
Subset-Saturated Transition Cost Partitioning: With Proofs

Dominik Drexler,1,2 Jendrik Seipp,1,3 David Speck2

1Linköping University, Sweden
2University of Freiburg, Germany
3University of Basel, Switzerland

{dominik.drexler, jendrik.seipp}@liu.se, speckd@informatik.uni-freiburg.de

Abstract

Cost partitioning admissibly combines the information from
multiple heuristics for optimal state-space search. One of the
strongest cost partitioning algorithms is saturated cost parti-
tioning. It considers the heuristics in sequence and assigns
to each heuristic the minimal fraction of the remaining costs
that are needed for preserving all heuristic estimates. Satu-
rated cost partitioning has recently been generalized in two
directions: first, by allowing to use different costs for the
transitions induced by the same operator, and second, by pre-
serving the heuristic estimates for only a subset of states. In
this work, we unify these two generalizations and show that
the resulting subset-saturated transition cost partitioning al-
gorithm usually yields stronger heuristics than the two gener-
alizations by themselves.

Introduction
A∗ search with an admissible heuristic is one of the main
techniques to solve planning tasks optimally (Hart, Nils-
son, and Raphael 1968; Pearl 1984). Since a single heuristic
is usually unable to capture enough information about the
task, we often need to combine the information from multi-
ple heuristics admissibly. The preferable way of doing so is
cost partitioning (CP, Katz and Domshlak 2008; Keller et al.
2016). A transition cost partitioning for a weighted transi-
tion system distributes the cost of each transition over mul-
tiple heuristics such that the sum of costs for each transition
does not exceed the original transition cost. If each compo-
nent heuristic is admissible, then the overall cost-partitioned
heuristic, i.e., the sum of the component heuristics evalu-
ated under the partitioned cost functions, is also admissible.
Many cost partitioning papers from the literature consider an
important special case of transition cost partitioning: opera-
tor cost partitioning (e.g., Haslum, Bonet, and Geffner 2005;
Haslum et al. 2007; Katz and Domshlak 2008, 2010; Pom-
merening, Röger, and Helmert 2013). In an operator cost
partitioning, all transitions that are induced by the same op-
erator have the same cost.

One of the strongest approaches to compute cost-
partitioned heuristics is saturated cost partitioning (Seipp,
Keller, and Helmert 2020). Saturated cost partitioning con-
siders the heuristics in sequence and assigns the first heuris-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all states subset of states

operators (a) saturated
operator CP (c) subset-saturated

operator CP

transitions (b) saturated
transition CP (d)subset-saturated

transition CP

ge
ne

ra
liz

at
io

n

generalization

Table 1: Saturated operator cost partitioning and its general-
izations from operators to transitions and from all states to a
subset of states.

tic the minimal fraction of the remaining costs that it needs
to preserve its heuristic estimates. Then the algorithm uses
the remaining costs to treat the subsequent heuristics in the
same way. In its original form (Table 1a), the saturated cost
partitioning algorithm computes an operator cost partition-
ing and always preserves the heuristic estimates for all states
under the remaining cost function (Seipp and Helmert 2014).

A generalization of saturated operator cost partitioning is
saturated transition cost partitioning (Table 1b) where costs
are assigned directly to transitions (Keller et al. 2016). Tran-
sition cost partitioning is more general than operator cost
partitioning because each operator can induce multiple tran-
sitions. While there is no dominance relation between the
operator and transition version of saturated cost partition-
ing, Keller et al. (2016) showed empirically that the transi-
tion version often yields more accurate heuristics than the
operator version. However, our experiments show that the
computational overhead caused by allowing more expres-
sive cost assignments is often too large for the additional
heuristic accuracy to lead to solving more tasks.

More recently, Seipp and Helmert (2019) generalized sat-
urated operator cost partitioning in a different direction.
They allow the saturated cost partitioning algorithm to pre-
serve the heuristic estimates of only a subset of states (Ta-
ble 1c). Their empirical evaluation shows that this approach
yields more accurate heuristics and achieves state-of-the-art
results on the benchmark set of the International Planning
Competition (IPC).



To unify these two generalizations, we introduce subset-
saturated transition cost partitioning (Table 1d). It assigns
costs to individual transitions and preserves the heuristic
estimates of only a subset of states. We show that subset-
saturated transition cost partitioning preserves admissibility
and that it usually yields stronger heuristics than the two
generalizations alone.

Background
In this section, we define the concepts that form the foun-
dation of subset-saturated transition cost partitioning. We
consider SAS+ planning tasks (Bäckström and Nebel 1995)
with operator costs. A planning task consists of a set of
finite-domain variables, a finite set of operators, an initial
state, a goal condition and an operator cost function. The
details of planning tasks are unimportant for our contribu-
tions, but the important part is that a planning task induces a
transition system.

Transition Systems
A transition system describes the dynamics of a state-based
system and is also called a state space. For all our definitions
we follow the notation used by Seipp and Helmert (2019).

Definition 1 (Transition System). A transition system T is
a directed, labeled graph defined by a finite set of states
S(T ), a finite set of labels L(T ), a finite set T (T ) of la-
beled transitions 〈s, l, s′〉 with s, s′ ∈ S(T ) and l ∈ L(T ),
an initial state sI(T ) ∈ S(T ), and a set of goal states
S?(T ) ⊆ S(T ).

A path from s0 ∈ S(T ) to sn ∈ S(T ) is a sequence π =
〈s0, l1, s1, . . . , sn−1, ln, sn〉where 〈si−1, li, si〉 ∈ T (T ) for
all i = 1, . . . , n. It is called a goal path if it ends in a goal
state s? ∈ S?(T ). The objective of state-space search is to
find a goal path from the initial state sI(T ).

Definition 2 (Transition Cost Function). Let T be a transi-
tion system with transitions T (T ). A transition cost function
for T is a function tcf : T (T ) → R ∪ {−∞,∞}. A tran-
sition cost function is finite if −∞ < tcf (t) < ∞ for all
transitions t ∈ T (T ). It is nonnegative if 0 ≤ tcf (t) for
all transitions t ∈ T (T ). We write C(T ) for the set of all
transition cost functions for T and C≥0(T ) for the set of all
nonnegative transition cost functions for T .

We speak of a general transition cost function if the tran-
sition cost function is not required to be nonnegative or fi-
nite. A special case of a transition cost function is an oper-
ator cost function where each transition with the same la-
bel is assigned the same cost value. Therefore, an operator
cost function is a mapping from (operator) labels to costs.
When we combine a transition system T with a transition
cost function tcf ∈ C(T ), we obtain a weighted transition
system 〈T , tcf 〉.

We use left-addition and path-addition (Seipp and
Helmert 2019) to handle arithmetic expressions that con-
tain cost values of +∞ and −∞. The symbols + (infix) and∑

(prefix) denote the left-addition operation. Left-addition
over finite values is the usual addition. Expressions that con-
tain infinities are defined as∞ + x = ∞, −∞ + x = −∞

for all x, including x being ∞ or −∞, x + ∞ = ∞ for
all x 6= −∞, and x + (−∞) = −∞ for all x 6= ∞. This
operation is associative but not commutative. Intuitively, a
left-addition that contains mixed infinities evaluates to the
leftmost infinity. In cost partitioning, we use left-addition for
summing up multiple heuristic values and transition costs.

The symbols ⊕ (infix) and
⊕

(prefix) denote the path-
addition operation. Path-addition over finite values is the
usual addition. Expressions that contain infinities are defined
as x ⊕ y = ∞ if x = ∞ or y = ∞ and x ⊕ (−∞) = −∞
for all x 6= ∞. This operation is associative and commuta-
tive. Intuitively, a path-addition evaluates to +∞ if it con-
tains at least one +∞. We use path-addition to define the
cost of a path in a transition system. The cost of a path
π = 〈s0, l1, s1, . . . , sn−1, ln, sn〉 with ti = 〈si−1, li, si〉 ∈
T (T ) for all i = 1, . . . , n in a weighted transition system
〈T , tcf 〉 is defined as cost(tcf , π) =

⊕n
i=1 tcf (ti). Intu-

itively, a path of cost −∞ is infinitely cheap, and a path of
cost∞ is non-existent.

The goal distance h∗T (tcf , s) of a state s ∈ S(T ) in T un-
der cost function tcf is defined as infπ∈Π?(T ,s) cost(tcf , π)
where Π?(T , s) is the set of goal paths from s. Notice that
a goal distance h∗T (tcf , s) = −∞ can result from infinitely
cheap labels but also from finite negative-cost cycles. A goal
path π from s is optimal under the given transition cost func-
tion tcf if cost(tcf , π) = h∗T (tcf , s). In optimal classical
planning, we are interested in finding an optimal goal path
from the initial state or proving that no such goal path exists.

Heuristic Search
A heuristic is a function that estimates the goal distance of a
state under a given cost function (Pearl 1984).

Definition 3 (Heuristic). Let 〈T , tcf 〉 be a weighted transi-
tion system. A heuristic h(tcf , s) → R ∪ {−∞,∞} for T
maps each state s ∈ S(T ) to a goal distance estimate under
the transition cost function tcf . The heuristic h is admissible
if h(tcf , s) ≤ h∗T (tcf , s) for all states s ∈ S(T ).

The A∗ search algorithm with an admissible heuristic is
guaranteed to find optimal goal paths (Hart, Nilsson, and
Raphael 1968).

Abstractions
Abstractions are relaxations of the behavior of a state-based
system where multiple states collapse into a single abstract
state (Helmert, Haslum, and Hoffmann 2007).

Definition 4 (Abstraction). Let T , T ′ be two transition sys-
tems with the same label sets L(T ) = L(T ′) and let α :
S(T ) → S(T ′), β : T (T ) → T (T ′) be surjective func-
tions. We say that T ′ is an abstraction of T with abstrac-
tion mappings α, β if (1) α(sI(T )) = sI(T ′), (2) α(s?) ∈
S?(T ′) for all s? ∈ S?(T ), and (3) 〈α(s), l, α(s′)〉 ∈ T (T ′)
and β(〈s, l, s′〉) = 〈α(s), l, α(s′)〉 for all 〈s, l, s′〉 ∈ T (T ).

We refer to T as the concrete transition system and T ′ as
the abstract transition system. An abstraction heuristic is a
function that maps each concrete state to the goal distance
of its corresponding abstract state in the abstraction.



Definition 5 (Abstraction heuristic). Let 〈T , tcf 〉 be a
weighted transition system and T ′ be an abstraction of T
with abstraction mappings α, β.

The abstract transition cost function tcf ′ ∈ C(T ′) defines
the cost of each abstract transition t′ ∈ T (T ′) as:

tcf ′(t′) = min{tcf (t) | t ∈ T (T ) ∧ β(t) = t′}.

The abstraction heuristic of a concrete state s ∈ S(T ) is
the goal distance of the corresponding abstract state α(s) in
the abstraction T ′ under the abstract transition cost func-
tion tcf ′, i.e., h(tcf , s) = h∗T ′(tcf

′, α(s)).

The representation size of an abstraction heuristic de-
pends on the representation size of the abstraction mappings
α, β. We consider Cartesian abstractions (Ball, Podelski, and
Rajamani 2001) where the set of all concrete states that map
to the same abstract state forms a Cartesian set. A Cartesian
set of states has the form D1 × . . . ×Dn where each Di is
a subset of the domain of the i-th variable of the planning
task. Furthermore, the property of Cartesianness is closed
under operations such as intersection and operator regres-
sion (Seipp and Helmert 2013). Operator regression allows
deriving the abstraction mapping β from the factored repre-
sentation of the operators of the planning task and the ab-
straction mapping α (Keller et al. 2016).

Abstraction heuristics under general transition cost func-
tions are admissible (Drexler, Seipp, and Speck 2021). Intu-
itively, this is the case because every goal path in the con-
crete transition system corresponds to a goal path in the ab-
stract transition system and the minimization in the abstract
transition cost function ensures that the abstraction heuristic
does not overestimate any goal distance.

Transition Cost Partitioning
A transition cost partitioning splits a given transition cost
function into a sequence of transition cost functions such
that the sum is bounded from above by the original transition
cost function (Keller et al. 2016).1

Definition 6 (Transition Cost Partitioning). A transition cost
partitioning for a weighted transition system 〈T , tcf 〉 is a
tuple 〈tcf 1, . . . , tcf n〉 ∈ C(T )n whose sum is bounded from
above by tcf , i.e.,

∑n
i=1 tcf i(t) ≤ tcf (t) for all t ∈ T (T ).

The following proposition generalizes the results from
previous work to general transition cost functions and shows
that a transition cost partitioning induces an admissible
heuristic (Katz and Domshlak 2008; Pommerening et al.
2015; Keller et al. 2016; Seipp, Keller, and Helmert 2020).

Proposition 1 (Admissibility; proof in Drexler, Seipp, and
Speck 2021). Let 〈tcf 1, . . . , tcf n〉 be a transition cost par-
titioning for a weighted transition system 〈T , tcf 〉 and let
〈h1, . . . , hn〉 be admissible heuristics for T . Then h(s) :=∑n
i=1 hi(tcf i, s) is an admissible heuristic. We say that h is

a cost-partitioned heuristic. �

1In contrast to Keller et al. (2016), we allow transition cost
functions to map to −∞ and set tcf (t) = −∞ if we detect that
transition t can never be part of a goal path.

An optimal transition cost partitioning over a set of
heuristics is a transition cost partitioning that provides the
highest heuristic estimate for a given state. We can compute
an optimal transition cost partitioning by compiling the input
planning task into a task where each operator corresponds to
a single transition of the input task, followed by computing
the optimal operator cost partitioning (Katz and Domshlak
2008) for the compiled task. The result can be mapped to
an optimal transition cost partitioning but the computation
is not feasible in practice due to the exponential blowup in
the compilation (Keller et al. 2016). Instead, we use a greedy
method called saturated cost partitioning (Seipp, Keller, and
Helmert 2020).

Subset-Saturated Transition Cost Partitioning
Saturated cost partitioning (SCP) considers the heuristics in
sequence. Beginning with the first heuristic in the sequence,
the algorithm computes the minimum cost function under
which the heuristic still yields the same estimates, i.e., the
saturated cost function. Then it subtracts this cost function
from the original cost function and uses the resulting costs,
i.e., the remaining cost function, to treat subsequent heuris-
tics in the same way. The set of computed saturated cost
functions forms a cost partitioning.

In this section, we define subset-saturated transition cost
partitioning where the saturated cost function is a transi-
tion cost function (Keller et al. 2016), and it suffices to pre-
serve the heuristic estimates of a subset of states (Seipp and
Helmert 2019). Before we formally define saturated transi-
tion cost functions, we introduce the notion of a dominat-
ing transition cost function. We say that a transition cost
function tcf dominates a transition cost function tcf ′ de-
fined on the same transition system T , i.e., tcf ≤ tcf ′, if
tcf (t) ≤ tcf ′(t) for all transitions t ∈ T (T ). Furthermore,
the transition cost function tcf is the unique minimum of a
set of transition cost functions TCF iff tcf dominates each
transition cost function tcf ′ ∈ TCF .
Definition 7 (Saturated Transition Cost Function). Con-
sider a weighted transition system 〈T , tcf 〉, a set of states
S′ ⊆ S(T ) and a heuristic h for T . A transition cost func-
tion stcf ∈ C(T ) is saturated for S′, h and tcf if

1. stcf ≤ tcf and
2. h(stcf , s) = h(tcf , s) for all states s ∈ S′.

Property 1 of a saturated transition cost function ensures
that only a fraction of the remaining transition cost func-
tion tcf is used, while Property 2 ensures that the heuris-
tic estimates of a subset of states S′ are preserved in each
SCP iteration. A saturated transition cost function always
exists because tcf itself is a saturated transition cost func-
tion. We formalize the computation of a saturated transition
cost function with a transition saturator. A transition satura-
tor is a function that takes as an input a heuristic h, a subset
of states S′, and a transition cost function tcf and outputs a
saturated transition cost function for h, S′, and tcf .
Definition 8 (Transition Saturator). Consider a transition
system T , a set of states S′ ⊆ S(T ) and a heuristic h for
T . A transition saturator for S′ and h is a partial function



saturate : C(T )→ C(T ) such that whenever saturate(tcf )
is defined, it is a saturated transition cost function for S′, h
and tcf .

In contrast, an operator saturator is a transition saturator
that only allows for operator cost functions in the input and
output (Seipp and Helmert 2019). We parameterize saturated
transition cost partitioning with transition saturators to allow
saturation for a subset of states.
Definition 9 (Subset-Saturated Transition Cost Partition-
ing). Consider a weighted transition system 〈T , tcf 〉, a set
of states S′ ⊆ S(T ), a nonempty sequence of admissi-
ble heuristics H = 〈h1, . . . , hn〉 for T and a sequence
Saturate = 〈saturate1, . . . , saturaten〉 such that saturatei
is a transition saturator for S′ ⊆ S(T ) and hi for all
1 ≤ i ≤ n. The saturated transition cost partitioning
〈tcf 1, . . . , tcf n〉 of the transition cost function tcf induced
by Saturate is defined as:

remain0 = tcf

tcf i = saturatei(remaini−1) for all 1 ≤ i ≤ n
remaini = remaini−1 − tcf i for all 1 ≤ i ≤ n.

The subtraction in the definition of remaini is defined in
terms of left-addition, i.e., a − b := a + (−b). Using the
same reasoning as Seipp and Helmert (2019) it is easy to
see that saturated transition cost partitionings obtained with
Definition 9 are indeed transition cost partitionings.

Subset-saturated transition cost partitioning has three ma-
jor choice points that influence the accuracy of the cost-
partitioned heuristic. These are the set of heuristics, the order
of the heuristics, and the transition saturators. In this work,
we focus on the transition saturators.

Due to the greediness of the SCP algorithm, it is not
guaranteed that we obtain a more accurate cost-partitioned
heuristic if we use fewer costs in an SCP iteration to preserve
the same heuristic estimates. This is also the reason why all
four SCP variants from Table 1 are pairwise incomparable
theoretically (Keller et al. 2016; Seipp and Helmert 2019).
However, Seipp and Helmert (2019) showed that using costs
more economically usually yields stronger heuristics.

In the following, we present three ways to obtain more
economical transition saturators. First, we obtain a more
economical transition saturator by preserving the heuristic
estimates of a subset of states (Seipp and Helmert 2019).
Consider a heuristic h for a weighted transition system
〈T , tcf 〉, and S′′ ⊆ S′ ⊆ S(T ). Definition 7 shows that
every saturated transition cost function for h, S′ and tcf is
also a saturated transition cost function for h, S′′ and tcf be-
cause the latter has fewer constraints on the saturated transi-
tion cost function than the former.

Second, we obtain a more economical transition sat-
urator by composition (Seipp and Helmert 2019). Con-
sider two transition saturators saturate1, saturate2 for a
subset of states S′ ⊆ S(T ). Then the composition
saturate12(tcf ) := saturate2(saturate1(tcf )) dominates
saturate1(tcf ) for all transition cost functions tcf ∈ C(T ).
The result holds because according to Definition 8, the out-
put of a transition saturator always dominates its input.

Third, we obtain a more economical transition saturator
by taking an existing operator saturator and allowing to use
transition cost functions in the input and output. This can
be more economical because transition cost functions are a
generalization of operator cost functions.

In the following section, we define transition saturators
that use these three observations.

Transition Saturators
We introduce five transition saturators, four of which are
generalizations of operator saturators (Seipp and Helmert
2019).

Saturate for All States (allt)
The transition saturator all t preserves the heuristic estimates
of all states and is the one that was considered previously by
Keller et al. (2016). It computes the unique minimum sat-
urated transition cost function mstcf by setting the consis-
tency constraint h(tcf , s) ≤ mstcf (t) ⊕ h(tcf , s′) tight for
all transitions t = 〈s, l, s′〉 ∈ T (T ) for a heuristic h of a
weighted transition system 〈T , tcf 〉. This can be enforced
by setting

mstcf (t) = h(tcf , s)	 h(tcf , s′).

The operator 	 behaves like regular subtraction in the fi-
nite case and handles infinities as x	 y = −∞ iff x = −∞
or y =∞ and x	 y =∞ iff x =∞ 6= y or x 6= −∞ = y.
With the results by Seipp, Keller, and Helmert (2020) it fol-
lows immediately that mstcf is the unique minimum satu-
rated transition cost function.

Saturate for All States Faster (fastt)
The transition saturator fast t also preserves the heuristic es-
timates of all states. It is a novel transition saturator and tai-
lored at improving the efficiency of computing all goal dis-
tances in an abstraction under a given transition cost func-
tion (Definition 5).

Consider an abstraction heuristic h for a weighted tran-
sition system 〈T , tcf 〉 with underlying abstraction T ′ of T .
A straightforward way to compute all goal distances in T ′
is: (1) compute the abstract transition cost function tcf ′, and
(2) compute h∗T ′(tcf

′, s) for all s ∈ S(T ′) using a back-
wards exploration from the goal states with an algorithm that
can handle general cost functions. Exploratory experiments
showed that the minimization in step 1 (see Definition 5) is
a performance bottleneck. Fortunately, we can speed up the
computation by interleaving both steps.

This is possible since we only need to compute goal dis-
tances under nonnegative cost functions: remain0 is non-
negative since it is the cost function of the input plan-
ning task. Since Definition 7 ensures that only a fraction of
remaini is allocated to each heuristic for 1 ≤ i ≤ n, all
subsequent remaini are nonnegative as well.

With only nonnegative cost functions we can modify Di-
jkstra’s algorithm (1959) slightly and perform both steps si-
multaneously. The modified algorithm works as follows: let
t = 〈s, l, s′〉 ∈ T ′ be the abstract transition that Dijkstra’s



algorithm expands next. Furthermore, let d(s) be the cur-
rent cheapest cost of a path from s ∈ S(T ′) to a goal. If
d(s) ≤ d(s′) then we set tcf ′(t) = 0 because it is the cheap-
est goal path from s that uses t and does not make d(s) any
cheaper, i.e., there exists a goal path from s that does not use
t and is cheaper. Otherwise we compute tcf ′(t) as shown
in Definition 5 and update d(s) if the goal path that uses t
makes d(s) cheaper. See Drexler, Seipp, and Speck (2021)
for pseudo-code of the procedure.

The above algorithm is sound and complete for the prob-
lem of computing goal distances under the given remaining
transition cost function (Drexler, Seipp, and Speck 2021).
This is intuitively the case because each cost assignment is
upper bounded by the remaining transition cost function and
never introduces a shortcut. The above problem that we are
solving is closely related to the shortest path discovery prob-
lem (Szepesvári 2004) with the additional assumptions that
the transition weights are nonnegative and that we have mul-
tiple sources and multiple targets.

Saturate for Reachable States (reacht)
The transition saturator reacht is a generalization of the op-
erator saturator reacho (Seipp and Helmert 2019). For a
given heuristic h for a weighted transition system 〈T , tcf 〉,
this saturator preserves the heuristic estimates of all states
that are reachable from a given state (the initial state in
our experiments). We set the heuristic estimate of all states
s ∈ S(T ) that are mapped to an unreachable abstract state
under h to −∞ and apply all t on the modified heuristic es-
timates. Since reacht uses all t , the resulting cost function
is the unique minimum saturated transition cost function for
the set of concrete states mapped to reachable abstract states.

Saturate for a Perimeter (perimt)
The transition saturator perimt is a generalization of the
operator saturator perimo . For a given heuristic h for a
weighted transition system 〈T , tcf 〉, perimt preserves the
heuristic estimates of all states that are within a perimeter of
k to a goal state (Seipp and Helmert 2019). The idea is that
it is more important to preserve heuristic estimates of states
that are closer to a goal state (Holte et al. 2004; Torralba,
Linares López, and Borrajo 2018). The set of states within
perimeter k ≥ 0 is Sk = {s ∈ S(T ) | h(tcf , s) ≤ k}.

To efficiently compute a saturated transition cost function
for Sk and a given heuristic h, we only allow for nonnega-
tive transition cost functions in the input (Seipp and Helmert
2019). In our experiments, we set k = h(tcf , s), where tcf
is the cost function that is passed to perimt and s ∈ S(T )
is a state for which we aim to optimize the resulting cost-
partitioned heuristic, e.g., the initial state.

Saturate for a Single State (lpt)
The transition saturator lpt is a generalization of the operator
saturator lpo . For a given heuristic h of a weighted transition
system 〈T , tcf 〉 with underlying abstraction T ′ and abstract
transition cost function tcf ′, lpt preserves the heuristic esti-
mate of a single state s ∈ S(T ) while being as economical
as possible (Seipp and Helmert 2019).

The set of possible saturated transition cost functions to
pick from does not have a unique minimum. We use an
adapted version of the linear programming formulation of
the operator saturator lpo to choose from the set of possible
saturated transition cost functions.

min
∑

l∈L(T )

Cl · 1{−∞<Cl<∞}

Hs? ≤ 0 for all s? ∈ S?(T ′)
Ha ≤ Ct +Hb for all 〈a, l, b〉 = t ∈ T (T ′)
Ct ≤ tcf ′(t) for all t ∈ T (T ′)

Hα(s) = h∗T ′(tcf ′, α(s))

Ct ≤ Cl for all 〈a, l, b〉 = t ∈ T (T ′)
The variables Ct encode the abstract transition weights of

the saturated transition cost function, the variables Cl en-
code the saturated operator cost function, and the variables
Ha encode the abstract goal distance of a ∈ S(T ′). Note
that minimizing the sum of finite saturated transition costs in
the objective function is infeasible in practice because there
may be exponentially many transitions in the concrete transi-
tion system. Instead, we minimize the sum of finite saturated
operator costs. In our experiments, we preserve the heuristic
estimate of the initial state sI(T ).

In the remainder of this section, we discuss implementa-
tion details for the transition saturators. First, we discuss the
concern of saturating for unsolvable or unreachable states.
Second, we discuss the issue of heuristic reevaluation under
general transition cost functions.

Negative Infinity in Saturator Outputs
The runtime of the subtraction of the saturated transition cost
function in Definition 9 depends on the number of abstract
transitions for which the saturated cost is unequal to 0. More
precisely, the subtraction of the saturated costs of all (expo-
nentially many) concrete transitions that induce the same ab-
stract transition requires a sequence of operations in the data
structure based on binary decision diagrams (Bryant 1985)
that depend on the size of the data structure itself. For ab-
straction heuristics with significantly more unsolvable states
and unreachable states this can become prohibitively expen-
sive because each transition that ends in an unsolvable state
or starts in an unreachable state has a saturated cost of −∞.
The benefit of saturating with−∞ is to detect additional ab-
stract paths that are not goal paths. We observed that the ben-
efit is relatively small compared to runtime cost. Thus, we
also use modified versions of the transition saturators above
for the case of a nonnegative input cost functions that substi-
tute each saturated cost of −∞ by 0, making the subtraction
from the remaining transition cost function trivial.

Negative Costs in Saturator Inputs
Transition saturators require the ability to reevaluate the
heuristic under the given input transition cost function. The
first reevaluation under remaini is generally not too costly
because remaini is always nonnegative if the cost function
of the planning task is nonnegative. However, if a transi-
tion saturator saturates for a subset of states S′ and we later



reevaluate the heuristic for states s /∈ S′, then this requires
algorithms like Bellman-Ford (Ford 1956; Bellman 1958) if
the saturated transition cost function contains negative costs.
Seipp and Helmert (2019) report that a heuristic reevaluation
with Bellman-Ford algorithm was prohibitively expensive in
the case of operator saturators. Therefore, they propose to di-
rectly extract a lower bound on the heuristic estimates from
the output of the saturators, sacrificing heuristic accuracy.

In contrast, the transition saturator of a corresponding op-
erator saturator has the ability to tighten the consistency con-
straint set on each transition. In this case, a heuristic does
not change its estimates after reevaluation under the satu-
rated transition cost function and we can directly extract the
heuristic from the output of the saturator without sacrificing
heuristic accuracy.

Experiments
We implemented all transition saturators in the Fast Down-
ward planning system (Helmert 2006). Similar to modern
symbolic search planners, we use decision diagrams for the
compact representation and computation of sets of states
(Kissmann, Edelkamp, and Hoffmann 2014; Torralba et al.
2014; Speck, Geißer, and Mattmüller 2018). More specif-
ically, we use the CUDD library (Somenzi 2015) for bi-
nary decision diagrams with the default Fast Downward
variable order to represent and manipulate transition cost
functions. We conduct experiments with the Downward Lab
toolkit (Seipp et al. 2017) on a compute cluster with nodes
equipped with two Intel Xeon Gold 6242 32-core CPUs,
20 MB cache, and 188 GB shared RAM running Ubuntu
20.04 LTS 64-bit. The benchmark set consists of all 1827
instances from the optimization track of the 1998–2018 In-
ternational Planning Competitions that do not have condi-
tional effects. Each task is limited to a single core with 6 GB
of memory and a time limit of 30 minutes. We consider the
same set of abstractions as in the work on operator satura-
tors by Seipp and Helmert (2019) that consists of Cartesian
abstractions of the goal and landmark decomposition meth-
ods (Seipp and Helmert 2014), systematic pattern databases
of sizes 1 and 2 (Pommerening, Röger, and Helmert 2013),
and the pattern databases found by hill climbing (Haslum
et al. 2007). We order the heuristics greedily with the scoring
function h

stolen , that measures how well a heuristic balances
the two objectives of having a high heuristic estimate and
stealing low costs from other heuristics (Seipp, Keller, and
Helmert 2020). We always use the operator saturator allo
during the optimization of the order for a fair comparison.
All benchmarks, code, and experimental data are available
online (Drexler, Seipp, and Speck 2021).

Regarding saturator composition, we always use fast t
first in each transition saturator composition and omit writ-
ing fast t for improved readability. For example, instead
of fast t ,perimt , we write perimt . We declare exceptions
to this rules with superscript ∗. For example, when using
perimt without first applying fast t , we write perim∗t . Fur-
thermore, we add the superscript−∞ to transition saturators
for which we allow saturated costs of negative infinity. If we
replace them by 0, we omit the superscript.

Saturators such as perimt or lpt often leave costs unused
after the first run of subset-saturated transition cost partition-
ing. In this case, an additional run with all t or reacht on the
remaining costs of the first run often improves the heuristic
estimates of states that the former saturators did not optimize
for. The sum of both cost-partitioned heuristics is admissi-
ble because the second run uses the remaining costs after
the first run. We write saturate1+saturate2 to denote that
saturate2 is an additional run on the remaining costs after
the first run with saturate1.

Single Order of the Heuristics
In this section, we evaluate cost-partitioned heuristics for a
single order of the heuristics optimized for the initial state.

Comparison of Transition Saturators Table 2a shows
the pairwise comparison of a set of transition saturators. Sat-
urated transition cost partitioning with the transition satura-
tor all∗,-∞t as in the work by Keller et al. (2016) leads to
solving 1024 tasks. Additional composition with fast t in the
transition saturator all-∞t clearly pays off because the cover-
age increases to 1042 tasks even though the same heuristic is
computed. Replacing saturated transition costs of −∞ by 0
in the transition saturator all t further increases coverage to
1066 tasks while computing worse heuristics for the initial
state in only 8 tasks.

Preserving the heuristic estimates of only reachable states
with reacht decreases the coverage but increases the accu-
racy compared to all t . In general, preserving the heuris-
tic estimates of only reachable states is preferable, but if
an abstraction contains many abstract states and transitions,
as in our case with up to 109 states, then even a sim-
ple run of Dijkstra’s algorithm is expensive. The cover-
age decreases because computing the set of reachable ab-
stract states outweighs the additional accuracy. Preserving
the heuristic estimates of only the initial state, lpt+reacht

computes stronger heuristics than the previous saturators but
solves only 637 tasks.

Compositions with the transition saturator perimt yield
the best results. The additive composition perimt+all t has
the highest coverage of 1083 tasks and wins all pairwise
comparisons for the heuristic estimate of the initial state.
The objective of perimt and lpt are closely related: both
preserve the heuristic estimate of the initial state but not
the heuristic estimate of states that are further away from
the goal. The difference in accuracy results from lpt being
too optimistic: while saturating for a heuristic h, lpt often
saves costs for subsequent heuristics, even though h would
benefit from the costs and subsequent heuristics cannot use
the saved costs. Overall however, the results in Table 2a
show that being economical and preserving the heuristic es-
timates of relevant states only leads to more accurate cost-
partitioned heuristics.

Comparison to Operator Saturators Table 2b shows the
pairwise comparison of four operator and transition satura-
tors. For each of the four saturated cost partitioning variants
from Table 1, we choose one representative saturator: allo



al
l∗
,-
∞

t

al
l-∞ t

al
l t

re
ac

h t

lp
* t+

re
ac

h t

pe
ri

m
t+

al
l t

all∗,-∞t – 0 7 18 4 34
all-∞t 0 – 8 19 4 35
allt 0 0 – 14 0 36
reacht 49 49 69 – 39 45
lp*

t +reacht 115 115 123 123 – 68
perimt+allt 482 487 517 511 317 –

Coverage 1024 1042 1066 1060 637 1083

(a) Comparison of transition saturators.

al
l o

pe
ri

m
o+

al
l o

al
l∗
,-
∞

t

pe
ri

m
t+

al
l t

allo – 47 164 59
perimo+allo 488 – 390 55
all∗,-∞t 345 236 – 34
perimt+allt 683 400 482 –

Coverage 1056 1061 1024 1083

(b) Comparison of operator and transition saturators.

Table 2: Per-task comparison of the initial h-value for a se-
lection of transition saturator compositions. In each pairwise
comparison, we consider the tasks for which both saturators
computed the initial heuristic estimate. The entry in row r
and column c indicates the number of tasks where r returns
a transition cost partitioning with a higher initial heuristic
value than c. We use boldface to indicate the winner in the
pairwise comparison (r, c) and (c, r). The bottom row holds
the number of solved tasks. Saturators with * do not use
fast t in the composition.

for saturated operator cost partitioning, the strongest opera-
tor saturator perimo+allo from Seipp and Helmert (2019)
for subset-saturated operator cost partitioning, all∗,-∞t for
saturated transition cost partitioning (Keller et al. 2016), and
the strongest transition saturator perimt+all t from Table 2a
for subset-saturated transition cost partitioning.

Confirming earlier results, using subset-saturation and al-
lowing general transition cost functions usually leads to
more accurate heuristics compared to the plain allo oper-
ator saturator. We now see that the combination of both gen-
eralizations increases the accuracy of the resulting heuristics
even further. While the subset-saturation generalization only
leads to a small increase in overall coverage and the transi-
tion generalization even reduces overall coverage compared
to allo , subset-saturated transition cost partitioning solves
more tasks in total than all other variants. This shows that in-
deed allowing for more economical transition cost functions
leads to computing stronger cost-partitioned heuristics.

Coverage al
l o

al
l∗
,-
∞

t

pe
ri

m
o+

al
l o

pe
ri

m
t+

al
l t

airport (50) 26 15 35 35
elevators (50) 39 42 39 42
floortile (40) 6 6 3 4
freecell (80) 66 57 66 65
ged (20) 15 19 15 19
hiking (20) 13 15 13 15
logistics98 (35) 8 7 8 8
miconic (150) 112 114 112 114
mprime (35) 29 29 28 29
nomystery (20) 20 19 20 19
parcprinter (50) 30 30 32 34
parking (40) 16 14 16 15
pipesworld-tankage (50) 16 16 17 17
scanalyzer (50) 23 17 23 23
snake (20) 14 14 13 13
spider (20) 16 6 16 16
termes (20) 12 13 12 13
tetris (17) 11 11 10 11
transport (70) 32 31 32 31
woodworking (50) 36 36 36 44
zenotravel (20) 13 10 12 13
others (920) 503 503 503 503
Sum (1827) 1056 1024 1061 1083

Table 3: Number of solved tasks for a selection of saturators.
The all∗,-∞t saturator does not use fast t in the composition
and allows costs of −∞.

Per-Domain Coverage Table 3 shows the coverage per
domain for the set of saturators of the previous section. For
example, the transition saturator perimt+all t solves more
tasks than its operator saturator counterpart perimo+allo
in 11 domains, while the opposite holds only in 4 domains.
There is a tendency that transition saturators perform better
in domains where optimal plans contain the same operator
multiple times. This is intuitively the case because an opti-
mal plan that contains an operator o multiple times applies
o in different states, and transition saturators can assign dif-
ferent costs to these operator applications.

Size Limits for Transition Saturators
The representation size of the remaining transition cost func-
tion (remaini in Definition 9) grows worst-case exponential
in the number of heuristics for which we apply a transition
saturator. Additionally, the time needed to apply a transi-
tion saturator to an abstraction heuristic typically increases
with an increasing number of abstract transitions. To con-
trol worst-case performance, we define a classifier Gk with
parameter k ∈ N. For a given abstraction heuristic h, the
classifier Gk decides which saturator is applied to h. The
classifier Gk maps h to the transition saturator perimt+all t
if the number of abstract transitions in h is smaller than k.



k 0 103 105 107 109 ∞
0 – 9 51 60 55 55
103 112 – 50 61 59 59
105 285 197 – 20 20 20
107 375 290 122 – 6 6
109 399 316 150 46 – 0
∞ 400 317 151 47 1 –

Coverage 1061 1071 1078 1085 1085 1083

Table 4: Per-task comparison of the initial h-value for
a single order and classifier Gk for transition saturator
perimt+all t and operator saturator perimo+allo . The pa-
rameter k of Gk runs on the horizontal and vertical axis. In
each pairwise comparison, we consider the tasks solved by
both saturators. Boldface is used to indicate the winner in
the pairwise comparison (r, c) and (c, r).

Otherwise, the classifier Gk maps h to the operator saturator
perimo+allo .

Table 4 shows that the algorithm yields increasingly more
informed heuristics with increasing parameter k because the
number of heuristics on which the transition saturator is ap-
plied typically increases with k. In other words, the algo-
rithm yields more informed heuristics with increasing pa-
rameter k because the number of heuristics for which the
algorithm uses more economical saturated transition cost
functions increases with k. In contrast, the number of solved
tasks peaks at 1085 for k = 107 and k = 109 abstract
transitions. It is interesting to see that already such a simple
classifier allows us to balance heuristic accuracy and com-
putational effort. Since the design space for such classifiers
is huge, we leave it to future work to investigate this space
more thoroughly.

Multiple Orders of the Heuristics
Seipp, Keller, and Helmert (2017) showed that we solve
many more tasks if we compute multiple saturated cost par-
titioning heuristics that consider the heuristics in different
orders and maximize over them during the search. We use
their diversification algorithm to obtain a complementary set
of subset-saturated transition cost partitioning heuristics.

The algorithm starts with an empty family F of cost-
partitioned heuristics and a set Ŝ of 1000 sample states ob-
tained with random walks (Haslum et al. 2007). Then, until
we reach a diversification time limit of T seconds, we itera-
tively sample a new state swith a random walk and compute
the cost-partitioned heuristic h for s. If h has a strictly larger
heuristic estimate than any other heuristic in F for any state
ŝ ∈ Ŝ we add h toF . We always include the cost-partitioned
heuristic tailored to the initial state and use the same classi-
fier Gk from the previous experiment with the same pair of
saturators to choose from.

Table 5 shows that after one second of diversification, the
operator cost partitioning method perimo+allo (k = 0)
solves nearly as many tasks as the best single-order transi-
tion cost partitioning (1082 tasks). When we diversify transi-

T=1s T=10s T=100s T=1000s

k=0 1082 1153 1169 1160
k=103 1085 1152 1170 1161
k=105 1088 1152 1167 1156
k=107 1091 1156 1166 1157
k=109 1069 1132 1138 1127
k=∞ 1069 1131 1138 1127

Table 5: Number of solved tasks using multiple orders with
diversification for T seconds and classifier Gk that chooses
between transition saturator perimt+all t and operator satu-
rator perimo+allo . The parameter k of Gk runs on the verti-
cal axis and the diversification time limit T runs on the hor-
izontal axis. We highlight the best configuration for a fixed
value of T .

tion cost partitionings for one second, we solve slightly more
tasks (1088–1091) for 105 ≤ k ≤ 107. The highest coverage
of 1170 tasks is achieved with k = 103 and 100 seconds of
diversification. Coverage decreases again for large k because
the algorithm either fails to compute cost-partitioned heuris-
tics for sufficiently many orders or runs out of time for the
single order. We conclude that applying transition saturators
for heuristics with few abstract transitions can be beneficial
also when computing multiple cost-partitioned heuristics.

Future Work
Our empirical evaluation shows that allowing the algorithm
to apply either a transition saturator or its corresponding
operator saturator on a heuristic in the sequence improves
the tradeoff between accuracy and runtime. Hence, improv-
ing the reasoning technique that decides whether to apply
the transition saturator or its corresponding operator satura-
tor could improve cost-partitioned heuristics. Revisiting the
representation of the remaining transition cost function is
another promising direction. This can be done either through
exact techniques such as variable reordering on the decision
diagrams or through approximate techniques such as limit-
ing the number of available buckets where each bucket rep-
resents a set of states that are mapped to the same cost value.

Conclusions
We introduced subset-saturated transition cost partitioning
that unifies two generalizations of saturated operator cost
partitioning: allowing to assign different costs to transitions
induced by the same operator and preserving the heuristic
estimates of only a subset of states in each saturated cost
partitioning iteration. Our empirical evaluation shows that
subset-saturated transition cost partitioning usually com-
putes stronger cost-partitioned heuristics for a single order
of the heuristics than the two previous generalizations by
themselves. The increased heuristic accuracy directly trans-
lates to solving more tasks than the earlier generalizations
for single saturated cost partitioning orders. When using
multiple orders, already a very simple classifier for deciding
between transition and operator cost partitioning suffices to
obtain a strong planner.



Acknowledgments
We thank Robert Mattmüller for discussions and comments
in earlier stages of this work. Dominik Drexler was par-
tially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice
Wallenberg Foundation. Jendrik Seipp received funding for
this work from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement no. 817639). Moreover,
he was partially supported by TAILOR, a project funded by
the EU Horizon 2020 research and innovation programme
under grant agreement no. 952215. David Speck was sup-
ported by the German Research Foundation (DFG) as part
of the project EPSDAC (MA 7790/1-1).

Appendix
In the following section, we provide proofs for the theoreti-
cal claims above. We often refer to transition cost functions
as general transition cost function when we want to empha-
size that they may map to +∞ and−∞. We start by defining
two additional properties of heuristics and repeat the defini-
tion of an admissible heuristic for convenience.

Definition 10 (Heuristic properties). Let h be a heuristic for
a weighted transition system 〈T , tcf 〉.

• Heuristic h is goal-aware if h(tcf , s?) ≤ 0 for all goal
states s? ∈ S?(T ).

• Heuristic h is consistent if h(tcf , s) ≤ tcf (t)⊕h(tcf , s′)
for all t = 〈s, l, s′〉 ∈ T (T ).

• Heuristic h is admissible if h(tcf , s) ≤ h∗T (tcf , s) for all
states s ∈ S(T ).

Appendix A: Heuristic Goal-Aware + Consistent⇒
Admissible

Let h be a heuristic for a weighted transition system 〈T , tcf 〉
where tcf is a general transition cost function. We now show
that if h is goal-aware and consistent, then h is admissible.
This result generalizes the corresponding result by Seipp,
Keller, and Helmert (2020) from general operator cost func-
tions to general transition cost functions.

Let π = 〈s0, l1, s1, . . . , sn−1, ln, sn〉 be a goal path for s0

with ti = 〈si−1, li, si〉 ∈ T (T ) for all i = 1, . . . , n. Since h
is consistent, it holds that

h(tcf , s0) ≤ tcf (t1)⊕ h(tcf , s1)

≤ tcf (t1)⊕ tcf (t2)⊕ h(tcf , s2)

≤ . . .
≤ tcf (t1)⊕ . . .⊕ tcf (tn)⊕ h(tcf , sn)

= cost(tcf , π) + h(tcf , sn).

Since h is goal-aware it holds that h(tcf , sn) ≤ 0 be-
cause sn ∈ S?(T ). Hence, it holds that h(tcf , s0) ≤
cost(tcf , π) = h∗T (tcf , s0) because π is a goal path show-
ing that h is admissible.

Appendix B: Abstraction Heuristics with
General Transition Cost Functions: Properties
In the following, we show that abstraction heuristics with
general transition cost functions are goal-aware, consistent,
and admissible. This result extends the corresponding result
by Seipp, Keller, and Helmert (2020) from general operator
cost functions to general transition cost functions. Alterna-
tively, it is also an extension of the result by Keller et al.
(2016) where we additionally allow transition cost func-
tions to map to −∞. We closely follow the proofs by Seipp,
Keller, and Helmert (2020).

Let h be an abstraction heuristic for a weighted transi-
tion system 〈T , tcf 〉 and let T ′ be the abstraction underly-
ing hwith abstraction mappings α, β. Furthermore, the tran-
sition cost function tcf is general. Recap that the heuris-
tic estimate h(s, tcf ) of a state s ∈ S(T ) is defined as
the shortest goal distance of its corresponding abstract state
in the abstraction T ′, i.e., h(tcf , s) = h∗T ′(tcf

′, α(s)) =
infπ∈Π?(T ′,α(s)) cost(tcf

′, π) with tcf ′(t′) = min{tcf (t) |
t ∈ T (T ) ∧ β(t) = t′}.

B.1: Abstraction Heuristics with General
Transition Cost Functions are Goal-Aware
Let s? ∈ S?(T ) be a concrete goal state. By the definition
of an abstraction heuristic, it follows that α(s?) ∈ S?(T ′).
The empty path π = 〈〉 is a goal path with path costs of 0,
showing that h is goal-aware.

B.2: Abstraction Heuristics with General
Transition Cost Functions are Consistent
Let t = 〈s, l, s′〉 ∈ T (T ) be a transition of a concrete transi-
tion system. By the definition of abstraction heuristics, it fol-
lows that t′ = 〈α(s), l, α(s′)〉 ∈ T (T ′). Moreover, it holds
that tcf ′(t′) ≤ tcf (t) because of the minimization in the
definition of the abstract transition cost function. We derive

h(tcf , s)
Def. h
= h∗T ′(tcf ′, α(s))

Def. goal distance
= inf

π∈Π?(T ′,α(s))
cost(tcf ′, π)

≤ inf
π′∈Π?(T ′,α(s′))

(tcf ′(t′)⊕ cost(tcf ′, π′))

Def. path-addition
= tcf ′(t′)⊕ inf

π′∈Π?(T ′,α(s′))
cost(tcf ′, π′)

Def. goal distance
= tcf ′(t′)⊕ h∗T ′(tcf ′, α(s′))

tcf ′(t′)≤tcf (t)

≤ tcf (t)⊕ h(tcf , s′),
where the first inequality holds because the set of goal

path for α(s) that uses t′ is a subset of all goal paths for α(s).
The last inequality holds because by definition of an abstract
transition cost function, the cost of the abstract transition t′
is defined as the smallest cost of any concrete transition that
induces t′.

B.3: Abstraction Heuristics with General
Transition Cost Functions are Admissible
Using the results of Appendix B.1 and B.2 follows that con-
sistent and goal-aware heuristic h is also admissible.



Appendix C: Cost-Partitioned Heuristics with
General Transition Cost Functions are

Admissible

Next, we show that cost-partitioned heuristics with general
transition cost functions are goal-aware, consistent, and ad-
missible, generalizing the results by Keller et al. (2016) and
Seipp, Keller, and Helmert (2020). We again closely follow
the proofs by Seipp, Keller, and Helmert (2020).

Let h(tcf , s) =
∑n
i=1 hi(tcf i, s) be the cost-partitioned

heuristic for a weighted transition system 〈T , tcf 〉.

C.1: Cost-Partitioned Heuristics with General
Transition Cost Functions are Goal-Aware

It is easy to see that if all component heuristics of h are goal-
aware, then h is goal-aware.

C.2: Cost-Partitioned Heuristics with General
Transition Cost Functions are Consistent

Now, we show that if all component heuristics of h are con-
sistent, then h is consistent.

Let t = 〈s, l, s′〉 ∈ T (T ) be a concrete transition. We
derive

h(tcf , s)
Def. h
=

n∑
i=1

hi(tcf i, s)

hi consistent
≤

n∑
i=1

(tcf i(t)⊕ hi(tcf i, s′))

main step
≤

n∑
i=1

tcf i(t)⊕
n∑
i=1

hi(tcf i, s
′)

cost partitioning
≤ tcf (t)⊕

n∑
i=1

hi(tcf i, s
′)

Def. h
≤ tcf (t)⊕ h(tcf , s′)

where the main step is identical to the one by Seipp, Keller,
and Helmert (2020). This concludes that h is consistent.

C.3: Cost-Partitioned Heuristics with General
Transition Cost Functions are Admissible

To show that if all component heuristics are admissible, then
h is admissible, we define h′(tcf , s) :=

∑n
i=1 h

∗(tcf i, s) as
the cost-partitioned heuristic where each component heuris-
tic is h∗. Note that each component heuristic is goal-aware
and consistent. Therefore, the heuristic h′ is goal-aware and
consistent (Appendices C.1 and C.2) and admissible (Ap-

pendix A). We derive

h(tcf , s)
Def. h
=

n∑
i=1

hi(tcf i, s)

hi admissible
≤

n∑
i=1

h∗(tcf i, s)

Def. h′

= h′(tcf , s)

h′ admissible
≤ h∗(tcf , s),

showing that h is admissible.

Appendix D: Shortest Path Discovery Problem
with Nonnegative Weights

In the shortest path discovery problem (Szepesvári 2004),
we are given a transition system where the weights are ini-
tially unknown but there exists a function query allowing
us to query the costs of each edge. The objective is to find
the distance between a source and a target state. A simpler
version of the shortest path discovery problem where transi-
tion weights are assumed to be nonnegative and we need to
find closest distances from every state to a goal state can be
defined as follows.

Definition 11 (Shortest path discovery problem with non-
negative weights SPD≥0).
• Given: an input instance I = 〈T , tcf , query〉 consist-

ing of: a transition system T , a nonnegative transition
cost function tcf , and a function query to obtain the cost
tcf (t) of a transition t ∈ T (T ).

• Output: a transition cost function tcf ′ ∈ C(T ) that dom-
inates tcf such that h∗T (tcf ′, s) = h∗T (tcf , s) holds and
the goal distances h∗T (tcf , s) itself.

An algorithm A solves SPD≥0 iff A is sound and com-
plete for SPD≥0 in the following sense:

Definition 12 (Sound). An algorithm is sound for SPD≥0 if
the output it produces for any given input is a correct solu-
tion for SPD≥0.

Definition 13 (Complete). An algorithm is complete for
SPD≥0 if it terminates for any given input.

Furthermore, a solution is optimal if it requires the fewest
number of calls to the function query . We propose a greedy
algorithm that is a modification of Dijkstra’s shortest path al-
gorithm (1959). We show that this algorithm is indeed sound
and complete for SPD≥0.

Theorem 1 (Soundness). Algorithm 1 is sound for SPD≥0.

Proof: We have to show that h∗T (tcf ′, s) = h∗T (tcf , s).
The distance update in line 18 is executed if a goal path
π for s′ that uses t introduces a path of cheaper cost, i.e.,
dist[s] + tcf ′(t) < dist[s′]. We need to show that our mod-
ification never skips any updates where such a path π of
cheaper cost is found and that the cost of π is equal under
both cost functions, i.e., cost(tcf ′, π) = cost(tcf , π). Dis-
tance updates are never skipped because if dist[s′] ≤ dist[s]



Algorithm 1 A modification of Dijkstra’s shortest path al-
gorithm (1959).

1: function COMPUTESHORTESTPATHS(T , query)
2: Q ← queue where states are ordered by goal dis-

tance with operations: (1) Q.insert(s) that inserts state
s ∈ S(T ), (2) operation Q.pop() that removes and re-
turns the state in Q with minimal goal distance, and (3)
Q.size() that returns the number of elements in Q.

3: d(s)←∞ for all s ∈ S(T )
4: tcf ′(t)← 0 for all t ∈ T (T )
5: for s? ∈ S?(T ) do
6: d(s?)← 0
7: Q.insert(s?)
8: end for
9: while Q.size() > 0 do

10: s← Q.pop()
11: for t = 〈s′, l, s〉 ∈ T (T ) do
12: if d(s′) ≤ d(s) then
13: continue
14: end if
15: tcf ′(t)← query(t)
16: alt ← d(s) + tcf ′(t)
17: if alt < d(s′) then
18: d(s′)← alt
19: Q.insert(s′)
20: end if
21: end for
22: end while
23: return

〈
dist , tcf ′

〉
24: end function

holds in line 12 then dist[s]+tcf ′(t) ≥ dist[s′] and the con-
tinue in line 13 does not skip the distance update in line 18.
The cost of the path is equal under both cost functions be-
cause in line 15, we set tcf ′(t) = tcf (t). Furthermore, tcf ′

dominates tcf . Hence, if Algorithm 1 terminates then the
output is a correct solution.
Theorem 2 (Completeness). Algorithm 1 is complete for
SPD≥0.
Proof: Algorithm 1 returns a solution for any given input
because it corresponds to the standard version of Dijkstra’s
algorithm with an additional continue statement that does
not introduce an infinite loop.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean
and Cartesian Abstraction for Model Checking C Programs.
In Proc. TACAS 2001, 268–283.
Bellman, R. E. 1958. On a routing problem. Quarterly of
Applied Mathematics 16: 87–90.
Bryant, R. E. 1985. Symbolic Manipulation of Boolean
Functions Using a Graphical Representation. In Proc. DAC
1985, 688–694.
Dijkstra, E. W. 1959. A Note on Two Problems in Connex-
ion with Graphs. Numerische Mathematik 1: 269–271.
Drexler, D.; Seipp, J.; and Speck, D. 2021. Code and data
for the ICAPS 2021 paper “Subset-Saturated Transition Cost
Partitioning”. https://doi.org/10.5281/zenodo.4588960.
Ford, L. R. 1956. Network Flow Theory. Santa Monica, CA:
RAND Corporation.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admis-
sible Heuristics for Domain-Independent Planning. In Proc.
AAAI 2005, 1163–1168.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
Proc. ICAPS 2007, 176–183.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple Pattern Databases. In Proc. ICAPS 2004,
122–131.
Katz, M.; and Domshlak, C. 2008. Optimal Additive Com-
position of Abstraction-based Admissible Heuristics. In
Proc. ICAPS 2008, 174–181.



Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AIJ 174(12–13): 767–798.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent Cost Partitionings for
Cartesian Abstractions in Classical Planning. In Proc. IJCAI
2016, 3161–3169.
Kissmann, P.; Edelkamp, S.; and Hoffmann, J. 2014. Gamer
and Dynamic-Gamer – Symbolic Search at IPC 2014. In
IPC-8 planner abstracts, 77–84.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.
Seipp, J.; and Helmert, M. 2013. Counterexample-guided
Cartesian Abstraction Refinement. In Proc. ICAPS 2013,
347–351.
Seipp, J.; and Helmert, M. 2014. Diverse and Additive
Cartesian Abstraction Heuristics. In Proc. ICAPS 2014,
289–297.
Seipp, J.; and Helmert, M. 2019. Subset-Saturated Cost Par-
titioning for Optimal Classical Planning. In Proc. ICAPS
2019, 391–400.
Seipp, J.; Keller, T.; and Helmert, M. 2017. Narrowing the
Gap Between Saturated and Optimal Cost Partitioning for
Classical Planning. In Proc. AAAI 2017, 3651–3657.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR 67: 129–
167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Somenzi, F. 2015. CUDD: CU decision diagram package
- release 3.0.0. https://github.com/ivmai/cudd. Accessed:
2020-02-20.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In IPC-9 planner
abstracts, 91–94.
Szepesvári, C. 2004. Shortest Path Discovery Problems: A
Framework, Algorithms and Experimental Results. In Proc.
AAAI 2004, 550–555.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional A*
Planner. In IPC-8 planner abstracts, 105–109.

Torralba, Á.; Linares López, C.; and Borrajo, D. 2018. Sym-
bolic perimeter abstraction heuristics for cost-optimal plan-
ning. AIJ 259: 1–31.


