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Abstract: Given the increasing occurrence of deviant activities in online platforms, it is of paramount
importance to develop methods and tools that allow in-depth analysis and understanding to then
develop effective countermeasures. This work proposes a framework towards detecting statistically
significant change points in terrorism-related time series, which may indicate the occurrence of
events to be paid attention to. These change points may reflect changes in the attitude towards
and/or engagement with terrorism-related activities and events, possibly signifying, for instance,
an escalation in the radicalization process. In particular, the proposed framework involves: (i) clas-
sification of online textual data as terrorism- and hate speech-related, which can be considered as
indicators of a potential criminal or terrorist activity; and (ii) change point analysis in the time series
generated by these data. The use of change point detection (CPD) algorithms in the produced time
series of the aforementioned indicators—either in a univariate or two-dimensional case—can lead to
the estimation of statistically significant changes in their structural behavior at certain time locations.
To evaluate the proposed framework, we apply it on a publicly available dataset related to jihadist
forums. Finally, topic detection on the estimated change points is implemented to further assess
its effectiveness.

Keywords: change point detection; terrorism; hate speech; online content; topic detection

1. Introduction

In recent years, considerable terrorism-related activity, including propaganda dissem-
ination, recruitment and training, finance raising, and hate spreading towards specific
social groups, has been observed in various online platforms [1]. At the same time, several
advanced methods have been developed that can analyze online textual content and extract
information of interest, such as affiliations towards terrorist groups and information related
to terrorist events [2,3]. Such analysis can lead to the identification of key information
in the fight against crime and terrorism; for instance, the early detection and analysis of
crime- and terrorism-related information exchanged in online communities can promote
the efficient resource allocation towards mitigating serious incidents.

The first step in this process is the detection of content of interest, and, thus far,
several works have focused on developing effective classification frameworks suitable for
distinguishing between terrorism vs. non-terrorism [3] or extremism vs. non-extremism
content [2], among others. These methods are more oriented towards detecting suspicious
content, but without focusing on the significant changes that take place over time. Such
an assessment can be performed using change point detection (CPD) methods applied on
suitably constructed time series which can serve as indicators of terrorism or crime activity.
More specifically, one can detect significant changes in the time series of posts related to
terrorism and hate speech; the position of these changes may reflect changes in the attitude
towards and/or engagement with terrorism-related activities and events that trigger users
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of social media platforms/forums to display a more intense online activity in the vicinity
of these time points. Overall, the idea of using a CPD method in time series of terrorism-
or hate speech-related posts can be seen as an alternative way to identify links between
online activity and terrorism.

Towards this direction, this paper proposes a terrorism-related change point detection
framework which builds on univariate and multivariate time series. Specifically, this
framework facilitates the identification of points in time where statistically significant
changes occur regarding the underlying data. By exploiting the temporal evolution of
several indicators, such points constitute structural breaks in the behavior of the time series
and may indicate the occurrence of important events where attention should be paid to.
Moreover, in the case of multivariate CPD, possible correlations existing between the time
series of different indicators could also be exploited.

In general, CPD methods are divided into two main categories: online methods [4] that
aim to detect changes in real-time and offline methods [5] that retrospectively detect changes
when considering historical data. For example, if data consisting of terrorism-related
content or hate speech are considered as underlying data for the CPD algorithms, then the
estimated change points based on the offline methods could offer a useful statistical analysis
of such data to identify patterns and maximize the trade off between correctly identified
change points and false alarms, whereas, in the case of online methods, the estimated time
locations of structural breaks could enable interested parties (e.g., law enforcement) to
respond in a timely manner with the aim of preventing possible radicalization, terrorist or
criminal activities. In this work, our interest lies on the offline methods.

Overall, the main contribution of this work is the adoption of a change point detection
method to estimate the time locations of statistically significant changes in terrorism-related
time series based on a set of indicators for an effective analysis of trends and changes in
a criminal context. Specifically, the detection of change points is performed in univariate
as well as multivariate time series attempting to exploit possible correlations that may
exist between the time series of different indicators. The presence of terrorism-related
content and the expression of hate speech are detected on the basis of state-of-the-art
deep learning methods (namely, Convolutional Neural Networks (CNNs)) and are used
as inputs in the CPD algorithm. The evaluation carried out on data collected from a
jihadist forum showcases the appropriateness of the proposed terrorism-related change
point detection framework to identify changes at time locations where more attention
could possibly be given. The satisfactory performance can be attributed to its ability to
detect structural breaks in the time series—either univariate or multivariate—based on the
time evolution of their statistical properties. To the best of our knowledge, this is the first
time that change point detection algorithms are combined with the frequencies of online
textual data classified as related to terrorism and/or hate speech based on well-established
classification models.

The remainder of the paper is structured as follows. In Section 2, we present a brief
overview of the classification and change point detection methods. In Section 3, we detail
the specific setup of the proposed pipeline, whereas, in Section 4, we exhibit its applicability.
In Section 5, we discuss the results. Finally, in Section 6, we summarize our main findings,
argue on possible limitations of the proposed framework and provide future directions.

2. Related Work

This section reviews related work, focusing first on change point detection methods
and then presenting commonly used text classification methods whose output can be
the basis for effectively detecting statistically significant changes in the behavior of a
time series.

Change Point Detection (CPD). Regarding the application of CPD methods in online
sources (e.g., social media and Surface/Dark Web), most existing works consider Twitter
data. Change point algorithms applied to time series related to Twitter posts typically aim
to discover the occurrence of events of interest that could be associated with changes in the
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structural behavior of the time series. For example, a nonparametric method for change
point detection via density ratio estimation has been developed for tracking the degree of
popularity of a given topic by monitoring the frequency of selected words [6]. Moreover,
change points have been detected in Twitter streams using temporal clusters of hashtags in
online conversations related to specific events [7]. CPD methods have also been combined
with the outcomes of sentiment analysis in Twitter posts where the estimation of change
points includes the detection of changes related to significant events [8]. Additionally, three
time series produced based on tweets with positive, negative and neutral sentiment, respec-
tively, have been used as input to change point detection towards estimating correlations
among the different sentiments [9].

Concerning the use of CPD methods in terrorism-related data, the Noordin Top
terrorist network data from 2001 to 2010 have been analyzed to detect significant changes
in the evolution of their structure using a social network change detection method [10].
Moreover, a method for multiple change point detection in multivariate time series has
been applied in a time series produced by the counts of terrorism events across twelve
global regions [11]. Finally, a marked point process framework has been proposed to model
the frequency and the impact of terrorist incidents based on change point analysis to search
for timestamps where the process undergoes significant changes [12].

In this work, change point detection is identified as a tool to detect changes in the
behavior of the time series that may indicate the occurrence of events where attention
should be paid to. It is applied to terrorism-related online content, by also considering the
presence of hate speech. This is achieved building upon well-established deep learning-
based classification models.

Text Classification. The detection of deviant content (such as terrorism-related, ex-
tremist or abusive content) in online platforms is often addressed as a classification prob-
lem. For example, a content analysis framework has been developed in order to identify
extremist-related conversations on Twitter [2]. In a similar direction, focusing on the Is-
lamic State of Iraq and al-Sham (ISIS), content collected from social media sources has
been utilized for the automatic detection of extremism propaganda [13]. Finally, a lot of
effort has been placed in detecting abusive behaviors in general, such as racist and sexist
content [14] or hate speech from content extracted from the white supremacist Stormfront
forum [15].

Towards the development of effective classification methods, deep learning has been
extensively used, with Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) methods being among the most popular ones. CNNs were originally
developed to further improve image processing, resulting in groundbreaking results in
recognizing objects from a pre-defined list [16]. Due to their performance in image process-
ing tasks, CNNs gained a lot of attention and were thus subsequently applied in various
Natural Language Processing (NLP) tasks, such as text classification or categorization [17],
sentiment analysis [18] and machine translation [19]. In addition to CNNs, RNNs have
been particularly used in NLP tasks [20]. The main difference between the two lies in
the ability of RNNs to process data that come in sequences, e.g., sentences. Specifically,
they analyze a text word by word and store the semantics of all the previous text in a
fixed-size hidden layer [21]. Detecting terrorism-related content or the expression of hate
speech in the online world can constitute an important source of knowledge for early
detection of threatening situations (such as manifestation of terrorist attacks). To this end,
in this work, commonly used deep learning methods are considered to develop effective
text classification models, with particular focus on distinguishing between: (i) crime- and
terrorism-related activities (terrorism-related classification model); and (ii) the expression of
hate speech (hate speech classification model) that constitutes an indirect way of expressing
violence towards a group of people (e.g., minorities). The valuable knowledge that is
extracted from both the terrorist and hate speech classification models is used then as the
basis of the proposed terrorism-related change point detection framework.



Information 2021, 12, 274 4 of 15

3. Materials and Methods

Our approach to detect statistically significant changes in content of interest, and
specifically in our case in terrorism-related content, involves the following two steps: (i)
classification of online material as directly related to terrorism or as containing expressions
of aggressive behavior that can be considered as an initial stage which can evolve into
something more dangerous (such as crime and terrorism); and (ii) change point detection
that could ultimately signify the occurrence of an event of interest. Such an approach will
allow the interested parties (e.g., law enforcement) to obtain a more comprehensive and
thorough understanding of how crime and terrorism-related activities are carried out and
evolve through time. An illustration of the overall framework is depicted in Figure 1.

Figure 1. Change point detection framework.

3.1. Classification of Online Material

First, we detail the classification framework developed for organizing content collected
from online sources into two predefined sets of categories: (i) related to terrorism or not;
and (ii) containing hate speech or not. As discussed, deep learning, and specifically CNNs,
have gained significant popularity on NLP tasks, and therefore we opt to use them for
our framework; we also experimented with RNNs without yielding any improvement in
the overall performance. Specifically, two distinct CNN-based classification models are
constructed, i.e., terrorism-related classification model and hate speech classification model, using
the same architecture, inspired by Kim [22]; Figure 2 depicts this CNN-based model.

Figure 2. Overview of the CNN-based classification model.

Preprocessing. Before feeding any text to the network, a set of preprocessing steps
took place to reduce noise. First, we converted the text to lowercase and then removed the
hyperlinks, mentions, numbers, punctuation, accent marks, diacritics and short and long
words (with <2 and >20 characters, respectively). After that, we tokenized the sequence and
performed lemmatization on each term, utilizing the WordNetLemmatizer function of the
nltk package (http://www.nltk.org/api/nltk.stem.html?highlight=wordnetlemmatizer;
accessed on 18 March 2021).

Embedding layer. The first layer of the neural network architecture is a static embed-
ding layer, which maps each word to a high-dimensional layer. We opted for pre-trained
GloVe word embeddings to semantically represent textual content [23]. In particular, we
use word vectors of dimension size 100. According to Mikolov et al. [24], 50–300 dimen-
sions can model hundreds of millions of words with high accuracy. We experimented
with word vectors of different dimensions, ranging from 50 to 200 and chose 100 due to its
efficiency in terms of both performance and time of computation.

Neural Network layer. Various CNN-based architectures were tested and evaluated,
by changing the number of CNN layers, filters length and kernel size. In the end, a unique

http://www.nltk.org/api/nltk.stem.html?highlight=wordnetlemmatizer
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CNN layer was used, since it resulted in the best performance, with 20 filters, kernel size
3 and ReLU as activation function. A 1D average pooling layer was added on top of the
convolutional layer to downsample its input, and a flatten layer followed to transform the
feature map matrix into a single column. Finally, a dropout layer of p = 0.5 was used and
sigmoid was employed as activation function. Regarding the compiling of the model, we
used the Adam optimizer with learning rate 0.0001 and binary cross entropy as loss function.

To build the classification models, ground truth annotated datasets are necessary. Next,
we describe the datasets used for building the terrorism and hate speech classification models.

Building the terrorism-related classification model. Due to the absence of a well-
established ground truth dataset that characterizes text as terrorism or non-terrorism
related, we constructed the ground truth by combining two widely used datasets: (i) the
“How ISIS uses Twitter” dataset available at Kaggle (https://www.kaggle.com/fifthtribe/
how-isis-uses-twitter; accessed on 26 February 2021), which contains ≈17 k tweets from
100+ pro-ISIS fanboys from all over the world since the November 2015 Paris Attacks; and
(ii) the “Hate speech offensive tweets” dataset [25], which consists of ≈24 k labeled tweets
organized into three classes, i.e. hate speech, offensive and neither. Since this work focuses
on analyzing content in English, non-English posts were disregarded.

Overall, to build the ground truth, we considered the first dataset as terrorism-related,
while the second one as non-terrorism since it is less likely to contain any terrorism-related
content; the latter was constructed by randomly retrieving content from Twitter, based on
a set of hate speech-related words. The newly created dataset was split into a train set of
37,973 samples, a test set of 3797 samples and a validation set of 421 samples.

Building the hate speech classification model. To build the hate speech classification
model, two datasets were combined: (i) a hate speech dataset that contains texts extracted
from the Stormfront [15], which consists of 1190 hate and 9462 non-hate instances; and (ii)
the “Hate speech offensive tweets” [25], mentioned above, which contains ≈24 k samples
categorized into three classes, i.e. hate, offensive and neither. We considered the “hate”
and “offensive” instances as part of the hate class and the rest, labeled as “neither”, are
used for the non-hate class. Overall, the constructed ground truth dataset consists of ≈35 k
samples and was split into training (90%) and test (10%) sets, maintaining the proportion
of classes. From the training set, 10% was kept as validation set.

Classification Performance. To evaluate the performance of the proposed classifi-
cation models, standard evaluation metrics were used, i.e., accuracy, F1-score and the
Area Under Curve (AUC) value. For the terrorism-related classification model, the overall
accuracy and F1-score are equal to 93%, with 99% AUC ( as shown in Table 1). For the
terrorism class, the model achieves F1-score equal to 91%, while the non-terrorism class
obtains 94%. For the hate speech classification model, we also achieve 93% overall accu-
racy and F1-score (Table 2). Moreover, the AUC score is 98%. For the hate and non-hate
classes, the F1-score equals 94% and 91%, respectively. Both classification models achieve
particularly good performance, compared to other works that also use neural networks
for text classification [26,27], which highlights the appropriateness of using them for the
categorization of textual data into categories of interest.

Table 1. Performance of the terrorism-related classification model.

Accuracy F1-Score F1-Score
Terrorism

F1-Score
Non-Terrorism AUC

0.93 0.93 0.91 0.94 0.99

Table 2. Performance of the hate speech classification model.

Accuracy F1-Score F1-Score Hate F1-Score
Non-Hate AUC

0.93 0.93 0.94 0.91 0.98

https://www.kaggle.com/fifthtribe/how-isis-uses-twitter
https://www.kaggle.com/fifthtribe/how-isis-uses-twitter
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3.2. Change Point Detection Method

The change point detection (CPD) method applied in this work can take into account
univariate as well as multivariate time series and can be used to detect any distributional
change within a sequence (e.g., regarding the mean, variance, etc.). The algorithm is called
E-Devisive and constitutes a nonparametric approach for CPD in a set of multivariate
observations [28].

Let Xn = {Xi = (Xi,1,, Xi,2, . . . , Xi,d) ∈ Rd, i = 1, . . . , n} and Ym = {Yj = (Yj,1, Yj,2,
. . . , Yj,d) ∈ Rd, j = 1, . . . , m} be independent identical distributed samples, where n and m
denote the length of each sample. Samples Xn and Ym consist of d-dimensional random
variables with distributions F1 and F2, respectively. An empirical divergence measure is
defined as follows:

ε̂(Xn, Ym; a) =
2

mn

n

∑
i=1

m

∑
j=1
|Xi − Yj|a

−
(

n
2

)−1

∑
1≤i<k≤n

|Xi − Xk|a

−
(

m
2

)−1

∑
1≤j<k≤m

|Yj − Yk|a,

a ∈ (0, 2). For the detection of a single change point, a scaled sample measure of the above
divergence measure is defined as

Q̂(Xn, Ym; a) =
mn

m + n
ε̂(Xn, Ym; a), a ∈ (0, 2).

Let Z1, Z2, . . . , ZT ∈ Rd be an independent sequence of observations and let
1 ≤ τ < κ ≤ T be constants, where T denotes the length of the time series of obser-
vations. The sets Xτ = {Z1, Z2, . . . , Zτ} and Yτ(κ) = {Zτ+1, Zτ+2, . . . , Zκ} are defined,
and a change point location τ̂ is estimated as

(τ̂, κ̂) = argmax(τ,κ)Q̂(Xτ , Yτ(κ); a).

If it is known that at most one change point exists, then κ = T is fixed.
To estimate multiple change points, the above technique is iteratively applied. Suppose

that k− 1 change points have been estimated at time locations 0 < τ̂1 < · · · < τ̂k−1 < T.
These partition the observations into k clusters Ĉ1, . . . , Ĉk, such that Ĉi = {Zτ̂i−1+1, . . . , Zτ̂i },
in which τ̂0 = 0 and τ̂k = T. Given these clusters, the procedure for finding a single change
point is applied to the observations within each of the k clusters. The corresponding test
statistic for the kth estimated change point is given by the relation q̂k = Q̂(Xτ̂k , Yτ̂k (κ̂k); a),
where τ̂k = τ̂(i) denotes the kth estimated change point located within cluster Ĉi and
κ̂k = κ̂(i) is the corresponding constant. The running time of this iterative procedure is
O(kT2), where k denotes the (unknown) number of change points.

For the determination of the statistical significance (p-value) of each change point, a
permutation test is implemented under the null hypothesis of no additional change points.
First, the observations within each cluster are permuted to construct a new sequence of
length T. Then, the estimation procedure is reapplied considering the detection of change
points in the permuted observations. This process is repeated, and, after the lth permutation
of the observations, the test statistic q̂(l)k is recorded. An approximate p-value of the kth
estimated change point is defined as

#{l : q̂(l)k ≥ q̂k}/(R + 1) ,

where R denotes the number of random permutations.
Overall, the change point detection algorithm is implemented via the following proce-

dure, as illustrated in Figure 3. At first, the time series is segmented into two clusters C1, C2
based on the time location τ̂ that maximizes measure Q̂. Then, it is determined whether
the estimated change point at time τ̂ is statistically significant or not, via a permutation
test. If the estimated change point is not statistically significant, it is concluded that there



Information 2021, 12, 274 7 of 15

are no change points in the time series of interest. However, if the estimated change point
is statistically significant, the time series is divided in two clusters of observations and the
previous step is re-applied in each of these two clusters. The above-mentioned procedure
is iterated in each of the clusters that is created based on the statistically significant change
points that are detected, and the algorithm is terminated when no additional statistically
significant change points are derived.

Figure 3. Overview of the CPD algorithm where Ci, i = 1, 2, . . . , k (k − 1 is the number of esti-
mated change points) denote the clusters of observations that are formulated after the detection of
statistically significant change points.

3.3. Dataset for Evaluation Purposes

In order to showcase the applicability of the proposed framework, we relied on the
Ansar dataset (https://www.azsecure-data.org/dark-web-forums.html; accessed on 7
April 2021), a publicly available dataset containing terrorism-related posts. More specif-
ically, Ansar is a collection of posts published in the Ansar AlJihad Network, a set of
invitation-only jihadist forums in Arabic and English that are known to be popular with
Western Jihadists [29]. The English portion of the dataset, referred to as Ansar1, con-
tains 29,492 posts and spans the period 8 December 2008–20 January 2010. The dataset
contains some Arabic posts, which were disregarded; after this filtering, its size equals
24,130 instances.

4. Results

This section illustrates the applicability and performance of the proposed terrorism-
related change point detection framework, when applied to the Ansar1 dataset.

Extraction of indicators based on the constructed classification models. As already
mentioned, both terrorism- and hate speech-related indicators are used as input to the
proposed terrorism-related change point detection framework. To this end, we first exploit
the classification models presented in Section 3.1, i.e., the terrorism and hate speech ones,
to characterize texts as belonging to the terrorism or non-terrorism class and containing
hate speech or not. The output is then exploited by the change point detection algorithm
to ultimately detect previously unknown change points in the related time series that
probably signify the occurrence of events of interest.

Time series. Overall, two time series are constructed and used as input to the CPD
algorithm: (a) the time series of posts classified as terrorism related; and (b) those identified
as containing hate speech. The posts are aggregated on a daily basis resulting in two time
series with length T = 408 (days), which are presented in Figures 4 and 5, respectively.

https://www.azsecure-data.org/dark-web-forums.html
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These time series seem to evolve in a similar way, although the frequencies observed at the
time series of the terrorism-related posts are much higher.

Figure 4. Time series of posts classified as terrorism related.

Figure 5. Time series of posts classified as containing hate speech.

Change Point Detection in the Univariate Case. The CPD method presented in
Section 3.2 is applied to each of the two above mentioned time series and estimates changes
in the mean value of the considered data. For the implementation of the method, we set
a = 1 and use R = 499 permutations for the estimation of the statistical significance of each
change point with a level of p = 0.05 in our significance testing. The results regarding the
time series of terrorism-related posts are presented in Table 3 and graphically depicted in
Figure 6a, whereas for the time series of hate speech, the results are presented in Table 4
and Figure 6b.

Considering the time series of terrorism-related posts, six change points are estimated
as statistically significant (see Table 3), whereas, when the time series of posts including
hate speech is considered, there are three estimated change points (see Table 4). The first
estimated change point of the time series of posts related to hate speech (t = 123) is very
close to the second estimated change point in the time series of terrorism-related posts
(t = 119). Moreover, the third estimated change point in the time series of posts containing
hate speech (t = 363) is close to the sixth estimated change point of the terrorism-related
time series (t = 373).
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Figure 6. (a) Application of CPD on the time series of terrorism-related posts. (b) Application of CPD
on the time series of posts containing hate speech; the time locations of the estimated change points
are depicted as red vertical lines.

Table 3. Estimated change points for the time series with terrorism-related posts along with the
corresponding significance values.

Time Date p-Value

77 23 February 2009 0.0033
119 6 April 2009 0.0033
148 5 May 2009 0.0033
216 12 July 2009 0.0033
346 19 November 2009 0.0233
373 16 December 2009 0.0465

Table 4. Estimated change points for the time series with hate speech along with the corresponding
significance values.

Time Date p-Value

123 10 April 2009 0.0033
244 9 August 2009 0.0033
363 6 December 2009 0.0166

Change Point Detection in the Multivariate Case. Apart from applying CPD on
the univariate case, as performed previously, we can also exploit possible correlations
that may exist between the two time series using the multivariate CPD. To this end, we
combine the two time series of the terrorism related posts and hate speech into a single
two-dimensional time series Z1, Z2, . . . , ZT , T = 408, Zi = (zi,1, zi,2), i = 1, 2, . . . , 408, where
the first entry of the observation vector Zi (i.e., zi,1) is the frequency of the posts classified as
terrorism-related and the second one (i.e., zi,2) denotes the frequency of the posts classified
as containing hate speech. The attempt to combine terrorism-related posts with hate
speech lies on the idea that hate speech, in the sense of expressing aggressive behaviors,
may be related to terrorism and vice versa. This is especially true if we consider the fact
that the underlying dataset is based on jihadist forums where terrorism-related topics of
discussion and the expression of aggressive behaviors may be more often. The results of
the two-dimensional CPD are presented in Table 5 and depicted graphically in Figure 7. It
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is observed that the estimated change points in the two-dimensional case are the same with
those estimated for the univariate time series of terrorism-related posts and presented in
Table 3, apart from the point at time t = 237. The estimated change point at time location
t = 237 is close enough to the second estimated change point regarding the time series of
posts classified as hate speech (see Table 4). Moreover, this point (i.e., t = 237) also appears
to be a statistically significant change point for the time series of terrorism-related posts,
if the value p = 0.1 is used for the level of our significance testing. Overall, it seems that
the time series of terrorism-related posts have more impact on the two-dimensional model
compared to the time series of posts related to hate speech.

Table 5. Estimated change points for the two-dimensional time series along with the corresponding
significance values.

Time Date p-Value

77 23 February 2009 0.0033
119 6 April 2009 0.0033
148 5 May 2009 0.0033
216 12 July 2009 0.0033
237 2 August 2009 0.0432
346 19 November 2009 0.0133
373 16 December 2009 0.0498

Regarding the estimated change points in the two dimensional time series (Figure 7),
some conclusions could be inferred the time locations of the points and the terrorist
incidents that occurred during 2009 (a list of widely known terrorist attacks can be found
for example: (a) at https://en.wikipedia.org/wiki/List_of_terrorist_incidents_in_2009 ;
accessed on 22 April 2021, (b) at https://www.dni.gov/nctc/index.html; accessed on 22
April 2021, or (c) in [30]), which covers the main part of the Ansar1 dataset. It can be
argued that the time period between the estimated change points at time locations t = 77
(23 February 2009) and t = 119 (6 April 2009) appear to have an increasing trend, which is
depicted more obviously in the frequency of posts which belong to the terrorism-related
class. Therefore, the first estimated change point at t = 77 signals an upward change
regarding the frequency of posts classified as terrorism-related and as containing hate
speech, probably due to the terrorist incidents that occurred at that time.

Figure 7. Application of CPD on the two-dimensional time series.

Commenting on the period that is formulated between the second estimated change
point at t = 119 (6 April 2009) and the third one at t = 148 (5 May 2009), it can be
argued that even more intense online activity (i.e., the trend is even more increasing) is
observed compared to the previous period. This may be partially interpreted based on two
factors: (a) the terrorist incidents that occurred in the previous period (e.g., Bomb explosion

https://en.wikipedia.org/wiki/List_of_terrorist_incidents_in_2009
https://www.dni.gov/nctc/index.html
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in Afghanistan on 25 March 2009 and Suicide bombing in Pakistan on 27 March 2009)
caused an increasing trend related to the aftermath of the attacks; and (b) other terrorist
attacks took place in the period delimited by the second and third estimated change point,
which enhanced the online activity. Therefore, the second estimated change point at
t = 119 signifies an upward (and sharper) change compared to the previous period.

Regarding the period which is bounded between the third and the fourth estimated
change point at time locations t = 148 (5 May 2009) and t = 216 (12 July 2009), respectively,
it can be argued that the frequency of posts appears to have a stable trend at a high level
compared to the previous periods. This stable trend at high frequencies may be partially
explained by the two factors that are also mentioned above, i.e., the terrorist incidents
that occurred in the previous period triggered an online activity that lasts and is related
to the aftermaths of the attacks, and the additional terrorist incidents that occurred in the
period between the third and fourth estimated change points preserved the online activity
related to terrorist topics and hate speech at a high frequency level. Therefore, the third
estimated change point at time t = 148 signals the beginning of a period with stable trend
at high frequencies.

A similar interpretation of the results, as the one derived for the time period between
the third and the fourth estimated change points, can also be used for the period between
the fifth and sixth estimated change points at time locations t = 237 (2 August 2009) and
t = 346 (19 Nvember 2009), respectively. In addition, the fourth estimated change point
at time t = 216 signals the beginning of a short period with a decreasing trend between
the two periods of stable trend at high frequencies. Finally, the two last change points
estimated at time locations t = 346 (19 November 2009) and t = 373 (16 December 2009)
signal the beginning of two periods with decreasing trends regarding the frequency of
terrorism-related posts and hate speech, indicating partially that the interest of users among
the forum has been decreased regarding terrorism-related topics.

Topic Detection. To further evaluate the effectiveness of the proposed framework,
we proceed with an analysis of the topics discussed within different time periods based
on the detected change points, as listed in Table 5. Specifically, we follow the Latent
Dirichlet Allocation (LDA) topic detection process in each resulting time period. LDA is a
generative statistical model that aims to find distinct topics in document collections [31]; to
this end, it models each document as a mixture of latent topics, where a topic is described
by a distribution over words. We apply the gensim version of the LDA method (https:
//radimrehurek.com/gensim/models/ldamodel.html; accessed on 5 May 2021). The
specific parameters used for the LDA model are listed in Table 6.

Table 6. LDA parameters.

Parameter Value

n_topics [2–10]
random_state 100
update_every 1

chunksize 100
passes 15
alpha ‘auto’

per_word_topics True

For the topic detection, we focused mainly on the time periods where a more intense
online activity is observed either via the existence of an increasing trend (6 April–5 May
2009) or via the illustration of a stable trend at a consistently high level (5 May–12 July and
2 August–19 November 2009) regarding the frequencies. For each of the aforementioned
time periods, we ran the LDA method for a range of topics between 2 and 10 in steps of 1
and concluded that at most five topics resulted in a clear set of distinct topics. The results
are presented in Table 7.

 https://radimrehurek.com/gensim/models/ldamodel.html
 https://radimrehurek.com/gensim/models/ldamodel.html
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Table 7. Topics per time period.

6 April 2009–5 May 2009

1 puppet, killed, vehicle, army, terrorist, destroyed, emirate, invader, province, district
2 killed, attack, police, official, soldier, force, military, people, security, troop
3 brother, group, government, sheikh, posted, pope, president, quote_originally, leader, year
4 video, case, informant, time, apostate, brother, bible, religion, corruption, john
5 militant, government, swat, security, deal, peace, district, area, region, khan

5 May 2009–12 July 2009

1 government, force, official, militant, military, troop, region, people, country, fighting
2 brother, jihad, posted, salaam, god, people, quote_originally, video, sister, enemy
3 time, year, terrorism, arrested, religious, terrorist, woman, prisoner, human, evidence
4 killed, attack, police, soldier, source, news, killing, city, security, injured
5 killed, district, province, terrorist, invader, army, tank, emirate, puppet, destroyed

12 July 2009–2 August 2009

1 time, situation, decision, people, political, seek, doe, salaam, land, indictment
2 god, war, religion, quote_originally, brother, posted, translated, month, apostate, video
3 police, killed, attack, soldier, wounded, officer, province, source, bomb, city
4 terrorist, killed, invader, puppet, army, tank, emirate, district, operation, province
5 force, gathering, official, suspect, intelligence, link, government, military, country, member

2 August 2009–19 November 2009

1 sheikh, people, jihad, pour, religion, scholar, peace, son, prophet, par
2 country, group, year, war, university, government, mosque, time, link, men
3 brother, salaam, jihad, god, posted, quote, video, medium, quote_originally, protect
4 attack, killed, police, force, soldier, militant, people, official, military, security
5 terrorist, emirate, killed, district, province, area, puppet, enemy, local, time

Regarding the first time period (6 April–5 May 2009), which signals the intensification
of the posting activity, we observe that the attention is highly focused on destructions
and deaths related to terrorist attacks. This is in line with a set of terrorist incidents that
took place in the previous period and, as a result, they may have attracted the attention of
people, leading to increased online activity and intense discussions around them.

Moving on to the next time period (5 May–12 July 2009), where online activity remains
at consistently high rates, there is a continuation of the discussion regarding the aftermaths
of the terrorist incidents, as well as new ones that took place during this period (e.g., 20 June
2009 Taza bombing with at least 73 deaths and more than 200 injured (https://en.wikipedia.
org/wiki/2009_Taza_bombing; accessed on 22 April 2021). Now, the discussions are more
oriented around the government and the military, as well as the arrests and evidence found.
As expected, discussions about injuries and deaths continue with undiminished interest.
Finally, there is an increased interest and discussion around issues of religion that have
often been linked to terrorist attacks.

In the following short period (12 July–2 August 2009), although there is a decrease in
the intensity of the discussions that take place, the attention remains on the same points
with respect to the previous time period. During the last presented time period (2 August–
19 November 2009), which indicates the final resurgence of interest, discussions are also
beginning to focus on issues related to security, education and protection. As expected,
there is insistence on discussions related to religion and god, as well as, clearly, to the
deaths and killings that have occurred in the recent past.

5. Discussion

Overall, the idea of using the change point detection method in the time series of
posts related to terrorism and hate speech lies on the fact that the estimation of statistically
significant changes in time series at certain time positions may indicate the occurrence of
events at these times that should be paid attention to. These events can be related to well

https://en.wikipedia.org/wiki/2009_Taza_bombing
https://en.wikipedia.org/wiki/2009_Taza_bombing
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known terrorist incidents that trigger users of social media platforms/forums to illustrate a
more intense online activity regarding these incidents and their aftermaths, as in our case.

Based on the results of the change point analysis regarding the retrospective detection
of change points in the time series of terrorism-related posts and those containing hate
speech (as presented in Section 4), some more conclusions could be inferred. At first, it
can be argued that the intensity of online activity seems to be aligned with the intensity of
terrorism or crime incidents to a great extent. This conclusion seems to be enhanced by the
fact that, during the periods where increasing trends are depicted considering the online
activity (i.e., 23 February 2009–6 April 2009 and 6 April 2009–5 May 2009) or the activity is
stable at a high frequency level (i.e., 5 May 2009–12 July 2009), a considerable amount of
terrorist incidents took place worldwide. Moreover, it is derived that the estimated change
points associated with the increasing trends partially coincide with the time locations of
terrorist incidents. This is the case for example regarding the estimated change points at
times t = 77 (23 February 2009) and t = 119 (6 April 2009) where both of them signify the
beginning of periods with increasing trends.

Finally, regarding the topic detection and its results, the analysis of the most popular
topics discussed in the periods of greatest interest confirms the suitability of the proposed
change point detection method for a better understanding of the trends around topics of
interest, as well as the identification of patterns.

6. Conclusions

In this study, a change point detection framework was adopted to retrospectively
detect statistically significant changes in underlying data in the context of terrorism-related
activities. Specifically, a nonparametric approach was followed and applied to univariate
and multivariate time series, enabling the exploitation of possible correlations that may
exist between the time series of the different indicators. The proposed framework was
applied on a real world dataset to display its potential in effectively detecting such changes.
Both terrorism and hate speech related indicators were considered as input to the terrorism-
related change point detection framework.

Based on the results of the application, it can be derived that the proposed framework
could be seen as an alternative way to identify links between terrorism and online activity,
since the estimated change points in the time series of frequencies are partially connected
to the time locations of terrorism incidents. This implies that criminal/terrorist events
trigger users of social media platforms/forums to illustrate a more intense online activity.
However, depending on the forum and the users, the illustration of more intense online
activity regarding terrorism or in general criminal activities may precede the occurrence of
events, and in this case the proposed framework can serve as a means of early warning.

Some limitations apply in the current work. First, there is the difficulty of finding
available annotated datasets, especially when focusing on the terrorism- and crime-related
context. The lack of appropriate datasets in the domain prevents the comparison and
cross-validation of the proposed approach in different settings. What is more, the focus
on English content affects the generalization of the results. Finally, the time complexity of
the CPD algorithm is quadratic in the length of the time series. In this respect, more time
efficient CPD methods could be applied for very large time series.

As future work, we intend to also apply online change point detection methods in
terrorism-related data, which may serve as a tool for detecting the onset in radicalization or
criminal activities in real time. Moreover, additional indicators could be extracted and fed
to the multivariate change point detection method, for instance, the sentiments or emotions
expressed towards an event of interest.
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