissue (BAT) mito-
chondria1,2, suggesting that the uncoupling caused by superoxide
in skeletal muscle mitochondria (which lack UCP1 and -2 (ref. 13)
but contain UCP3) was mediated by UCP3.

We also investigated skeletal muscle mitochondria from starved
rats. Starvation for 24 h doubles the concentration of UCP3 protein
without affecting the basal level of proton conductance12. Super-
oxide stimulated proton conductance twice as strongly in mito-
chondria from starved rats (Fig. 1d) as in mitochondria from fed
rats (Fig. 1a). The same was true in the presence of BSA plus
palmitate (data not shown). This correlates with a near doubling of
UCP3 protein in starved rats, which was con®rmed by western blot
(data not shown), and implicates UCP3 in the superoxide effect.

Con®rmation of the role of UCP3 was obtained using skeletal
muscle mitochondria isolated from UCP3 knockout mice, which
had the same basal proton conductance as the controls. Muscle
mitochondria from wild-type mice showed the same GDP-sensitive
stimulation of proton conductance as those from rats (Fig. 1e) and
the same dependence on fatty acids (data not shown). However,
superoxide had no effect on mitochondria from the skeletal muscle
of UCP3 knockout mice (Fig. 1f), showing that superoxide
uncoupled wild-type mitochondria by interacting with UCP3. We
veri®ed that the lack of effect of xanthine plus xanthine oxidase in
UCP3 knockouts was not caused by lack of superoxide by a direct
assay of superoxide production using superoxide dismutase and a
homovanillic acid/horseradish peroxidase ¯uorescence assay14 (data
not shown). Thus, the fatty-acid-dependent, GDP-sensitive increase
in proton conductance caused by xanthine plus xanthine oxidase
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was caused by an effect of superoxide acting through UCP3.
We investigated whether UCP2 was also activated by superoxide.

Because UCP2 is expressed widely4,13, we checked the superoxide
effect on basal proton conductance in mitochondria from several
tissues that do not express UCP3 (ref. 4). Superoxide increased
proton conductance in mitochondria from rat kidney in a GDP-
sensitive manner (Fig. 2a). This activation required fatty acids
(Fig. 2b, c). But in liver and heart mitochondria, which lack
UCP2 (ref. 13), basal proton leak was not stimulated by superoxide
(Fig. 2d, e). Mitochondria from spleen13 and pancreatic b cells15 do
contain UCP2, and superoxide increased the proton conductance in
the absence, but not the presence, of GDP in these mitochondria
(Fig. 2f, g). These results indicate that superoxide probably acts
through UCP2 in mitochondria from the kidney, spleen and
pancreatic b cells.

To determine whether UCP1 is also activated by superoxide, we
examined BAT mitochondria from warm-adapted rats. These mito-
chondria contain relatively low amounts of UCP1, which allows
coupling to be measured in the absence of GDP. BAT mitochondria
had low endogenous proton conductance through UCP1, which
was reduced to the basal level by adding GDP (Fig. 3a). The
endogenous UCP1 activity was stimulated by superoxide, and this
stimulation was prevented by superoxide dismutase. GDP abolished
both the endogenous activity and the superoxide-stimulated activity,
returning proton conductance to the basal level.

Thus, BAT mitochondria showed the same response to super-
oxide as skeletal muscle and kidney mitochondria, but it was

superimposed on the normal GDP-sensitive uncoupling mediated
by UCP1. Unlike the effects in other tissues, superoxide was able to
uncouple BATmitochondria even in the presence of BSA, indicating
either that UCP1 has a higher af®nity for fatty acids than UCP2 and
-3, or that BAT mitochondria have more contaminating free fatty
acids than other tissues. These results suggest that UCP1 also
facilitates superoxide uncoupling; however, BAT mitochondria
may also contain both UCP2 and -3 (ref. 4), which complicates
the interpretation.

To establish whether UCP1 was responsible for the superoxide
effects in BATmitochondria, we expressed mouse UCP1 in the yeast
Saccharomyces cerevisiae, which has been previously shown to
provide a convenient model for studying UCP1 function16±18.
Mitochondria from control yeast hardly responded to superoxide
or GDP (Fig. 3b); in contrast, mitochondria from yeast expressing
modest concentrations of UCP1 (,1 mg per mg protein)18 had
greater proton conductance than control yeast mitochondria, and
this extra proton conductance was completely sensitive to GDP
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Figure 1 Effect of superoxide on the proton conductance of skeletal muscle mitochondria:

superoxide activation of UCP3. Graphs show rate of proton leak as a function of its

driving force (the mitochondrial membrane potential) as the potential was varied by

titration with succinate. Open squares, control; ®lled diamonds, 50 mM xanthine plus

xanthine oxidase (0.01 U per 3.5 ml) added before TPMP+; open circles, xanthine plus

xanthine oxidase and 500 mM GDP added before TPMP+; open triangles, xanthine plus

xanthine oxidase and 12 U ml-1 superoxide dismutase added before TPMP+. Mitochondria

were from control rats fed ad libitum (a); control rats, in medium supplemented with 0.3%

defatted BSA (b); control rats, in medium with 0.3% BSA and 300 mM palmitic acid (c);

rats starved for 24 h (d); wild-type mice (e); and littermate homozygous UCP3 knockout

mice (f). Data are the mean 6 s.e.m. of three independent experiments each performed

in duplicate.
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Figure 2 Effect of superoxide on the proton conductance of mitochondria from different

tissues: superoxide activation of UCP2. The potential was varied by adding cyanide (up to

100 mM) using 4 mM succinate as the substrate. Open squares, control; ®lled diamonds,

50 mM xanthine plus xanthine oxidase (0.01 U per 3.5 ml) added before TPMP+; open

circles, xanthine plus xanthine oxidase and 500 mM GDP added before TPMP+.

Mitochondria were from rat kidney (a); rat kidney, in medium with 0.3% BSA (b); rat

kidney, in medium with 0.3% BSA and 300 mM palmitic acid (c); rat liver (d); rat heart (e);

rat spleen (f); mouse min6 pancreatic b cells (g). In a±f, data are the mean 6 s.e.m. of
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(Fig. 3c). Thus, mouse UCP1 showed native uncoupling behaviour
in yeast at these levels of expression. Superoxide stimulated the
proton conductance and GDP returned it to the basal level (Fig. 3c).
These results clearly show that superoxide increases GDP-sensitive
proton conductance through UCP1.

UCP1 accepts many nucleotides but has a strong preference for
purine nucleoside diphosphates and triphosphates2. We determined
the nucleotide speci®city and binding af®nity of the inducible
proton conductance catalysed by UCP2 (kidney mitochondria)
and -3 (skeletal muscle mitochondria). These proteins had similar
nucleotide speci®city, with potent inhibition by purine but not
pyrimidine nucleoside diphosphates and triphosphates (Fig. 4a).
One difference was that CTP, CDP and perhaps UTP partially
inhibited UCP2 but not -3. Nucleoside monophosphates had no
effect on either protein. AMP had a separate stimulatory effect on
skeletal muscle (but not kidney) mitochondrial proton conduc-
tance, which is mediated through the adenine nucleotide translo-
case, as reported previously19. The inhibition by GDP was found to
follow simple saturation kinetics (Fig. 4b). Superoxide activation
was inhibited by 50% with 17 6 0.9 mM GDP in kidney and 8.5 6
0.5 mM in skeletal muscle mitochondria.

Stimulation of proton conductance by xanthine plus xanthine
oxidase was insensitive to catalase (Fig. 4a), showing that it was not
caused by hydrogen peroxide. Kidney or liver mitochondria incu-
bated with glucose plus glucose oxidase to generate exogenous H2O2

had increased basal proton conductance that was insensitive to GDP
(data not shown), suggesting that peroxide or its by-products
damaged the membrane and increased its proton permeability
but did not activate UCPs.

Stimulation by superoxide was not inhibited by glybenclamide, a
KATP channel blocker; by bongkrekate or cyclosporin A, inhibitors of
the mitochondrial permeability transition; or by carboxyatractylate
or bongkrekate, inhibitors of the adenine nucleotide translocase
(Fig. 4a). Activation by superoxide required a few minutes to
become maximal (possibly because superoxide must react or be
translocated before uncoupling). The superoxide effect was fully

reversible, because the proton conductance was the same as controls
after a 10-min incubation of mitochondria with xanthine plus
xanthine oxidase followed by the addition of superoxide dismutase.

Activation in kidney mitochondria was less at pH 6.5 and greater
at pH 7.8 than at pH 7.2 (data not shown), perhaps because of
increased protonation and dismutation (and hence destruction) of
superoxide at more acid pH (ref. 20). GDP sensitivity was abolished
at pH 7.8, however, indicating that nucleotide inhibition of UCP2
may be very sensitive to pH, as it is in UCP1 (ref. 2). Oxygen
consumption by kidney mitochondria incubated with xanthine,
xanthine oxidase and myxothiazol was very low, showing that
superoxide does not generate its effects by causing electron ¯ow
to bypass complex III of the respiratory chain.

We conclude that superoxide interacts with UCP1, -2 and -3,
which leads to an increase in proton conductance that requires fatty
acids and is inhibited by purine nucleotides. This extends previous
®ndings that reactive oxygen species (ROS) also cause fatty-acid-
dependent, ATP-inhibited uncoupling in plant mitochondria21,22.
Because our studies were performed in isolated mitochondria in the
presence of high concentrations of exogenous superoxide, we do not
know whether superoxide-stimulated UCP-mediated uncoupling
occurs in cells or in intact organisms. This will need to be addressed
by future experiments.

Two types of model could explain our results: the effects of
superoxide might be direct, or might take place through some
product (other than peroxide). In type I models, superoxide induces
proton transport by allosterically activating the proton transport
mechanisms previously proposed for UCP1 (refs 2, 23). In type II
models, UCPs use the mitochondrial membrane potential to export
endogenously produced superoxide anions from the matrix to the
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intermembrane space where they can either undergo more rapid
dismutation because of the more acid pH or be scavenged by
cytochrome c, CoQ or other antioxidant defences. Uncoupling by
exogenous superoxide would be the result of protonation in the
intermembrane space (the pK is 4.8)20, followed by hydroperoxyl-
radical diffusion into the matrix and export of superoxide anions by
UCPÐa similar pathway to one proposed previously24. In this
model, UCPs would normally export superoxide produced in the
matrix and would only show up as an uncoupling pathway when the
matrix was ¯ooded with superoxide being produced exogenously
and continuously (for example, by xanthine oxidase).

In both types of model, UCPs can also decrease ROS production
by mild uncoupling, perhaps as a feedback response to the over-
production of ROS by the electron transport chain. The models can
explain the increased production of matrix ROS observed in
mitochondria and tissues from UCP knockout mice5,6. The function
of UCP2 and -3 might therefore be more associated with protection
against ROS than with thermogenesis. This would explain the
induction of UCP expression by cold in plants25, which has been
postulated to increase the production of ROS26.

We speculate that UCP1 evolved a thermogenic role in mammals
as a side pathway of an original, more general function of protection
against the cold-induced production of ROS. Such a function can
explain the occurrence of UCP2 and -3 in ectotherms3, the associa-
tion of UCP2 with cells of the immune system in mammals5,13, and
the observation of nucleotide-sensitive ROS production in cells
expressing UCP2 (ref. 27). It also might explain why UCP2 knock-
out mice are resistant to infection by endoparasites5, as they would
lack a system that normally removes ROS, and suggests interpreta-
tions of the observation that these animals have altered pancreatic
b-cell function15. M

Methods
Proton leak measurements

We measured respiration rate and membrane potential simultaneously by using electrodes
sensitive to oxygen and to the potential-dependent probe triphenylmethyl phosphonium
cation (TPMP+)28. The TPMP+-binding correction was assumed to be 0.4/(ml per mg
protein). Proton leak rates were calculated by multiplying oxygen consumption rates by
the H+/O ratio of six.

Mitochondria were prepared essentially as described29. Mitochondria isolated from
total hindlimb skeletal muscle (0.35 mg protein ml-1), liver (0.5 mg ml-1), kidney
(0.35 mg ml-1), heart (0.35 mg ml-1), spleen (1.0 mg ml-1) or b cells (0.75 mg ml-1) were
incubated in standard assay medium containing 120 mM KCl, 5 mM KH2PO4, 3 mM
HEPES and 1 mM EGTA (pH 7.2 and 37 8C) with 5 mM rotenone (a complex I inhibitor to
prevent oxidation of any endogenous NAD-linked substrates), 80 ng nigericin ml-1 (to
abolish the pH gradient) and 1 mg oligomycin ml-1 (to prevent ATP synthesis). We
calibrated the TPMP+ electrode with sequential 1-mM additions of TPMP+ to 5 mM.
Skeletal muscle mitochondria were titrated by incremental additions of succinate to 1 mM
(oxidizable substrate); other tissues were titrated by cyanide (up to 100 mM) using 4 mM
succinate as the substrate. After each run, 0.2 mM FCCP (carbonylcyanide p-tri¯uoro-
methoxyphenylhydrazone) was added to release TPMP+ for baseline correction. The b cell
line was kindly provided by F. Gribble and grown as described30.

Proton leak in BAT mitochondria (0.35 mg protein ml-1) isolated from rats maintained
at 25 8C was measured in assay medium containing 50 mM KCl, 5 mM HEPES, 1 mM
EGTA, 4 mM KH2PO4 (pH 7.2 and 37 8C) and supplemented with 1% BSA. BAT
mitochondria were titrated by cyanide (up to about 100 mM) using 10 mM a-glycero-
phosphate as the substrate.

Proton leak in yeast mitochondria18 (0.4 mg protein ml-1) was measured in assay
medium containing 10 mM Tris-maleate, 650 mM sorbitol, 0.5 mM EGTA, 2 mM MgCl2,
10 mM K2HPO4 (pH 6.8 and 30 8C). The TPMP+ electrode was calibrated with sequential
1-mM additions of TPMP+ to 4 mM, and then oligomycin (10 mg ml-1) and nigericin
(100 ng ml-1) in ethanol were added. Oxidation of this ethanol (0.2%) was inhibited
progressively through successive steady states by adding cyanide up to about 50 mM.

Generation of UCP3 knockout mice

We constructed a targeting deletion vector containing a neomycin cassette ¯anked by a
3.2-kilobase (kb) Nhe1±Sac2 fragment of the mouse ucp3 gene for 39 homology and a 3-kb
Nhe1±EcoR1 fragment for 59 homology. The 8.7-kb targeting construct was designed to

generate a 2.5-kb deletion to remove exons 1 and 2 (exon 2 contains the start codon) from
the mouse ucp3 gene. Neomycin-resistant clones were isolated and injected into C57BL/6´
CBA F2 embryos. These chimeric mice were backcrossed for six generations onto a C57BL/
6 background (N6). Western blot analysis of mitochondria and northern blot analysis of
RNA from skeletal muscle of wild-type and ucp3-/± mice con®rmed that there was no
UCP3 expression in the knockouts.
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