
TABLE I
GENERAL ANNOTATION POLICIES CODES AND CATEGORIES

ID Code Category
OSS3 Code should be self documenting.

Never annotate

OSS17 codigo fuente y diseno
OSS23 Code comments should be avoided. Code is documented by itself and appropriate unit tests. Following clean

code principles and investing a lot of time into good naming of variables and functions is key.
Ind19 In principle the code should be clean and clear such that no additional annotations are needed to understand

the code.
Ind24 Our organization has just a traditional clean code policy
Ind27 Following clean code principles and investing a lot of time into good naming of variables and functions is key.
Ind32 The agreement is that the code should speak for itself and if the design needs explanation then it’s probably

wrong and needs to go back to the drawing board.
Ind33 Code, combined with unit tests should be self-explanatory. If comments are needed to understand the code,

that is a code smell.
Ind40 But if a pull request is reviewed and the reviewing programmer does not understand the code, then the reviewer

will ask to simplify the code, or if that is not easily possible, add comments for the cr process.
OSS6 Most high level classes are expected to be documented, specially how they fit into the whole picture, semantics

around caller usage, thread-safety etc.

Always annotate
OSS44 I’m currently on a project where 10% of each day is used to document the days work. Each method should

have a java doc comment and each inline variable declaration should have a normal comment describing what
it is going to be used for. Every loop should also have a normal comment above its declaration describing a
typical execution scenario.

Ind6 A Public procedure must be tested and documented.
Ind19 Interfaces should be fully documented (how to use the code).
Ind23 if the code is not annotated enough, your colleagues/superiors will complain in person
Ind24 policy with high endorsement of using annotations.
Ind49 Our coding standard makes it mandatory to describe/annotate every record, function signature and package
OSS2 When we feel something isn’t straight fo[r]ward (or when in doubt), we always add some code comments.

Annotate under special circumstances

OSS3 When something is complicated it should be commented.
OSS7 Explanations are fine for more complex choices.
OSS25 Eslint restrictions, not using case insensitive names for components etc.
OSS28 My policy is always to document any unusual design/implementation choices, or those that might be reusable

in the future
OSS30 https://www.tensorflow.org/community/contribute/code_style
Ind5 we have a high level design document. autogenerated api docs such as doxygen, sphinx, or godoc.
Ind6 Tricky implementations details must made public by a subpackage tested and documented as internals.
Ind27 Use comments only if you need to explain something which is not immediately understandable by reading the

code.
Ind32 However real life sometimes calls for exceptions, so you can defend and explain your need of annotations

during code reviews and the team can raise suggestions or ideas on the topic at hand.
Ind34 However as a general rule any comment added to the source code should be meaningful. i.e., no obvious

remarks or commenting old code when making design changes
Ind40 If comments are superfluous, a reviewer can ask to remove the comment, as it just distracts.
Ind46 Informal ones, to be peer-reviewed for adequacy
Ind47 Yes, where necessary comments should be added, but this is not closely monitored
OSS9 Yes, an architecture document should be created for any medium to large sized features describing the

architecture and rationale.

Describe high-level design decisions

OSS11 Rarely, design and development quirks/choices to be collected in Wiki documentation
OSS37 Generally a dedicated docs directory with a per-subsystem document outlining the high level design and

documented interfaces for easy navigation in an IDE.
OSS38 Github wiki / markdown files for conceptual overview; Directory for notebooks for initial research and testing

(code not used in production, but instructive for extensions and future reference).
OSS40 [anonymized] has both user documentation and detailed peer review discussions on GitHub.
OSS42 Other than writing design docs for major features, no.
OSS46 design choices are documented outside code in separate document
Ind5 we have a high level design document. autogenerated api docs such as doxygen, sphinx, or godoc.
Ind21 We try to document high level design choices in the README.md
Ind22 Not in code. Though architecture decisions on company level are captured with ADRs.
Ind40 Also, if a comment can be put into a format like JavaDoc, then use JavaDoc, as you can then generate a nice

HTML page for it.
Ind45 Design choices have to be documented in the model of the SW architecture or detailed design.
Ind53 Yes, doxygen style.
OSS41 I am a maintainer of [anonymized]. Together with [anonymized] we follow the guidelines given in [anonymized]

and many more probably unwritten protocols. Link to issue trackers

Ind19 Extra annotation is done through the commit messages: each commit message must contain a reference to the
issue tracking system, such that it is always clear in which context some code was changed.

OSS5 Best practices’ are specified, but rarely defined. When they are they result in a maze of links which discourages
reading them.

Avoid link maze

OSS8 it depends on the developer and the cr reviewer

Decisions left to the team
OSS42 We have no policies on in-line comments in source code. It is up to the developer to decide.
Ind9 No. Everything is team dependent.
Ind19 No policy within the organization, but sometimes a policy within the team/project
Ind40 Proactively adding comments depends on the individual programmer.

1



TABLE II
SATD ANNOTATION POLICIES CODES AND CATEGORIES (OSS)

ID Code Category
OSS1 FIXME must be fixed before release, preferably before commit. Never annotateOSS38 We have an automated git hook that checks no FIXMEs are present in merged code.
OSS6 No, but we typically do TODO annotations [in] the source code so that they are not confused.

Document as commentsOSS13 Visual studio has TODO and HACK functionality build in, so I do use both.
OSS19 Only simplistic ones: use capitals in TODO/FIXME.
OSS40 ad-hoc todo code comments
OSS12 We utilize the annotation # HACK: for highlighting TD workarounds within our private source code. Do not document in code
OSS1 All markers must be annotated by the developer user name. Declare your identity
OSS1 TODO is a reminder and may be moved to an issue in the tracker

Link to issue tracker

OSS2 The policy is to create tasks on our issue tracker
OSS3 We have an issue tracking system where we manage things that need doing.
OSS7 generally future work shouldn’t be documented in code instead in tickets.
OSS23 Tech-Debt, are documented using a ticket in our jira or github issue tracker.
OSS37 Some ban TODO style comments and require tickets to be raised
OSS41 The typical keyword "[WIP]" denoting work-in-progress is put in the Pull Requests on GitHub repo.
OSS42 For TODOs: Prefer specifying a issue id over a username.
OSS44 We use other means of keeping track of this (GitLab issues)
OSS32 TODO (automatically recognized by PyCharm) Use tool support
OSS16 We also utilize a "# TODO: " annotation internally, but no formal policies regarding annotations in general.

Decisions left to the teamOSS34 I generally use TODO.
OSS43 No, but I have my own policies: TODO(issue12313) to link to a bug or something, and only if I am actually going to do it.

TABLE III
SATD ANNOTATION POLICIES CODES AND CATEGORIES (IND)

ID Code Category
Ind13 Our CICD workflow prevents TODO, Fixme, etc comments from proceeding past the DEV branch.

Never annotate

Ind19 MUDO: this is a todo that really must be done before putting the code in production
Ind28 Not written, but are strongly discouraged.
Ind32 FIXMEs need to be fixed before merging into the main branch and/or releasing.
Ind33 They should never be used.
Ind45 No, delivered code shall be free from annotations
Ind50 You can’t push code to develop branches with TODO’s or FIXME’s.
Ind52 No hard policies, but it is far from preferred.
Ind4 They should always be documented Document as commentsInd19 Inline comments on the code are only needed if the code is complex
Ind32 when absolutely needed, they are usually explained not in code but in documents that are in our knowledge base Do not document in codeInd34 No pragma messages in source code to force todo messages to be visible in the compiler.
Ind18 we usually specify TODOs as: TODO: Name: Explanation.

Declare your identity

Ind21 no TODO’s without names or initials of the engineer.
Ind32 it is expected to attach a name to a TODO so that it is visible from code without git-blaming
Ind42 Preferably with name of author, date, and rationale.
Ind49 a convention for TODOs: "TODO (%svn username%)".
Ind53 Yes, notation is either //TODO or //FIXME, followed by date, developer who wrote this and only after that the explanation.
Ind6 TODO must be referenced as an issue number in the TODO comment.

Link to issue tracker

Ind33 There are policies of traceability of known issues.
Ind34 An issue should be created in the issue-tracker instead.
Ind40 A TODO should always be accompanied by a task nr, in our case the JIRA task ID.
Ind49 We also often add issues for technical debts in Jira, following a review.
Ind51 We also often add issues for technical debts in Jira, following a review.
Ind53 If possible, related ticket ID.
Ind21 The code is scanned by Sonar and warns you that you’re committing a todo. Use tool supportInd24 There are also automated code and requirement robot tests that check if specifications changes were followed cross-release with or

without carried over work.
Ind19 No policy within the organisation, but sometimes a policy within the team/project. Decisions left to the teamInd24 Tech leads of dev, test and ops sometimes follow different implementation and design practices depending on tools and frameworks.

2


