
•Reflect electrons of a sample

•‘Just like a light microscope’

•Low, tunable energy
→ surface sensitive:

ideal for 2D materials such
as graphene

→ spectroscopy

•Diffraction & real space

ESCHER @ Leiden University

𝐸 = 1.0𝑒𝑉 𝐸 = 5.2𝑒𝑉

•Scikit-image does this, but can we
do better for this large set of
images?

•Need an edge filter first to solve
contrast inversion and
(dis)appearing features.

•Spectroscopy: N=700
images for N different
electron energies.

•Contrast inverts and some
features are only visible at
some energies.

•Need to convert from static
position on detector to
static position on sample.

1. Select center of each of the images, sized for FFTs (i.e.
2𝑛 × 2𝑛 pixels).

2. Apply Gaussian smoothing and Sobel filter

3. For each pair (𝑖, 𝑗) of images, compute location
𝐷𝑋,𝐷𝑌 𝑖𝑗 and (normalized) value 𝑊𝑖𝑗 of the

maximum of the cross-correlation.

4. Pick 𝑊𝑚𝑖𝑛 to remove incorrect matches: Set ഥ𝑊𝑖𝑗 = 0

for all ഥ𝑊𝑖𝑗 < 𝑊𝑚𝑖𝑛

5. To reduce relative shifts 𝐷𝑋 to a vector of absolute

shifts 𝑑𝑥, minimize error 𝑑𝑥𝑖 − 𝑑𝑥𝑗 − 𝐷𝑋𝑖𝑗 ഥ𝑊𝑖𝑗
4 .

Idem for 𝐷𝑌 to obtain 𝑑𝑦.

6. Apply shifts 𝑑𝑥 and 𝑑𝑦 to the original images,
interpolating for non-integer shifts.

Notebook: www.github.com/TAdeJong/LEEM-analysis

250k 2D iFFTs!

Dask to the
rescue.

Technically a linear problem,
but lazily use

scipy.optimize.least_squares.

Jacobian at Nx(NxN) becomes
memory bottleneck, but
luckily it is sparse (and

constant), so provide explicitly
in sparse form.

De Jong et al, Ultramicroscopy 213, 2020
Code: Github.com/TAdeJong/LEEM-analysis DOI:10.5281/zenodo.3539538
Data: DOI:10.4121/uuid:7f672638-66f6-4ec3-a16c-34181cc45202
This poster: 10.5281/zenodo.5076268
Stitchdata from: Lisi, Lu, Benschop, De Jong et al. Observation of flat bands in twisted bilayer
graphene. Nat. Phys. 17, 189–193 (2021). https://doi.org/10.1038/s41567-020-01041-x

@TAdeJong
@TobiasAdeJong
jongt@physics.leidenuniv.nl

•Scan sample stage, take an image at each position.

•Same method as registration, but:

•Only compare nearest neighbor candidates.

•Iterate with global optimization of positions.

y

(DX,DY)ij

Wij

Who else?

then
CC

•Each location: N values/features, one
for each energy.

•Reduce number of dimensions (using
PCA here).

•Combine three dimension into a
single RGB image: 2 images is enough
to visualize 95% of variance in the
spectroscopy data.

•Cool aspect of this data to test
dimension reduction: natural way to
visualize data in reduced dimensions:
as original pictures!

(DX,DY)ij

•Classify regions by applying k-means to
reduced data

•Such a luxury how little code PCA +
clustering takes:

I am a physicist trying to solve my problems using Scipy,
not an expert programmer. If you know of easier
methods: let’s talk!

Combine
colors

