# WORKSHOP: Variant calling in humans, animals and plants with Galaxy

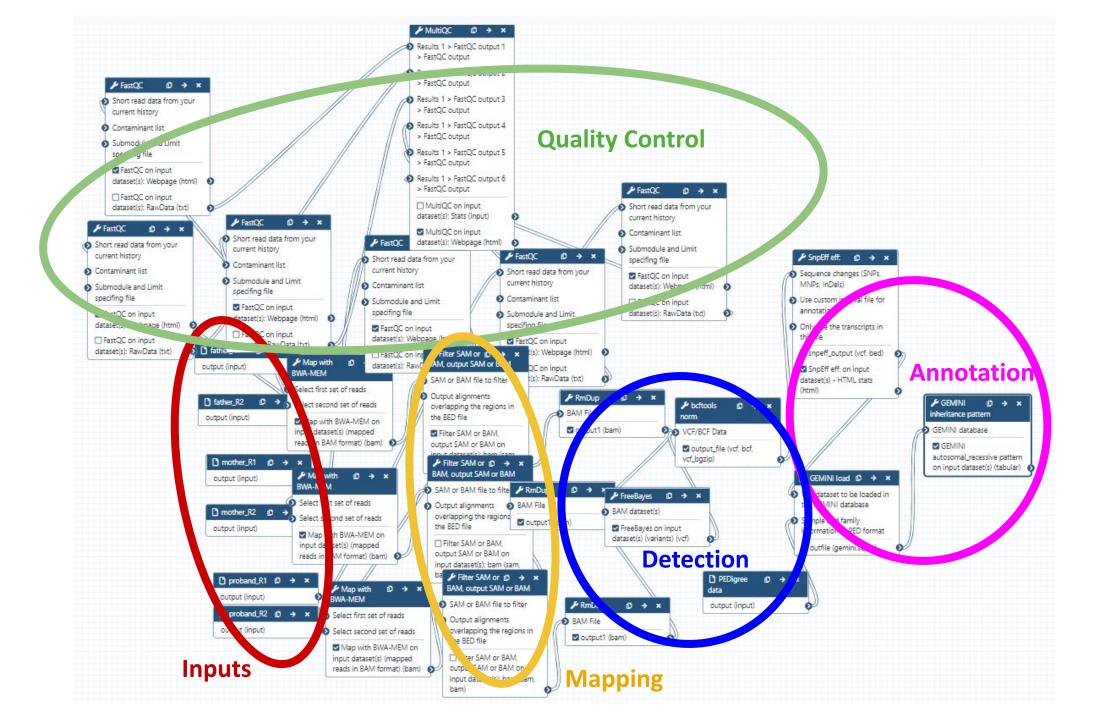
Dr Gareth Price

Head of Computational Biology, QFAB Galaxy Australia – Service Manager

25th May 2021








Variant Detection and Annotation in a polyploid organism



#### • Questions

- How do you identify genetic variants in samples based on exome sequencing data?
- How do you, among the set of detected variants, identify candidate causative variants for a given phenotype/disease?
- Objectives
  - Jointly call variants and genotypes for a family trio from whole-exome sequencing data
  - Use variant annotation and the observed inheritance pattern of a phenotype to identify candidate causative variants and to prioritize them
- Genome vs Exome
  - More depth of sequencing concentrated on variants presumed to have a phenotypic influence
  - Cheaper
  - Requires knowledge of genome to build exome capture probes
- SNP vs SNV
  - Single Nucleotide Polymorphism: Implied population frequency
  - Single Nucleotide Variant: Observed reference difference







## **Assumptions - Galaxy and Biology**

- Working knowledge of Galaxy Australia
  - GTN: Introduction to Galaxy Analyses
  - <a href="https://training.galaxyproject.org/training-material/topics/introduction/">https://training.galaxyproject.org/training-material/topics/introduction/</a>
- Quality Control assessment of Illumina short-read sequence data
  - GTN: Quality Control
  - <u>https://training.galaxyproject.org/training-material/topics/sequence-analysis/tut</u> orials/quality-control/tutorial.html
- Mapping of reads to a reference genome
  - GTN: Mapping (using Bowtie2)
  - <u>https://training.galaxyproject.org/training-material/topics/sequence-analysis/tut</u> <u>orials/mapping/tutorial.html#map-reads-on-a-reference-genome</u>



## **Tools for Variant Analysis**



#### • Freeware Genome Analysis Toolkit (GATK) Virtual Labs / Machines gatk Galaxy Galaxy • R Studio (Bioconductor) R Studio Command Line Commercial Agilent • Agilent Cartagenia Bench Lab for Molecular Pathology Illumina illumina BaseSpace • Qiagen ČLC-Bio Suite of Analysis Products Ingenuity Variant Analysis OLAGE • AŇNOVAR ThermoFisher ion torrent Ion Reporter Sequencing for all."



#### **Galaxy Australia**



| 📱 Galaxy / Australia         | Analyze Data Workflow Visual                    | ize 🔻 Shared Data 👻 Help 👻 User 👻 🌉                                                                             |                                                     | Using 66      |
|------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------|
| Tools 🖧 🚣                    |                                                 |                                                                                                                 | History                                             | <b>2 +</b> II |
| search tools                 |                                                 | alaxy                                                                                                           | search datasets                                     |               |
|                              |                                                 |                                                                                                                 | Day 5: Metagenomics                                 | s extended    |
| FILE AND META TOOLS          | AU                                              | STRALIA                                                                                                         | 99 shown, 50 deleted, 49 hidde                      | en            |
| Get Data                     |                                                 |                                                                                                                 | 2.29 GB                                             | ۲ ک           |
| Send Data                    | News                                            | Events and Workshops                                                                                            |                                                     |               |
| Collection Operations        |                                                 |                                                                                                                 | 197: FastQC on data 34:                             | • # ×         |
| GENERAL TEXT TOOLS           | Aug 16, 2019<br>El Galactic News August 2019    | Jul 29, 2019 - Aug 2, 2018                                                                                      | RawData                                             |               |
| Text Manipulation            |                                                 | Brisbane - July - August 2019                                                                                   | 196: FastQC on data 34:                             | • # ×         |
| Filter and Sort              | Aug 7, 2019                                     | -<br>Jul 1, 2019 - Jul 6, 2019                                                                                  | Webpage                                             |               |
| Join, Subtract and Group     | Galaxy Australia moves to new<br>hardware       | 1011, 2019 - Jul 6, 2019                                                                                        | 194: Krona on collection 1                          | 192: H 🗙      |
| GENOMIC FILE MANIPULATION    |                                                 | Conference (GCC2019)                                                                                            | TML                                                 |               |
|                              | Jun 25, 2019                                    | Apr 1, 2019 - Apr 5, 2018                                                                                       | a list with 1 item                                  |               |
| FASTA/FASTQ                  | Galaxy version 19.05                            | 🛗 Galaxy training workshops                                                                                     | 192: Taxonomy-to-Krona<br>ection 153: krona-formati |               |
| ASTQ Quality Control         | Jun 7, 2019                                     | Brisbane - April 2019                                                                                           | onomy file                                          |               |
| SAM/BAM                      | 回 📢 Galaxy Australia wins three                 | Mar 21, 2019 - Mar 26, 2018                                                                                     | a list with 1 item                                  |               |
| BED                          | Queensland iAwards                              | ☆ Galaxy training workshops<br>Melbourne - March 2019                                                           | 190: Tree.shared on data                            | • / ×         |
| /CF/BCF                      | May 2, 2019                                     |                                                                                                                 | 176: tre                                            |               |
| Convert Formats              | F Text processing tools disabled                | Feb 21, 2019                                                                                                    | 178: Heatmap.sim on coll                            | lection 🗙     |
| COMMON GENOMICS TOOLS        | Apr 9, 2019                                     | 🛗 GTN CoFest on Training Material                                                                               | 166: heatmap.sim.svg<br>a list with 6 items         |               |
| Operate on Genomic Intervals | Apr 9, 2019<br>↑ ✿ Galaxy Australia upgraded to | Jan 28, 2019 - Feb 1, 2019                                                                                      |                                                     |               |
| xtract Features              | Galaxy version 19.01                            | 🛗 2019 Galaxy Admin Training                                                                                    | 169: Venn on data 167: sv<br>a list with 1 item     | yg 🗙          |
| etch Sequences/Alignments    | -                                               | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                     |               |
| ENOMICS ANALYSIS             |                                                 | ia Jobs (Last 12 hours)                                                                                         | 167: Collapse Collection<br>on data 162             | • # ×         |
|                              | 25                                              |                                                                                                                 |                                                     |               |
| ssembly                      | 15                                              |                                                                                                                 | 164: Rarefaction plot<br>a list with 1 item         | ×             |
| Annotation                   |                                                 |                                                                                                                 | 150. 5                                              |               |
| 1apping                      | 5 - Wall Ulana III and Kara                     | سمال المعريق المعالمة المعالم المعالم المعالم المعالم المعالية المعالية المعالية المعالمة المعالمة المعالمة الم | 159: Summary.single on<br>data 151: summary         | • # ×         |
| /ariant Calling              | 0 10:00 12:00 14:00                             | 16:00 18:00 20:00                                                                                               |                                                     |               |
| ChiP-seq<br>RNA-seq          | — queued — running                              |                                                                                                                 | 156: Sub.sample on data<br>bsample.shared           | 151: su 🗙     |



# Efficiency through Galaxy controlled scheduling Galaxy





### Login to Galaxy Australia



Log into Galaxy Australia and join training server

- 1. Galaxy Australia: <u>https://usegalaxy.org.au</u>
- 2. Click on this link: <u>https://usegalaxy.org.au/join-training/variants-polyploid/</u>

Congratulations: you are successfully registered in **variants-polyploid Return to Galaxy** 

#### How It Works

We have deployed a dedicated compute node just for your training session to use. No one outside of your training has access to this machine. Completely transparently to you, all of the jobs that you run in Galaxy, during the period of the training event, will "prefer" to run on this machine. If there is no room on that machine, they will run on any other machine in our cluster with resources.

Training Infrastructure as a Service (TlaaS) licensed under the AGPLv3, running commit fe2abbd1fcb7dd6df17b6e1aac0fe93bfb7df695





### How can we do so much variant analysis?



- 7,558bn DNA bases are output by the Sequencing Centre every day
- 588 our Sequencing Centre provided the equivalent of gold-standard (30x) human genomes a week
- every 17 mins we read the equivalent of a single gold-standard (30x) human genome

https://www.wellcomegenomecampus.org/scienceandinnovation/achievements-uniqueness/



### You know you've made it when..

Miller et al. Genome Medicine (2015) 7:100 DOI 10.1186/s13073-015-0221-8

METHOD



**Open Access** 

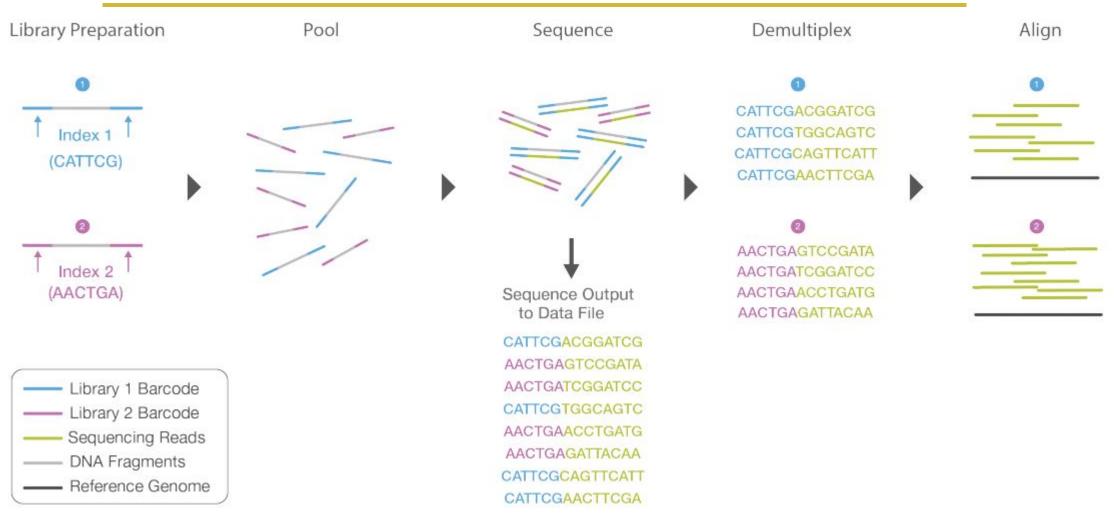
(CrossMark



#### A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases

Neil A. Miller<sup>1†</sup>, Emily G. Farrow<sup>1,2,3,4†</sup>, Margaret Gibson<sup>1</sup>, Laurel K. Willig<sup>1,2,4</sup>, Greyson Twist<sup>1</sup>, Byunggil Yoo<sup>1</sup>, Tyler Marrs<sup>1</sup>, Shane Corder<sup>1</sup>, Lisa Krivohlavek<sup>1</sup>, Adam Walter<sup>1</sup>, Josh E. Petrikin<sup>1,2,4</sup>, Carol J. Saunders<sup>1,2,3,4</sup>, Isabelle Thiffault<sup>1,3</sup>, Sarah E. Soden<sup>1,2,4</sup>, Laurie D. Smith<sup>1,2,3,4</sup>, Darrell L. Dinwiddie<sup>5</sup>, Suzanne Herd<sup>1</sup>, Julie A. Cakici<sup>1</sup>, Severine Catreux<sup>6</sup>, Mike Ruehle<sup>6</sup> and Stephen F. Kingsmore<sup>1,2,3,4,7\*</sup>

- Dr. Kingsmore receives the GUINNESS WORLD RECORDS<sup>™</sup> certificate for the fastest genetic diagnosis.
- San Diego—Feb. 12, 2018
- https://www.rchsd.org/about-us/newsroom/press-releases /new-guinness-world-records-title-set-for-fastest-genetic-di agnosis/




Galaxy

AUSTRALIA



### **Generalised NGS workflow**



https://www.illumina.com/content/dam/illumina-marketing/documents/prod ucts/illumina\_sequencing\_introduction.pdf

**Galaxy** AUSTRALIA



## **File type definitions**



#### FASTA

typical file extension: .fasta text file, often gzipped (.fasta.gz) very simple format for **DNA/RNA** or **protein** sequences

>gi**|12345678|**gb**|**AA0123567**.**1**|** cytochrome b [Homo sapien] AGTAGTAGATGATAGAGCTCAGCTACGACT

#### FASTQ

typical file extension: .fastq, .fq
text file, often gzipped (-> .fastq.gz)
contains raw read information - 4 lines per read:
 read ID
 base calls
 additional information or empty line
 sequencing quality measures - 1 per base call

note that there is no information about where in the genome the read originated from



## **File type definitions**



#### BAM (Binary Alignment Map)

typical file extension: .bam

contains information about sequenced reads (typically) after alignment to a reference genome

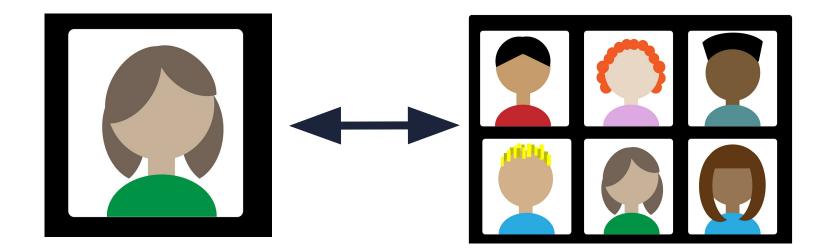
#### each line = 1 mapped read, with information about:

- its mapping quality (how likelihood that the reported alignment is correct)
- its sequencing quality (the probability that each base is correct)
- its sequence
- its location in the genome

highly recommended format for storing data

#### VCF (Variant Call File)

typical file extension: .vcf


Contains information on the reference the variants are derived from plus observational information to allow for filtering of variants

| Header | ##file<br>##sour<br>##cont<br>##cont<br>##INF0<br>##FORM<br>##FORM<br>##FORM<br>##ALT=<br>##INF0 | Date=<br>ce=V(<br>rence<br>ig=<]<br>= <id=<br>=<id=<br>AT=&lt;]<br/>AT=&lt;]<br/>AT=&lt;]<br/>AT=&lt;]<br/>=<id=<br>=<id=< th=""><th>[D=1,le<br/>[D=X,le<br/>=AA,Num<br/>=H2,Num<br/>[D=GT,N<br/>[D=GQ,N<br/>[D=DP,N<br/>DEL,Des<br/>=SVTYPE<br/>=END,Nu</th><th>13<br/>///re<br/>ngth=<br/>ber=1<br/>ber=0<br/>umber<br/>umber<br/>cript<br/>,Numb<br/>mber=</th><th>2492506<br/>1552705<br/>,Type=S<br/>,Type=F<br/>=1,Type<br/>=1,Type<br/>=1,Type<br/>ion="De<br/>er=1,Ty<br/>1,Type=</th><th>21,md<br/>60,md<br/>tring<br/>lag,D<br/>=Stri<br/>=Inte<br/>=Inte<br/>letio<br/>pe=St<br/>Integ</th><th>5=7e0e2e<br/>,Descrip<br/>escripti<br/>ng,Descr<br/>ger,Desc<br/>ger,Desc<br/>n"&gt;<br/>ring,Des</th><th>a<br/>8cdeb4a9304cb5d48026a<br/>580297b7764e31dbc80c2<br/>tion="Ancestral Allel<br/>on="HapMap2 membershi<br/>iption="Genotype"&gt;<br/>ription="Genotype Qua<br/>ription="Read Depth"&gt;<br/>cription="Read Depth"&gt;<br/>Inption="Type of str<br/>iption="End position<br/>INF0</th><th>540dd,speci<br/>e"&gt;<br/>p"&gt;<br/>lity"&gt;<br/>uctural var</th><th>es="Homo<br/>iant"&gt;</th><th></th></id=<></id=<br></id=<br></id=<br> | [D=1,le<br>[D=X,le<br>=AA,Num<br>=H2,Num<br>[D=GT,N<br>[D=GQ,N<br>[D=DP,N<br>DEL,Des<br>=SVTYPE<br>=END,Nu | 13<br>///re<br>ngth=<br>ber=1<br>ber=0<br>umber<br>umber<br>cript<br>,Numb<br>mber= | 2492506<br>1552705<br>,Type=S<br>,Type=F<br>=1,Type<br>=1,Type<br>=1,Type<br>ion="De<br>er=1,Ty<br>1,Type= | 21,md<br>60,md<br>tring<br>lag,D<br>=Stri<br>=Inte<br>=Inte<br>letio<br>pe=St<br>Integ | 5=7e0e2e<br>,Descrip<br>escripti<br>ng,Descr<br>ger,Desc<br>ger,Desc<br>n"><br>ring,Des | a<br>8cdeb4a9304cb5d48026a<br>580297b7764e31dbc80c2<br>tion="Ancestral Allel<br>on="HapMap2 membershi<br>iption="Genotype"><br>ription="Genotype Qua<br>ription="Read Depth"><br>cription="Read Depth"><br>Inption="Type of str<br>iption="End position<br>INF0 | 540dd,speci<br>e"><br>p"><br>lity"><br>uctural var | es="Homo<br>iant">                |                                      |
|--------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------------------------|
| Body   | $\begin{bmatrix} 1\\1\\1\\X \end{bmatrix}$                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>rs12                                                                                                  | С                                                                                   | A,AT<br>T,CT<br>G<br><del></del>                                                                           | •                                                                                      | PASS<br>PASS<br>PASS<br>PASS                                                            | H2;AA=T<br>SVTYPE=DEL;END=299                                                                                                                                                                                                                                   | GT:DP<br>GT<br>GT:DP<br>GT:GQ:DP                   | 1/1:13<br>0 1<br>1 0:16<br>1:12:. | 2/2:29<br>2/2<br>2/2:20<br>0/0:20:36 |



#### **Breakout Rooms**







#### Say hello!

Turn on your camera and microphone and introduce yourself

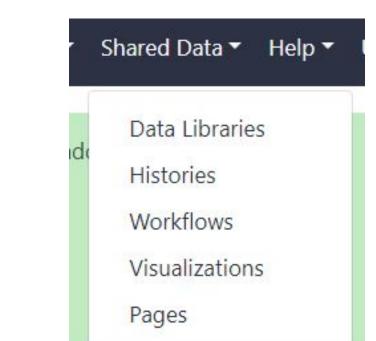




#### **Breakout Rooms**



#### Training materials: https://tinyurl.com/variant-polyploid-materials


line Galaxy Training! 🗅 Variant Analysis ③ Help 🝷 🏠 Extras 🝷 Q. Search Tutorials Exome sequencing data analysis for diagnosing a genetic disease By: 🌑 Wolfgang Maier 🚇 Bérénice Batut 🗢 Torsten Houwaart 🥶 Anika Erxleben 🚱 Björn Grüning Overview ② Questions How do you identify genetic variants in samples based on exome sequencing data? How do you, among the set of detected variants, identify candidate causative variants for a given phenotype/disease? Objectives Jointly call variants and genotypes for a family trio from whole-exome sequencing data Use variant annotation and the observed inheritance pattern of a phenotype to identify candidate causative variants and to prioritize them Requirements Introduction to Galaxy Analyses Sequence analysis Quality Control: W slides - Ands-on Mapping: # slides - Ands-on Time estimation: 5 hours Supporting Materials 🗑 Topic Overview slides 📫 Datasets < Workflows 🌐 Available on these Galaxies 💌 Last modification: Mar 12, 2021

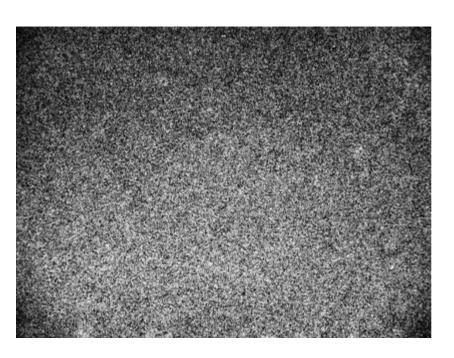


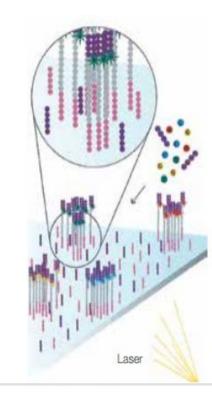
## **Getting Data into Galaxy**

We are doing:

- Data Import (from Libraries)
  - GTN Material, page 2
  - Variant Analysis
  - Exome Sequencing...
  - Import: Pedigree, Father, Mother, Proband
  - Set Database: hg19
  - Add hashtags
- Data Preparation
- Quality Control
- Read Mapping
- Mapping reads postprocessing
- Variant Calling
- Remainder of tutorial....






## **Quality Control**



- Quality Control assessment of Illumina short-read sequence data
  - GTN: Quality Control
  - <u>https://training.galaxyproject.org/training-material/topics/sequence-analysis/tut</u> <u>orials/quality-control/tutorial.html</u>





| Cycle | Ca | <b>a</b> l] | L | Result |          |
|-------|----|-------------|---|--------|----------|
| 1     | G  | G           | G | G      | = G      |
| 2     | А  | А           | А | А      | = A      |
| 3     | G  | —           | G | G      | = G      |
| 4     | Т  | G           | Т | Т      | = T      |
| 5     | С  | Т           | С | С      | = C      |
| 6     | А  | С           | — | А      | = A?     |
| 7     | G  | А           | А | G      | = G / A? |
| 8     | Т  | G           | G | Τ      | = T / G? |

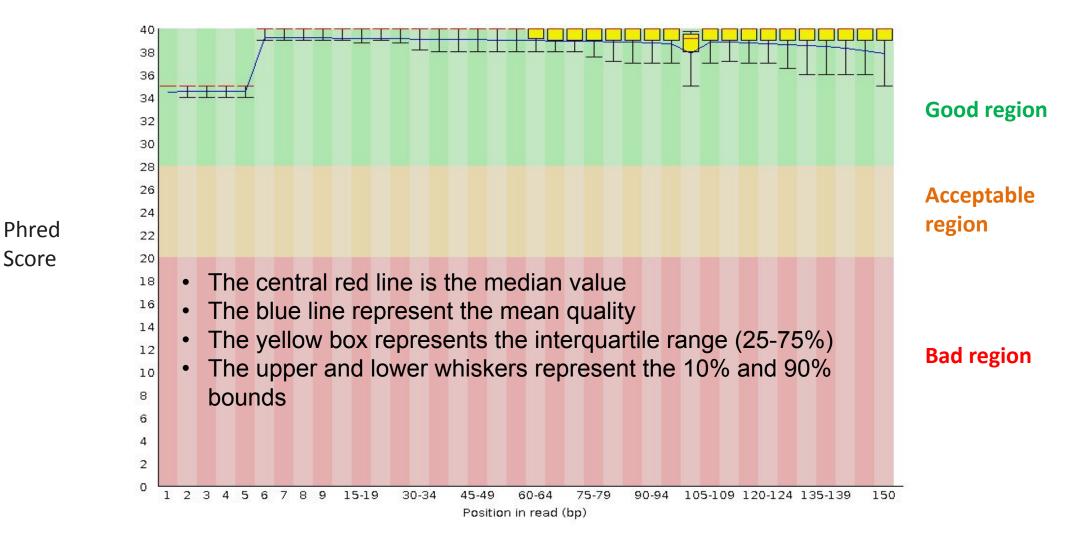






A *read* is a sequence with quality score values produced by a sequencing machine

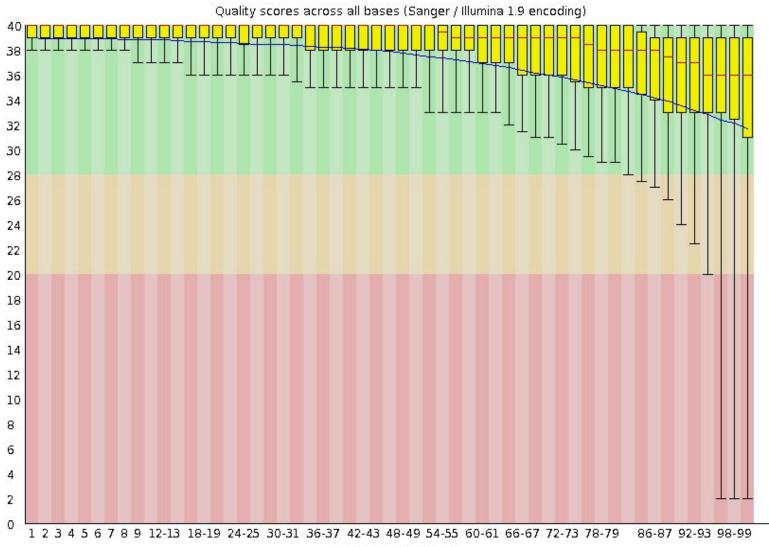
Multiple reads in a single FASTQ file


Each read is described by four lines

Name always starts with @ Sequence Always starts with +; may have name Encoded Phred quality score



#### FastQC output very good quality

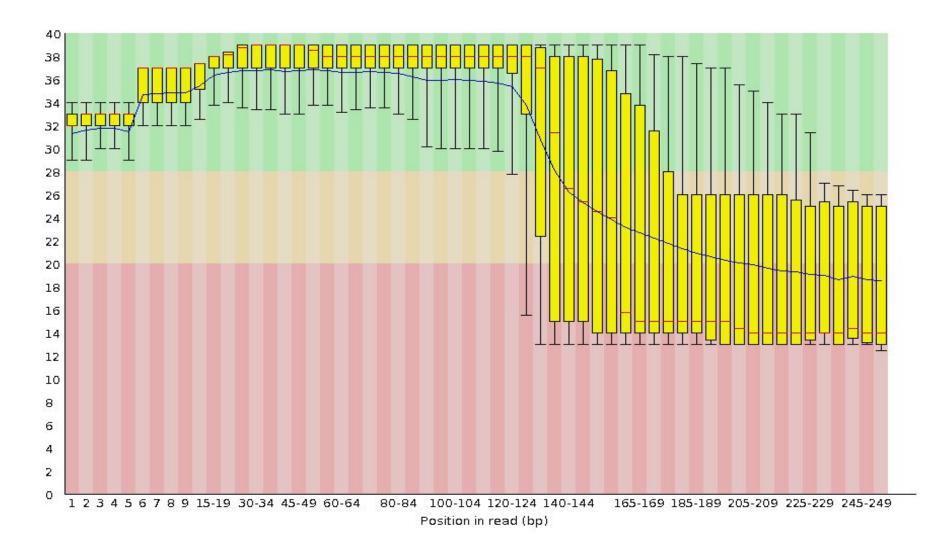







#### FastQC output typical quality






Position in read (hn)











# FASTQ Emoji (FASTQE)



#### FASTQ + Emoji = FASTQE 😕

Compute quality stats for FASTQ files and print those stats as emoji... for some reason.

Scores can also be binned:

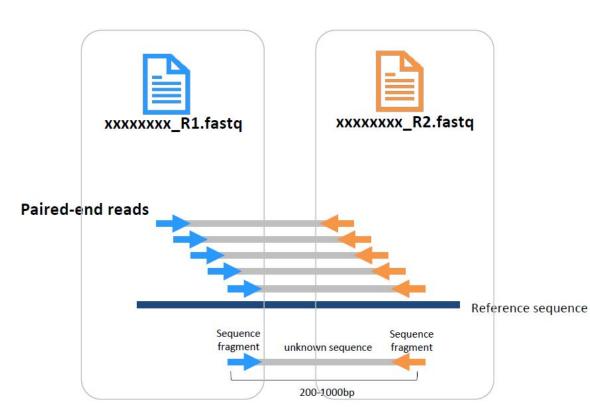
| Bin   | Emoji   |
|-------|---------|
| N     | 0       |
| 2-9   | $\odot$ |
| 10–19 |         |
| 20-24 | Δ       |
| 25–29 | 8       |
| 30-34 | 8       |
| 35–39 | 1       |
| ≥ 40  | 3       |

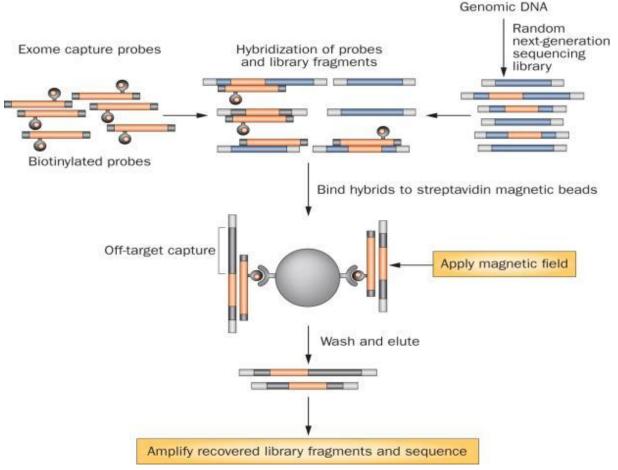
#### FASTQE Report 😕

https\_\_\_zenodo.org\_record\_3567224\_files\_sweet-potato-chloroplast-illumina-reduced.fastq: max

#### 

https\_\_\_zenodo.org\_record\_3567224\_files\_sweet-potato-chloroplast-illumina-reduced.fastq: mean


https\_\_\_zenodo.org\_record\_3567224\_files\_sweet-potato-chloroplast-illumina-reduced.fastq: min


# © \$ \$ © © © \$ © \$ © © 0 0 \$ 0 0 0 \$ 0 0 0 \$ \$ 0 0 0 \$ \$ 0 0 0 \$ \$ 0 0 0 \$ \$ 0 0 0 \$ \$ 0 0 \$ 0 0 \$ 0 0 \$ 0 0 \$ 0 0 \$ 0 \$ 0 0 \$ 0 \$ 0 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0





- Mapping of reads to a reference genome
  - <u>https://training.galaxyproject.org/training-material/topics/sequence-analysis/tutorials/mapping/tutorial.html#map-reads-on-a-reference-genome</u>





Galaxy

AUSTRALIA

Mardis, E. R. (2012) Applying next-generation sequencing to pancreatic cancer treatment Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2012.126



#### **Reference genome**



Genome Reference Consortium: ... a consensus representation of the genome.

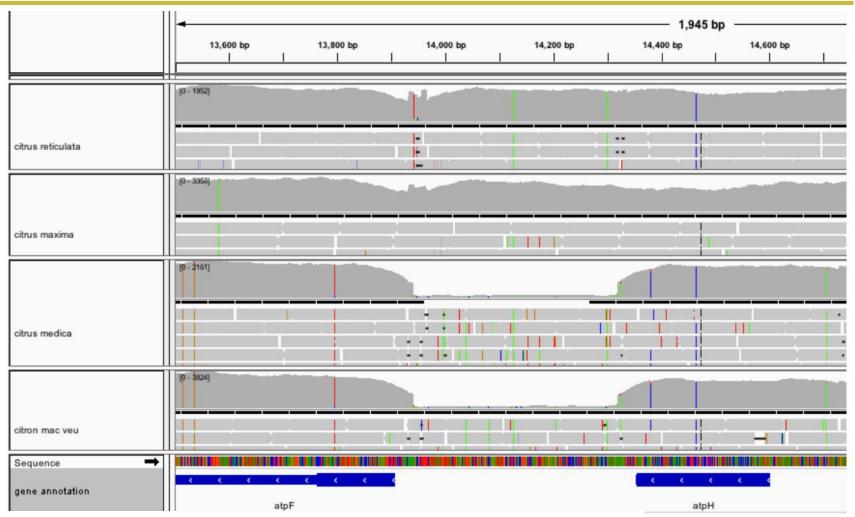
FASTA format

The human reference sequence GRCh37 (hg19) contains the mitochondrial genome, 22 autosomes, chrX, chrY, 9 haplotype chromosomes, 39 unplaced contigs, and 20 unlocalized contigs.

Genome assemblies can be big. GRCh38.p10 has 3,080,585,178 non-N bases.

Genomes may have many assembly versions (releases, build): mm9, mm10.

Use the same assembly version for the reference sequence and gene annotations.


Order of sequences / contigs might be important for some tools.

"chr1" and "1" are not identical for some tools.





#### Coverage




A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus

DOI: 10.1093/molbev/msv082





#### **Low Coverage**





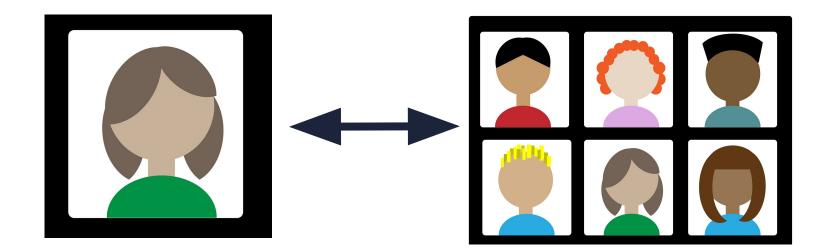


## **Depth of coverage**








## The challenges of variant calling

- Poor choice of source material
- Repetitive sequence
- Sequencing errors
- Uneven coverage
- Heterozygosity
- All these and/or combinations of these result in gaps



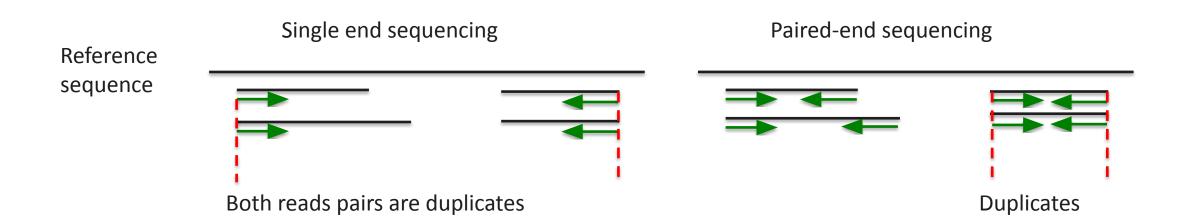
### **Doing - Post Processing**







#### Say hello!


Turn on your camera and microphone and introduce yourself





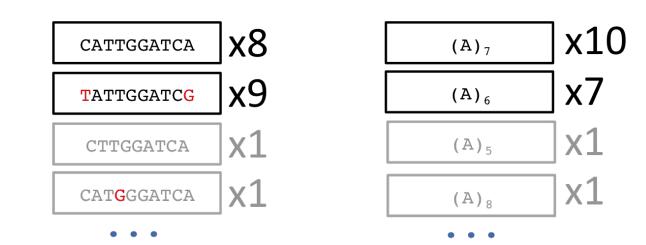
## De-duplication with Picard MarkDuplicates Galaxy

Removal of (PCR) duplicates





### **Variant Calling - FreeBayes**




#### • Simple diploid calling:

- BAM input only no other parameters set.
- Simple diploid calling with filtering and coverage:
  - --min-mapping-quality 30 --min-base-quality 20
    - --min-supporting-allele-qsum 0
    - --genotype-variant-threshold 0
  - --min-coverage
- Frequency-based pooled calling:
  - --haplotype-length 0 --min-alternate-count 1
     --min-alternate-fraction 0 --pooled-continuous
     --report-monomorphic
  - Best for calling variants in mixtures such as viral, bacterial, or organellar genomes
- Frequency-based pooled calling with filtering and coverage:
  - --min-mapping-quality 30 --min-base-quality 20
     --min-supporting-allele-qsum 0
    - --genotype-variant-threshold 0
  - --min-coverage

|    | Rea        |
|----|------------|
| S  | Haplotypes |
| 20 | Observed H |

|     |         | Variant<br>Region         |                | Variant<br>Region |         |
|-----|---------|---------------------------|----------------|-------------------|---------|
| Ref | TACCGAT | CATTGGATCA                | CGATTCCGCATTGC | ААААААА-          | GACCGCA |
|     | TACCGAT | CATTGGATCA                | CGATTCCGCATTGC | -AAAAAA-          | GACCGCA |
|     | ACCGAT  | TATTGCATCG                | CGATTCCGCATTGC | -AAAAAA-          | GACCGCA |
| ds  | ACCGAT  | CATTGGATCA                | CGATTCCGCATTGC | AAAAAA–A          | GACCGCA |
| Rea | ACCGAT  | TATTGGATC <mark>G</mark>  | CGATTCCGCATTGC | -AAAAAAA          | GACCGCA |
| Ř   | CCGAT   | C-TTGGATCA                | CGATTCCGCATTGC | ААААААА-          | GACCGCA |
|     | CCGAT   | CAT <mark>G</mark> GGATCA | CGATTCCGCATTGC | AAAAAAA           | GACCGCA |




https://github.com/freebayes/freebayes/blob/master/README.md





## Variant Calling - Indel normalisation





## Variant Calling - Preparation: SNPeff

| SnpEff download: download a pre-built database (Galaxy Version 4.3+T.galaxy2)   | ☆ Favorite | & Versions | <ul> <li>✓ Options</li> </ul> |
|---------------------------------------------------------------------------------|------------|------------|-------------------------------|
| Select the annotation database you want to download (e.g. GRCh38.86, mm10 etc.) |            |            |                               |
| The list of available databases can be obtained with 'SnpEff databases' tool    |            |            |                               |
| Email notification No                                                           |            |            |                               |
| Send an email notification when the job completes.                              |            |            |                               |
| ✓ Execute                                                                       |            |            |                               |
| hg19                                                                            |            |            |                               |

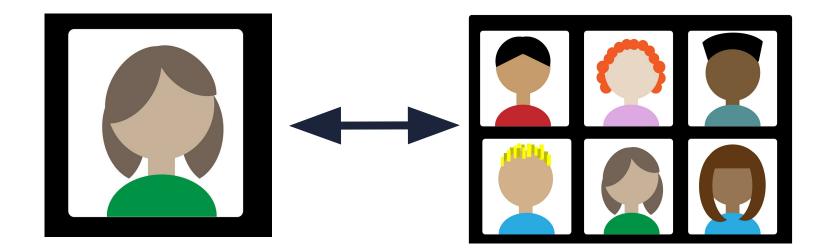






## **Variant Calling - Preparation: Pedigree**

| #family_id | name    | paternal_id | <pre>maternal_id</pre> | sex | phenotype |
|------------|---------|-------------|------------------------|-----|-----------|
| FAM        | father  | 0           | 0                      | 1   | 1         |
| FAM        | mother  | 0           | 0                      | 2   | 1         |
| FAM        | proband | father      | mother                 | 1   | 2         |


- **family\_id** is an alphanumeric identifier of a family
- **name** is the identifier of the sample described by the line
- **paternal\_id** is the identifier of the sample's father
- maternal\_id is the identifier of the sample's mother
- **sex** is a numeric code for the sample's sex (1=male, 2=female, any other number=unknown sex)
- **phenotype** is a numeric code for the sample's phenotypic affection status (1=unaffected, 2=affected)

If the sample's status is unknown, a placeholder of 0 or -9 can be used to indicate this fact.



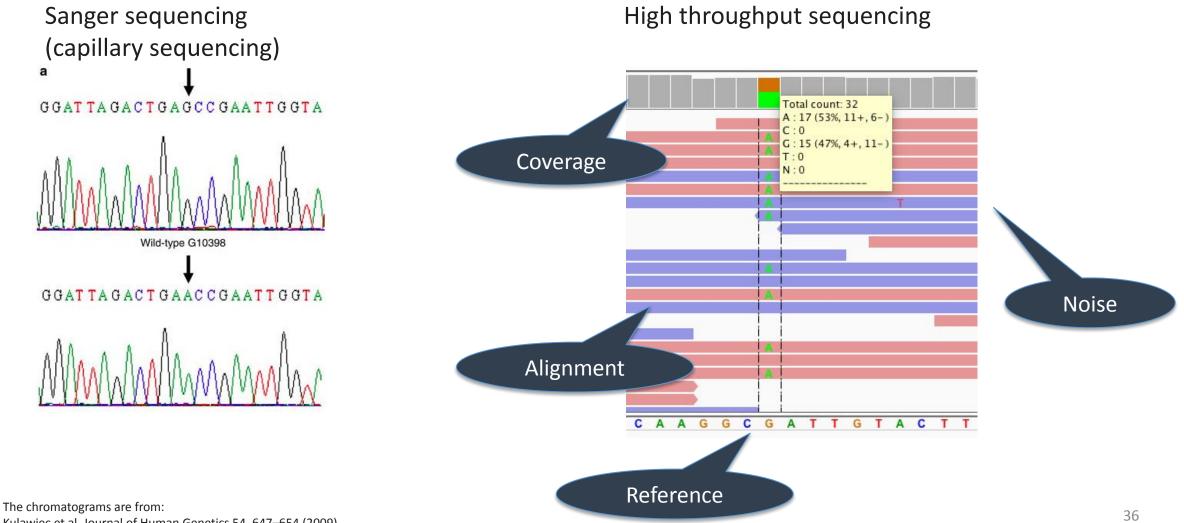
### **Doing - Variant Calling**







#### Say hello!

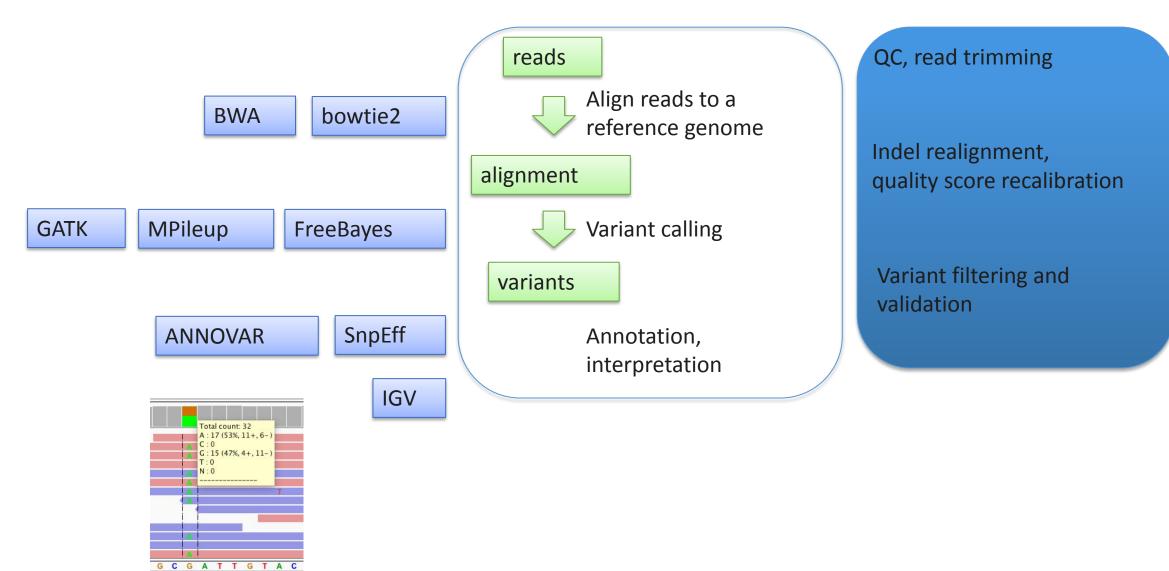

Turn on your camera and microphone and introduce yourself





#### **Variant Detection**



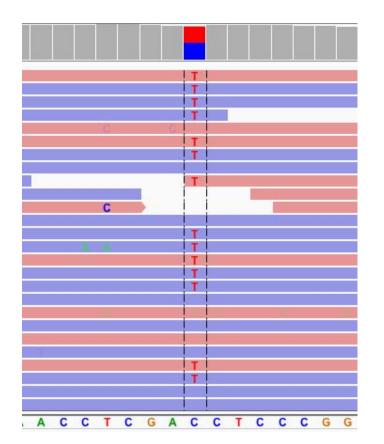



Kulawiec et al. Journal of Human Genetics 54, 647–654 (2009) https://www.nature.com/articles/jhg200989





## **Variant detection pipeline - generic**



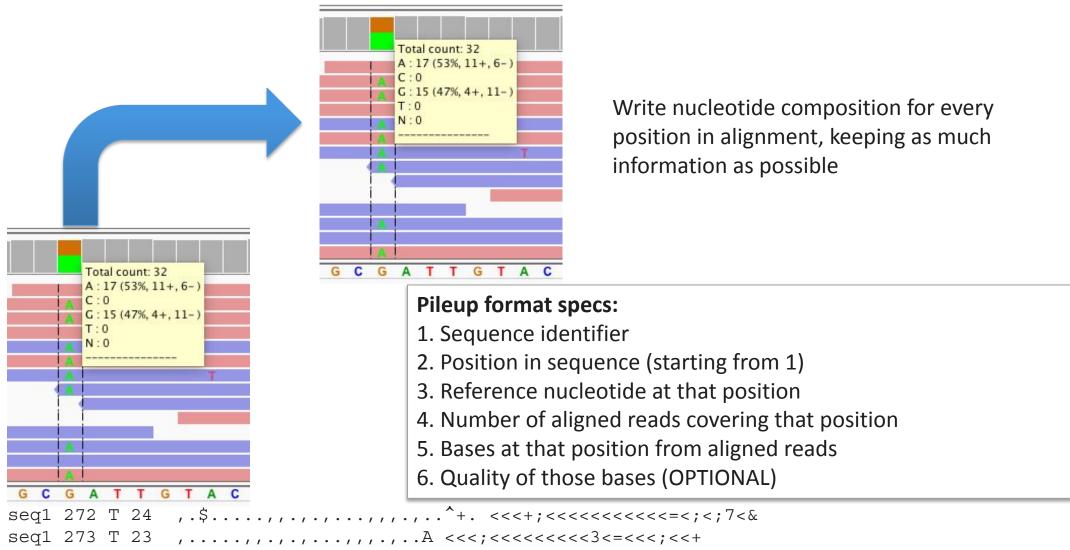



### **Visualisation of alignments**



BAM files can be visualised on genome browsers, such as *IGV*. Galaxy can visualise alignments with build-in browser, *Trackster* Visualisation of multiple tracks: BAMs, gene annotations, variants...

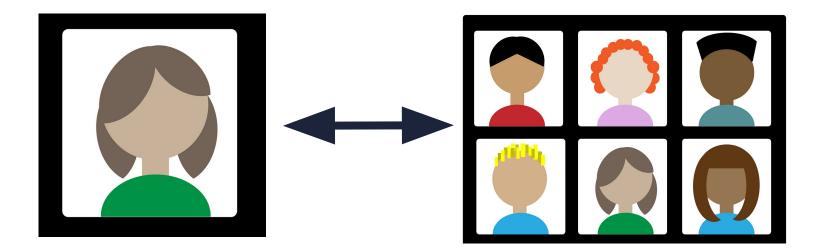



#### Galaxy can act as a track hub








### **Transform alignment into consensus**





### **Doing - Variant Annotation**







Say hello!

Turn on your camera and microphone and introduce yourself





#### **Gemini scoring**



- GERP scores Genomic Evolutionary Rate Profiling
  - a. <u>http://mendel.stanford.edu/SidowLab/downloads/gerp/</u>
  - b. GERP identifies constrained elements in multiple alignments by quantifying substitution deficits. These deficits represent substitutions that would have occurred if the element were neutral DNA, but did not occur because the element has been under functional constraint. Rejected substitutions are a natural measure of constraint that reflects the strength of past purifying selection on the element.
  - c. Positive scores represent highly-conserved positions while negative scores represent highly-variable positions.

#### • CADD scores - Combined Annotation Dependent Depletion

- a. <u>https://cadd.gs.washington.edu/</u>
- b. CADD tool scores the predicted deleteriousness of single nucleotide variants and insertion/deletions variants in the human genome by integrating multiple annotations including conservation and functional information into one metric.
- c. CADD provides a ranking rather than a prediction or default cut-off, with higher scores more likely to be deleterious.
- d. Scores >30 as 'likely deleterious', <30 as 'likely benign'. Variants with scores over 30 are predicted to be the 0.1% most deleterious possible substitutions in the human genome.</p>







#### ClinVar

- a. <u>https://www.ncbi.nlm.nih.gov/clinvar/</u>
- b. ClinVar is a freely accessible, public archive of reports of the relationships among human variations and phenotypes, with supporting evidence.
- c. ClinVar thus facilitates access to and communication about the relationships asserted between human variation and observed health status, and the history of that interpretation.
- d. The level of confidence in the accuracy of variation calls and assertions of clinical significance depends in large part on the supporting evidence, so this information, when available, is collected and visible to users.
- e. Domain experts are encouraged to apply for recognition as an expert panel.

| NM_000314.7(PTEN):c.1A>G (p.Met1Val) |                                                       |  |  |  |  |
|--------------------------------------|-------------------------------------------------------|--|--|--|--|
| Interpretation:                      | Pathogenic                                            |  |  |  |  |
| Review status:                       | ★★★☆ reviewed by expert panel FDA RECOGNIZED DATABASE |  |  |  |  |
| Submissions:                         | 3 (Most recent: Jan 7, 2021)                          |  |  |  |  |
| Last evaluated:                      | Nov 22, 2019                                          |  |  |  |  |
| Accession:                           | VCV000484600.6                                        |  |  |  |  |
| Variation ID:                        | 484600                                                |  |  |  |  |
| Description:                         | single nucleotide variant                             |  |  |  |  |





## **Gemini scoring**

- Autosomal recessive
- Autosomal dominant
- X-linked recessive
- X-linked dominant
- Autosomal de-novo
- X-linked de-novo
- Compound heterozygous
- Loss of heterozygosity (LOH) events

| 'rack sequence from bottom up |        |       |        | 1      | 2   |        | 3      | 4    | 5    |
|-------------------------------|--------|-------|--------|--------|-----|--------|--------|------|------|
| Father                        | Mother | Child | iUPD-P | hUPD-P | BPD | hUPD-M | iUPD-M | MI-S | MS-D |
|                               |        | AA    | X      | X      | X   | X      | X      |      |      |
|                               | AA     | AB    |        |        |     |        |        | X    |      |
|                               |        | BB    |        |        |     |        |        |      | X    |
|                               |        | AA    | Х      | X      | X   |        | X      |      |      |
| AA                            | AB     | AB    |        |        | X   | X      |        |      |      |
|                               |        | BB    |        |        |     |        | X      |      |      |
|                               |        | AA    | X      | X      |     |        |        |      |      |
|                               | BB     | AB    |        |        | X   |        |        |      |      |
|                               |        | BB    |        |        |     | X      | X      |      |      |
|                               |        | AA    | Х      |        | Х   | X      | Х      |      |      |
|                               | AA     | AB    |        | X      | Х   |        |        |      |      |
|                               |        | BB    | X      |        |     |        |        |      |      |
|                               | AB     | AA    | Х      |        | Х   |        | X      | i i  |      |
| AB                            |        | AB    |        | X      | X   | X      |        |      |      |
|                               |        | BB    | X      |        | Х   |        | X      |      |      |
|                               |        | AA    | X      |        |     |        |        |      |      |
|                               | BB     | AB    |        | X      | Х   |        |        |      |      |
|                               |        | BB    | Х      |        | Х   | X      | X      |      |      |
|                               |        | AA    |        |        |     | X      | X      |      |      |
|                               | AA     | AB    |        |        | X   |        |        |      |      |
|                               |        | BB    | X      | X      |     |        |        |      |      |
|                               |        | AA    |        |        |     |        | X      |      |      |
| BB                            | AB     | AB    |        |        | Х   | X      |        |      |      |
|                               |        | BB    | Х      | X      | Х   |        | Х      |      |      |
|                               |        | AA    |        |        |     |        |        |      | X    |
|                               | BB     | AB    |        |        |     |        |        | X    |      |
|                               |        | BB    | X      | X      | X   | X      | X      |      |      |



#### **Systematic Variant Curation**



Genet Med. 2015 May; 17(5): 405-424. doi:10.1038/gim.2015.30.

Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

|                                         | Ben                                                                                                                                       | ign                                                                                                                                                                                                                       | Pathogenic                                                                                                                |                                                                                                                                                                               |                                                                                    |                                                                                                   |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
|                                         | Strong                                                                                                                                    | Supporting +                                                                                                                                                                                                              | Supporting                                                                                                                | Moderate                                                                                                                                                                      | Strong V                                                                           | ery Strong                                                                                        |  |  |  |
| Population<br>Data                      | MAF is too high for<br>disorder <i>BA1/BS1</i> <b>OR</b><br>observation in controls<br>inconsistent with<br>disease penetrance <i>BS2</i> |                                                                                                                                                                                                                           |                                                                                                                           | Absent in population databases <i>PM2</i>                                                                                                                                     | Prevalence in<br>affecteds statistically<br>increased over<br>controls PS4         |                                                                                                   |  |  |  |
| Computational<br>And Predictive<br>Data |                                                                                                                                           | Multiple lines of<br>computational evidence<br>suggest no impact on gene<br>/gene product BP4<br>Missense in gene where<br>only truncating cause<br>disease BP1<br>Silent variant with non<br>predicted splice impact BP7 | Multiple lines of<br>computational<br>evidence support a<br>deleterious effect<br>on the gene /gene<br>product <i>PP3</i> | Novel missense change<br>at an amino acid residue<br>where a different<br>pathogenic missense<br>change has been seen<br>before PM5<br>Protein length changing<br>variant PM4 | Same amino acid<br>change as an<br>established<br>pathogenic variant<br><i>PS1</i> | Predicted null<br>variant in a gene<br>where LOF is a<br>known<br>mechanism of<br>disease<br>PVS1 |  |  |  |
| Functional<br>Data                      | Well-established<br>functional studies show<br>no deleterious effect<br>BS3                                                               |                                                                                                                                                                                                                           | Missense in gene with<br>low rate of benign<br>missense variants and<br>path. missenses<br>common PP2                     | Mutational hot spot<br>or well-studied<br>functional domain<br>without benign<br>variation PM1                                                                                | Well-established<br>functional studies<br>show a deleterious<br>effect PS3         |                                                                                                   |  |  |  |
| Segregation<br>Data                     | Non-segregation<br>with disease BS4                                                                                                       |                                                                                                                                                                                                                           | Co-segregation with<br>disease in multiple<br>affected family<br>members PP1                                              | Increased segregation dat                                                                                                                                                     | a >                                                                                |                                                                                                   |  |  |  |
| De novo<br>Data                         |                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                           | De novo (without<br>paternity & maternity<br>confirmed) PM6                                                                                                                   | De novo (paternity & maternity confirmed)<br>PS2                                   |                                                                                                   |  |  |  |
| Allelic Data                            |                                                                                                                                           | Observed in <i>trans</i> with<br>a dominant variant <i>BP2</i><br>Observed in <i>cis</i> with a<br>pathogenic variant <i>BP2</i>                                                                                          |                                                                                                                           | For recessive<br>disorders, detected<br>in <i>trans</i> with a<br>pathogenic variant<br>PM3                                                                                   |                                                                                    |                                                                                                   |  |  |  |
| Other<br>Database                       |                                                                                                                                           | Reputable source w/out<br>shared data = benign BP6                                                                                                                                                                        | Reputable source<br>= pathogenic PP5                                                                                      |                                                                                                                                                                               |                                                                                    |                                                                                                   |  |  |  |
| Other Data                              |                                                                                                                                           | Found in case with<br>an alternate cause<br>BP5                                                                                                                                                                           | Patient's phenotype or<br>FH highly specific for<br>gene PP4                                                              |                                                                                                                                                                               |                                                                                    |                                                                                                   |  |  |  |



#### **Summary**



- Exome sequencing is an efficient way to identify disease-relevant genetic variants.
- Freebayes is a good variant and genotype caller for the joint analysis of multiple samples. It is straightforward to use and requires only minimal processing of mapped reads.
- Variant annotation and being able to exploit genotype information across related individuals is key to identifying candidate disease variants. SnpEff and GEMINI, in particular, are powerful tools offered by Galaxy for that purpose.
- Key to confident variant calls
  - High quality reads
  - Appropriate minimum depth threshold
  - And not looking below that threshold!



#### Acknowledgements





Simon Gladman, Igor Makunin, Nicholas Rhodes, Catherine Bromhead, Nuwan Goonasekera, Michael Thang, Gareth Price





Australian Research Data Commons