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ABSTRACT 

Many foods involve complex suspensions of assorted particles in a Newtonian liquid or 

viscoelastic solid continuous medium. In this work, we study the case of suspensions of non-

Brownian non-interacting rigid particles: starch, embedded in a soft solid: a colloidal lipid gel. We 

relate the macroscopic properties of the suspensions to the mechanics of the colloidal gel and the 

particle volume fraction. As particle volume fraction increases, the suspension gradually stiffens 

and becomes brittle as the system approaches its maximum packing fraction, the latter determined 

empirically by a Krieger-Dougherty type law. The elastic modulus, yield stress and yield strain are 

interrelated through simple scaling laws from micromechanical homogenization analysis of hard 



spheres isotropically-distributed in yield stress fluids. These laws enable estimation of nonlinear 

properties from linear properties at modest and finite deformations. 

1. INTRODUCTION 

Structured foods often comprise particulate fillers dispersed in a continuous matrix. For example, 

confectionery and savory foods, and plant-based meats include suspensions of hydrophilic 

particles: sugar, salt or texturized protein grains, and hydrophobic cocoa particles, dispersed in a 

hydrophobic lipid, or a hydrophilic protein phases or mixtures thereof. The nature of the filler, e.g. 

size, rigidity and surface texture, and particle physical interactions, e.g. filler-filler or filler-matrix 

interactions, have profound effects on mechanical properties (Wijmans and Dickinson 1998; 

Heinrich et al., 2002; Genovese 2012). Added to this intricacy, the physical properties of the fillers 

rarely exist at equilibrium but evolve during processing.  

A first step towards in understanding the mechanisms underlying reinforcement and flow of 

particulate foods consists in applying knowledge from wet granular suspensions and elastic 

reinforcement physics to simplified model food recipes (Heinrich et al., 2002; Mitarai and Noris 

2006; Behringer and Chakraborty 2018). A plethora of studies on suspensions and particle-filled 

composites have been reported in the literature (Scholten 2017). Herein, we review salient research 

efforts compositionally relevant to our model system.  

Similar to suspensions of granular hard spheres, the relative high-shear shear-thickened viscosity 

η2/η0 or ηr of dense ‘chocolate’ crumbs (a dried mixture of sucrose crystals, milk, and cocoa mass) 

obeys: η
r
=A (1-

ϕ

ϕ
J

µ
(σ)

)
-λ

, where η0 is the viscosity of the continuous phase, and A ≃1, and λ ≃2 for 

spheres (Blanco et al., 2019). The jamming point ϕJ is a function of both the interparticle friction 

coefficient µ, with values µ → 0 for ‘smooth’ and µ ≳1 for ‘rough’ particles, and the applied stress 

σ which triggers particle contact jamming when it exceeds a critical σ*. By measuring viscosity of 



crumbs undergoing processing at increasing ϕ, a state diagram revealed that conching and lecithin 

addition maximize the flowable solid content before jamming occurs, by changing the state of 

aggregation of the particles and tuning their interparticle friction and adhesion. 

This framework has been extended to provide a geometric definition of jamming ϕJ, based on the 

theoretical hard sphere basis for the random close packing fraction as a function of particle size 

distribution (Shewan et al., 2021). The model has been applied to interpret the rheological behavior 

of sugar-fat particles suspended in a molten lipid phase (Shewan et al., 2021). A modified Maron-

Pierce-Quemada (MPQ) model has been proposed: η
r
= (1-

ϕ

ϕrcp

)
-2

, which is a linearized form where 

the intercept with x-axis is equal to ϕrcp of non-attractive hard and soft sphere suspensions. The 

maximum packing fraction deviates from its theoretical values when attractive interactions exist 

and the percolation threshold is reached, i.e. ϕm < ϕrcp, that leads to an filler volume-spanning 

network. The elasticity of such network is modelled according to percolation theory as: G
' = β(ϕ-

ϕ
m

)
α
 where ϕm is obtained from the experimental viscosity data, considering size distribution 

effects, and α and β are parameters derived from free fitting. 

Another paradigm that has successfully described the effect of adding fractal-like silica fillers on 

cross-linked gels and rubbers has been recently proposed. The significance of this model lies on 

the incorporation of filler-size dependence on the elasticity of composite systems, often neglected 

in classical continuum models which are scale free (Mermet-Guyennet et al., 2017). The linear 

viscoelastic reinforcement RLVE of the composite follows: 

 RLVE≡
G'(ϕ)

G'(ϕ=0)
-1=2.5ϕ+δ

Gf
'

Gm
'

ϕ
3

r
 , where RLVE is defined as the ratio of the storage modulus of the 

filled material to that of the matrix less 1, the subscripts f and m refer to the filler and matrix 



material, r is the effective radius of the filler and δ is a dimensional coefficient attributed to a 

characteristic length-scale (Mermet-Guyennet et al., 2017).  

In our study, we investigate the reinforcement effect of hydrophilic starch particles dispersed in a 

hydrophobic soft viscoelastic lipid (crystals dispersed in oil) continuous phase. Hence, it represents 

a progression from past studies focused on concentrated suspensions dispersed in liquid oil 

continuous medium (Zhou et al., 1995; Blanco et al., 2019; Richards et al., 2020; Shewan et al., 

2021). We use a chemically modified starch as it is a ubiquitous filler in food suspensions and 

serves as a good model material due to its limited swelling and gelatinization in non-aqueous 

solvent, so that phase volume corrections are avoided. In addition, starch lacks physical 

interactions with the lipid viscoelastic matrix, so it can be deemed as a passive filler. Despite the 

seemingly complex nature of our model system, we model the flow behavior according to a 

micromechanical analysis for hard monodisperse spheres suspended in yield-stress fluids. 

Remarkably, the full mechanical response at linear and nonlinear modest and fine shear strains, 

can be predicted using simple scaling arguments based on particle volume fraction and maximum 

packing fraction. Our findings are relevant to food processing and sensory perception of dense 

food-based suspensions (concentrates), where filler addition is often sought to modulate stiffness, 

and processability of composite materials. 

 

2. MATERIALS AND METHODS 

2.1.Materials 

Soybean oil and glyceryl tripalmitate ( ≥85%) were obtained from Sigma-Aldrich (Netherlands). 

Thermflo starch was obtained from Ingredion (UK). Thermflo® starch is a chemically modified 

maize starch with high tolerance to heat and shear. The mass and quoted densities of the materials: 

0.92 g/cm3 at 25 °C (soybean oil), 0.8901 g/cm3 at 47 °C (supercooled tripalmitin) and 1.5 g/cm3 



(starch) were used to calculate volume fractions. 19 For starch particles, their mass, having ~11 % 

native moisture content, was taken into consideration when estimating volume fractions. Since the 

starch particles do not dissolve nor swell in oil, we assume that the volume fraction remain constant 

in this solvent. Estimation of volume fractions introduces an error in the vicinity of ~5–10% even 

for a highly monodisperse hard spheres (Poon et al., 2012). 

2.2.Sample preparation 

Lipid mixtures at fixed glyceryl tripalmitate volume fraction ϕ = 0.1 were heated and hold at 70 

°C for 10 min, well above the triglyceride melting temperature, 54 °C. Starch was added at 

increasing ϕ = 0.1-0.5 to the melt and hold for an additional 5 min while stirring at 1000 min-1 to 

ensure thermal equilibration and homogeneity of the samples. Suspensions were rapidly cooled 

and held at 5 ºC for approximately 120 min to promote small crystal formation, and then brought 

to 20 ºC for crystal aggregation to ensue. Samples were manually stirred to maximize isotropic 

distribution of particles in the continuous medium and to avoid incorporation of air in the gel 

resultant from vigorous mechanical mixing. Measurements were performed after a week to allow 

any remnant crystallization to culminate. 

2.3.Microscopy 

Scanning electron microscopy (SEM) 

High resolution SEM were conducted on a with Scanning Electron Microscopy (TM Hitachi 

3000). The sample was sputtercoated with platinum (120 s) for a better SEM contrast and to 

prevent charging by the electron beam. 

2.4.Transmitted light microscopy 

Samples were carefully sandwiched between glass slides and cover slips and were visualized using 

via light microscopy (MOR2410, Malvern, United Kingdom) with a 5× magnification objective. 
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The microscopy was operated in bright-field and polarized modes. Samples were prepared on glass 

slides at similar melting and crystallization detailed in the Sample Preparation section. 

 

2.5.Confocal microscopy 

Samples were visualized with a confocal laser scanning microscope (CLSM) (Zeiss, Oberkochen, 

German) with 20× and 40× magnification objectives. A fluorescent dye Nile Red was used to label 

the continuous oil phase. Oil was detected using a laser with 488 nm excitation wavelength 

respectively.  Intensity data were collected at emission wavelength ranges of 600-680 nm. Images 

were collected at ϕfiller = 0.1-0.2 since higher vol. fraction preclude image acquisition due to 

multiple scattering and wall effects. Micrographic ‘tiles’ of 25 pictures were collected and 

analyzed to determine the size distribution of the non-spherical starch granules according to their 

Feret or “caliper” diameter, defined as the longest distance between two parallel planes restricting 

the object perpendicular to that direction. Micrographs tiles were processed in Fiji Image J 

(Version 1.52p) by applying an automatic threshold and watershed plugin. Particle counting was 

determined using the analyze particle plugin, discarding particles in the edges (Refer to Supporting 

Information for example and higher magnification images). 

2.6.Shear rheology 

Rheological properties were determined using a torque-controlled rheometer (MCR 302, Anton 

Paar GmbH, Germany) equipped with parallel-plate serrated geometries DIA: 25 mm to 

circumvent wall slip. In order to perform measurements of thixotropic materials, namely lipid gels, 

with a reproducible initial state, samples were manually stirred during their preparation and rested 

for 10 min post loading to allow relaxation of internal stresses. This procedure was adopted to 

avoid shear-induced migration of particles, inadvertently introduced by preshear protocols, and to 



promote isotropic distribution of particles. Measurements were conducted at a fixed gap height of 

h = 1 mm, much larger than the particle granular size observed microscopically. After fixing the 

gap, the following procedure was applied: i) oscillations are applied within the linear regime γ0 = 

0.01 % and ω = 2 rad/s for t = 5 min to obtain the plateau elastic modulus G'; ii) a subsequent 

amplitude sweep γ0 = 10-3-103 % at the same frequency or small rotational velocity are imposed to 

obtain the yield stress σy. The initial elasticity measurement is nonperturbative as the same yield 

stress is measured with or without linear pre-oscillations. The two approaches to measure dynamic 

yield stresses are utilized for comparative purposes, and since it was not known a priori whether 

oscillatory shear would induce anisotropic structures to larger degree due to the application of 

multiple oscillatory cycles at each shear strain input, compared to a rotational shear. Irrespective 

of the measuring method, yield stress occurs when stress is maximal: σ(R)= 
T

2πHR2
 for a parallel 

plate of arbitrary R radius. Yield stress were estimated at the ‘flow point’ G' = G'' and intersection 

of stress growth curves, and can be deemed as the total stress that triggers full flow of the pastes. 

The yield strain was empirically estimated as the point at which the linear elastic modulus 

decreases to 90% of its initial value. Although arbitrary, this procedure was able to capture 

experimentally the effect of the filler on triggering flow. Approaches such as determining the yield 

strain from ‘line intersections’ of the elastic modulus, yield strain at the flow point G' = G'' or 

stress-growth experiments were unsuccessful, as either the strain varied very little or it was ill-

defined. Some of the advantages and disadvantages of using these methods to determine the yield 

stress and strain have been recently reviewed (Dinkgreve et al., 2016). Elastic moduli and yield 

stresses of the pastes as a function of volume fraction of embedded particles were measured. It is 

noteworthy that high ϕ, non-uniform distribution of stress and strain throughout the material is 



more likely to occur. Estimation of rheological measurements introduces an error in the range of 

±5–10%. 

3. RESULTS AND DISCUSSIONS 

Fig. 1 shows a representative sample of the composite system, the starch-filled gel. Starch particles 

had an irregular shape and an average size of  ̴ 10 μm present as individual granules or 

agglomerates (Fig. 1a), whereas the lipid gel network is a colloidal in network with aggregates as 

large as ~50 μm (See Supporting Information for higher magnification micrographs). Both, starch 

dispersed in oil or lipid phases and subject to similar thermal/crystallization regimes similar to the 

suspensions share similar morphology (Fig. 1b and 1c). Starch dispersed in the continuous 

colloidal gel also appears to display more clustering due to growth of lipid crystals aggregates 

occupying free volume. Birefringence is also present hinting that starch particles maintain their 

integrity post thermal treatment due to the crosslinking nature of starch and absence of water, 

which supports the notion that changes in phase volume of starch with and without thermal 

treatment are negligible.  

 

 

 

 

 

 



 

Figure 1. SEM micrograph of the Thermoflo® starch (a) and their corresponding grain size 

distribution (inset). Micrographs of starch in oil (b) and starch in lipid gel ϕtripalmitin = 0.1 (c) at 

constant volume fraction ϕstarch = 0.1. Lipid crystal aggregates appear as floc-like aggregates. 

Polarized micrograph (d) of (c). Sample (b), (c), (d) were subjected to similar 

melting/crystallization protocols. Scale bar in all figures equal 25 μm. 

 

Fig. 2 presents the linear viscoelastic moduli G', G'' of the lipid colloidal gel at fixed volume 

fraction ϕtripalmitin = 0.10 (Fig 2a) as a function of frequency, and the time evolution of the elastic 

modulus of the pure paste ϕstarch = 0 compared to a sample embedded with starch particles ϕstarch = 

0.3. It is observed that G' > G'' displays weak frequency dependence as expected for soft solids. 

The elastic modulus G' weakly increases over time characteristic of thixotropic materials. We infer 

that any increase of G' with filler volume fraction ϕ as a function of time is due to structuration of 

the lipid phase, and in the absence of any physical interaction between the particle and paste, the 

time evolution of G' of the ‘continuum’ remains similar. This is supported by the absolute elastic 

moduli and dimensionless moduli normalized by G'
0 at ϕstarch = 0 as function of time, which display 

similar structuring kinetics. 

 



 

Figure 2. Frequency sweep of the lipid viscoelastic gel at fixed volume fraction ϕtripalmitin = 0.1 (a). 

Absolute elastic moduli (a) and dimensionless elastic moduli G' (ϕ) / G'
0  (b) as a function of time, 

for representative samples with ϕstarch = 0 and ϕstarch = 0.3. 

 

While the evolution of the mechanical properties with ϕ are nearly frequency-independent within 

the linear regime, the yield stress depends on the experimental timescale and the measuring method 

(Dinkgreve et al., 2016). Next, we present the findings of the elastic modulus and yield stress/strain 

measurements as a function of starch granule volume fraction ϕ = 0-0.5. The impact of granular 

fillers embedded in the lipid gel on the mechanical properties, can be assessed by measurements 

of the linear elastic modulus G' and yield stress σy. Full strain amplitude oscillatory shear sweeps 

and stress-growth steady shear experiments at each volume fraction are included in the Supporting 

Information. 

 

 



 

Figure 3. Absolute elastic modulus G' (a), and dimensionless elastic modulus G' (ϕ) / G' (0) (b) as 

function of starch volume fraction ϕ. Volume fraction of the solid lipid phase remained fixed ϕ = 

0.10. The scaling of G' (ϕ) / G'
0 is above the theoretical lower bound (grey dotted line) for biphasic 

materials with infinitely rigid inclusions (Eq. 1) and is fitted to an empirical Krieger-Dougherty 

type law (red line) with maximum packing fraction ϕm = 0.53 (Eq. 2). 

 

We summarize these results performed on all samples with increasing volume fraction, focusing 

particularly on the evolution of the dimensionless modulus G' (ϕ) / G' (0) and the dimensionless 

yield stress σy (ϕ) / σy (0) to isolate the mechanical contribution of the particles to the paste. Both 

functions account for the mechanical strengthening of the material due to the presence of rigid 

inclusions. Absolute average values of the rheological measurements with their standard 

deviations are also presented. We note that all data points fall above a theoretical lower bound for 

the effective elastic moduli of quasi-isotropic and quasi-homogeneous biphasic materials given by 

Hashin and Shtrikman (1963): 

G
'(ϕ)

G0
'

>
2+3ϕ

2-2ϕ
                                                                                                                                  (1) 



For infinitely rigid inclusions of arbitrary geometry, namely starch G' ≈ 3 GPa, dispersed in an 

elastic matrix such as lipid gel G'
0

 ≈ 0.03 GPa (Schroeter and Hobelsberger 1992). In the same 

way, inclusion of particles at low volume fraction ϕ ≤ 0.1 shall follow a scaling G' (ϕ) / G′0  = 1 + 

2.5ϕ like Einstein's law for the effective viscosity of a dilute suspensions of noncolloidal particles. 

The effect of the particle concentration on the elastic modulus is significant, even for low volume 

fraction of inclusions, we find G′ (ϕ) ≈ 1.5 × G′0 for ϕ = 20% and G′ (ϕ) ≈ 24.4 × G′0 for ϕ = 50% 

as the systems approaches its maximum packing fraction. We observed that all our data can be 

fitted to a simple Krieger-Dougherty law: 

G
'(ϕ)

G0
'

= 
1

(1- ϕ ϕ
m

)⁄ 2.5ϕm
,                                                                                                        (2) 

We find that the Krieger-Dougherty law describes well the data over the examined range of volume 

fractions with a ϕm = 0.53, obtained with a least-squares fitting method R2 = 0.99, at which G' (ϕ) 

/ G'
0 → ∞. Expectedly, the good agreement of the model with our data supports that the elasticity 

of a suspension of rigid particles in a linear elastic material is analogous to the problem of the 

viscosity a suspension of rigid particles in a Newtonian linear fluid. The maximum packing 

fraction ϕm = 0.53 is close to that reported for granular monodisperse spherical particles ϕm = 0.57 

embedded in an emulsion, Carbopol gel or bentonite suspension (Mahaut et al., 2018), but much 

lower than that reported for viscosity of hard-sphere suspensions ϕm = 0.63 (Genovese 2002). The 

former inconsistency lies in the fact that in this model, ϕm is an empirical free-fitting parameter, 

sensitive to errors introduced by particle size distribution and anisotropy and mechanical 

determination near ϕJ. The latter inconsistency is arguably due to shear-induced structural 

anisotropy inadvertently induced during viscosity measurements (Genovese 2002). 

 



 

Figure 4. Absolute yield stress σy vs. filler volume fraction, as measured by oscillatory and 

rotational shear (a). Dimensionless yield stress σy (ϕ) / σ0 vs. a function of the dimensionless elastic 

modulus (b), described in Eq. (3) and symbolized by the red line. Dimensionless yield stress σy vs. 

filler volume fraction (c), fitted to Eq. (4) with maximum packing fraction ϕm = 0.53, and 

symbolized by the red line. 

Now, we turn our attention to the yield stress of the suspensions obtained using oscillatory shear 

and rotational shear measurements. In Fig 4, we plot values of absolute yield stress σy (ϕ) and 

dimensionless yield stress σy (ϕ) / σ0 , and observed a similar qualitative trend irrespective of 

measuring method: the yield stress is less sensitive to the inclusion of granular fillers to the linear 

elastic moduli, e.g. we find σy (ϕ) ≈ 1.3 × σ0 for ϕ = 20% and σy (ϕ) ≈ 5 × σ0 for ϕ = 50%. Expectedly, 

we do find differences in the absolute values of σy are measurement-dependent (Dinkegreve et al., 

2016). 

To establish a relationship between the dimensionless elastic modulus and yield stress is 

challenging as the result depends on the micromechanical scheme utilized. An approach relevant 

to our model system is the following, discussed in (Mahaut et al., 2018): 

σy(ϕ)

σ0
= √(1-ϕ)

G
'
(ϕ)

G0
'

                                                                                                                  (3) 



The micromechanical estimate of this model is based on various assumptions including: filling 

particles are rigid, monodisperse and noncolloidal; physical interactions between the particles and 

the continuous phase are absent; the distribution of the particles is isotropic. Although our particle 

fillers deviates from some of these geometrical postulates, e.g. non-sphericity of starch particles, 

it is possible to test experimentally the validity of the theoretical predictions against our model 

systems.  

In Fig. 4b, we plot the dimensionless yield stress σy (ϕ) / σ0 as a function of the dimensionless 

elastic modulus √(1-ϕ)G
'
(ϕ)/G0

'
 for all the systems studied in logarithmic coordinates. We observe 

that that there is a good agreement between our results and the micromechanical estimation of Eq. 

3, that is plotted as a straight-line y = x in these coordinates. Combining Eq. 2 and Eq. 3, the yield 

stress equation reads: 

σy(ϕ)

𝜎0
=√

1-ϕ

(1- ϕ ϕ
m

⁄ )
2.5ϕ

                                                                                                                                    (4) 

With ϕm = 0.53, which is plotted in Fig. 4c, and fits well the experimental data, with a least square 

fitting R2 = 0.98.  

 

 

 



 

Figure 5. Absolute yield strain γy (a) and dimensionless yield strain γy (ϕ) / σ0 vs. filler volume 

fraction, as measured by oscillatory and rotational shear. Dimensionless yield strain (b) fitted to 

Eq. (5) with maximum packing fraction ϕm = 0.53, symbolized by the red line.  

 

In Fig 5, we plot values of the critical yield strain γy (ϕ) and the dimensionless yield strain γy (ϕ) / 

γ0. We selected this measure as we attempted unsuccessfully to determine the yield strain from 

various ways as noted in the Materials and Methods section Rheology. We observed that as starch 

volume fraction increases, the particle-filled gels becomes gradually more brittle, e.g. we find that 

γy drops almost an order of magnitude as ϕstarch increases from 0% to 50%. As the critical yield 

strain is defined as γy (ϕ) ≈ σy (ϕ) / G' (ϕ), the adimensional yield strain obeys a similar law: 

γ
y
(ϕ)

γ
0

= √(1-ϕ)(1- ϕ ϕ
m

⁄ )
2.5ϕ

                                                                                                                   (5) 

We see that the scaling law captures reasonably well the experimental trends, with a least square 

fitting R2 = 0.92. Deviations from the theoretical predictions can originate from clustering of the 

fillers. 

From these observations, we infer that measuring the linear properties of particle-filled lipid gel 

networks with granular fillers enable us to estimate nonlinear properties such as the yield stress 

and strain, even when these systems depart from ideality. It is noteworthy that the impact of 



granular fillers on lipid gels differs from colloidal fillers, where both the elastic moduli and yield 

stress are expected to obey roughly the same scaling with volume fraction. Future studies concern 

the investigation of the mechanics of starch fillers endowed with attractive interactions and 

embedded in a similar lipid gel network. 

Overall, our findings are in good qualitative agreement with those reported in ideal isotropic 

suspensions of monodispersed rigid spherical noncolloidal particles embedded in emulsions, 

bentonite and Carbopol gel suspensions. 

4. CONCLUSIONS 

We have investigated experimentally the mechanical contribution of rigid granular starch particles 

to lipid crystal networks. We focused on the influence of volume fraction on the elastic modulus, 

yield stress and yield strain of the suspensions. As the filler volume fraction increases, the starch-

filled lipid gels gradually stiffen and become brittle, reminiscent of hard passive fillers. The 

dimensionless elastic modulus G′ (ϕ) / G'
0 depends only on starch volume fraction ϕ, which obeys 

a Krieger-Dougherty law (1 − ϕ/ϕm) −2.5 ϕm with ϕm = 0.53. The yield stress/concentration are 

related to the elastic modulus/concentration relationship through a simple scaling law σ(ϕ)/σy(0) = 

√(1-ϕ)G
'
(ϕ)/G0

'
 , proposed for more ideal soft suspensions filled with hard monodisperse spheres. 

We anticipate that similar relationships will hold for granular passive fillers integrated in 

concentrated-to-dense food suspensions. 
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