
Shallow water model documentation
Milan Kloewer version of April 10, 2017

This documentation aims to summarize a methodology how the shallow water equations
can be discretized and solved numerically with finite differences. The corresponding model
code written in Python can be found at www.github.com/milankl/swm.
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1 Physical model

1.1 General model

The shallow water equations of interest are (see Gill, 1982)

∂tu+ u∂xu+ v∂yu− fv = −g∂xη + Fx +Mx (1a)

∂tv + u∂xv + v∂yv + fu = −g∂yη + Fy +My (1b)

∂tη + ∂x(uh) + ∂y(vh) = 0 (1c)

with

u = (u, v) = (u(x, y, t), v(x, y, t)) horizontal velocity vector

η = η(x, y, t) surface displacement

h = h(x, y, t) = η +H layer thickness

H = H(x, y) undisturbed layer thickness

f = f(y) coriolis parameter

g = const gravitational acceleration

F = (Fx, Fy) = (Fx(x, y, t), Fy(x, y, t)) forcing vector

M = (Mx,My) = (Mx(u, v, h),My(u, v, h)) lateral mixing of momentum,

and friction term

and differential operators

∂x =
∂

∂x
, ∂y =

∂

∂y
, ∂t =

∂

∂t

on the domain D = (0, Lx) × (0, Ly) of width (or east-west extent) Lx and north-south
extent Ly and with cartesian coordinates x, y and time t. The initial conditions are

u(t = 0) = u0(x, y) (2a)

v(t = 0) = v0(x, y) (2b)

h(t = 0) = h0(x, y) (2c)

The kinematic boundary condition states that there is no flow through the boundary, i.e.

u(x = 0) = u(x = Lx) = 0 (3a)

v(y = 0) = v(y = Ly) = 0, (3b)

additionally we require no gradient of η across the boundary, hence

∂xη(x = 0) = ∂xη(x = Lx) = 0 (4a)

∂yη(y = 0) = ∂yη(y = Ly) = 0, (4b)

and the tangential velocity at the boundary should vanish, which is usually referred to as
no-slip boundary conditions

v(x = 0) = v(x = Lx) = 0 (5a)

u(y = 0) = u(y = Ly) = 0. (5b)
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However, sometimes these equations are replaced by

∂xv(x = 0) = ∂xv(x = Lx) = 0 (6a)

∂yu(y = 0) = ∂yu(y = Ly) = 0, (6b)

which corresponds physically to a friction-less boundary and are therefore called free-slip
boundary conditions.

The prognostic variables so far are u, v, η, however, as η only appears in gradients,
also h can be used as prognostic variable. We can separate from the advective terms in
equations 1a,b the spatial gradient of kinetic energy. In combination with the pressure
gradient term we introduce the Bernoulli potential p as

p =
1

2
(u2 + v2) + gh (7)

Furthermore, with introducing the relative vorticity ζ = ∂xv − ∂yu the potential vorticity
can be defined as

q =
f + ζ

h
(8)

and the equations 1a,b,c then become

∂tu = qhv − ∂xp+ Fx +Mx (9a)

∂tv = −qhu− ∂yp+ Fy +My (9b)

∂th = −∂x(uh)− ∂y(vh) (9c)

which are the equations solved by the numerical model as described in section 2.

1.2 Double gyre set up

In order to simulate mid-latitudinal dynamics we choose the physical parameters of the
previous section as (Cooper and Zanna, 2015; Porta Mana and Zanna, 2014; Berloff, 2005)

g = 10 m/s (10a)

H = 500 m (10b)

Lx = Ly = 3840 km (10c)

with beta-plane approximation

f = f0 + β(y − Ly
2

), f0 = 2Ω sin(2π
θ0

360°
), β =

2Ω

R
cos(2π

θ0

360°
) (11)

at Northern hemisphere mid-latitudes, with the domain D being centred around the lati-
tude

θ0 = 30° (12)

with

R = 6371 km, Ω =
2π

86400
s−1 (13)
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The forcing is set to be

Fy = 0

Fx =
F0

ρ0H

[
cos

(
2π

(
y

Ly
− 1

2

))
+ 2 sin

(
2π

(
y

Ly
− 1

2

))]
F0 = 0.12 Pa

ρ0 = 1000 kgm−3 (14)

which resembles the trade winds in the Southern part of the domain (i.e. for y being
smaller than approximately 0.42Ly) and the westerlies in the Northern part of the domain.
The model is initialized from rest, so that the initial conditions become

u0 = v0 = 0, h0 = H (15)

1.3 Lateral mixing of momentum and friction term

In the previous section the term

M = (Mx,My) = (Mx(u, v, h),My(u, v, h)) (16)

was kept general. The term is desired to represent some physical kind of friction, diffusion,
lateral mixing of momentum, dissipation and/or viscosity. Once the forcing is chosen to
be F 6= 0 there is generally an energy source in the shallow water model, hence, there
is some additional requirement to M to be an energy sink to allow for some equilibrium
state the shallow water model can reach. One simple approach is to set

M = −ru (17)

in which case a linear drag, called Rayleigh friction (Gill, 1982), is applied. r−1 is a time
scale at which momentum decays. This approach represents an energy sink and is in the
barotropic shallow water model usually one way to think of bottom friction. Another
more realistic approach to bottom friction is a quadratic drag (Arbic and Scott, 2008),
i.e.

M = −cD
H
|u|u, |u| =

√
u2 + v2 (18)

with cD being a dimensionless drag coefficient. The term M can also be used to represent
the lateral mixing of momentum, the simplest approach of this family being

M = νA∇2u (19)

with∇2 = ∂2
x+∂

2
y being the two dimensional Laplace operator and νA a viscosity coefficient

of unit m2 s−1. With the symmetric 2x2 stress tensor S defined by

S =

(
ux − vy vx + uy
vx + uy −(ux − vy)

)
(20)

Shchepetkin and O’Brien (1996) define a harmonic lateral mixing of momentum as

M = νAh
−1∇ · hS. (21)
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where the scalar product between a vector a = ai and a tensor B = Bij is defined with
Einstein notation as a ·B = aiBij =

∑
i aiBij = cj and yields a vector cj = c. Note that

for h = const equation 21 simplifies to equation (19). Equation (21) can be extend to a
biharmonic operator by applying it twice

M = νBh
−1∇ · (hS(h−1∇ · hS(u, v))). (22)

where the stress tensor is regarded as a linear map, once evaluated with (u, v) and then
with h−1∇ · hS(u, v). Both viscosity coefficients νA and νB are for simplicity taken as
constants. Again for h = const. equation 22 reduces to νB∇4u, with ∇4 = ∂4

x + ∂4
y +

2∂2
x∂

2
y . A biharmonic operator acts especially on the small scales, where waves are rapidly

damped compared to the large scales, which remain mostly unaffected (CITE!). To have
an additional energy sink at the large scales equation (18) is used in combination with
equation (22) to have finally

M = νBh
−1∇ · (hS(h−1∇ · hS(u, v)))− cD

H
|u|u (23)

and is used in equation (9). The choice of νB and cD is discussed in section 2.7.

2 Spatial discretization

2.1 Arakawa C-Grid

The domain D is divided into nx × ny grid cells, evenly spaced, so that each grid cell has

the side length ∆x = Lx

nx
in x-direction and ∆y = Ly

ny
in y-direction. The total amount

of grid cells is nxny. Let the variable hi sit in the middle of the i-th grid cell at position
(xi, yi), i.e. hi = h(xi, yi). We use only one index i and with row-first indexing (see
Fig. 1), so we have for i ∈ {1, ..., nxny}

xi =
∆x

2
(1 + (i− 1) mod nx) (24a)

yi =
∆y

2

(
1 + 2 floor

(
i− 1

nx

))
(24b)

with a mod b being the modulo operator and floor(a) is the largest integer not greater
than a. Following the ideas of the Arakawa C-grid (Arakawa1977; Arakawa and Lamb,
1981), the discretization of the variables u, v and q is staggered. In general, we might use
an independent indexing for u, v and q and therefore introduce j, k, l ∈ N

uj = u(xi +
∆x

2
, yi) (25a)

vk = u(xi, yi +
∆y

2
) (25b)

ql = q(xi +
∆x

2
, yi +

∆y

2
). (25c)

Hence, we distinguish between 4 different grids: (i) the T -grid, for h or tracers, (ii) the
u-grid, (iii) the v-grid, (iv) the q-grid. Not for all grid cells it is necessary to evaluate u

6
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or v, as they might vanish due to the boundary conditions. The grids therefore carry a
different amount of grid points. Let NT , Nu, Nv, Nq be the total number of grid points on
the respective grids then

NT = nxny, Nu = (nx − 1)ny

Nq = (nx + 1)(ny + 1), Nv = nx(ny − 1) (26)

The nx-th column of u-points vanish, as does the ny-th row of v-points. However, there
is no boundary condition for q, which makes it necessary to evaluate the q-grid for all
points within the domain D.

Choosing one index for the grid points leads to the advantage that every scalar variable
can be represented as a vector. Numbering the grids row-first as can be seen in Fig. 1,
leads to the following vector-representation u, v, h, q of u, v, h and q

u =


u1

u2
...

uNu

 , v =


v1

v2
...
vNv

 , h =


h1

h2
...

hNT

 , q =


q1

q2
...
qNq

 . (27)

In the special case of nx = ny the vectors u, v are of same size, but in general u, v, h, q
all differ in their sizes. Unfortunately, the vector-representation of the variables leads to
the necessity to distinguish between grid nodes that are in vicinity of the boundaries and
those in the middle of the domain. Hence, we have on the u-grid for j ∈ {1, ..., Nu}

xuj = ∆x(1 + (j − 1) mod (nx − 1)) (28a)

yuj =
∆y

2

(
1 + 2 floor

(
j − 1

nx − 1

))
(28b)

where the superscript u simply clarifies that this is the jth grid point on the u-grid. On
the v-grid this is similarly for k ∈ {1, ..., Nv}

xvk =
∆x

2
(1 + (k − 1) mod nx) (29a)

yvk = ∆y

(
1 + floor

(
k − 1

nx

))
(29b)

and on the q-grid this becomes with l ∈ {1, ..., Nq}

xql = ∆x(l mod (nx + 1)) (30a)

yql = ∆y floor

(
l

nx + 1

)
. (30b)

In the following we will evaluate the model variables on different grids and denote that
with xi, xuj , xvk and xql , which is short-hand for all grid points of the T -, u-, v- and q-grid,
respectively.

Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm param.py
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�

set param() ← set grid()

�

set grid()

2.2 Gradients

2.2.1 Matrix-Vector multiplication idea

Representing the model variables in vector-form, as discussed above, enables us to think
of a gradient ∂ as a linear map between two vector spaces1 V1, V2. Hence, any gradient ∂
in that sense can be written as a matrix G which is multiplied with a vector z representing
one of the model’s variables:

∂ : V1 → V2, z→ Gz (31)

Having 4 different grids, we have to deal with four different vector spaces Vu, Vv, VT , Vq
with dimensions Nu, Nv, NT , Nq, respectively. In the following we will investigate the
entries of G such that they describe centred finite differences on the four different grids.
The same holds for any linear interpolation I from one grid to another as will be discussed
in section 2.3. We write then

I : V1 → V2, z→ Iz (32)

2.2.2 Notation for surrounding grid points

Writing the scalar variables on a grid as vectors comes with the disadvantage, that the
exact mathematical indexing gets rather complicated and lacks readability. We will there-
fore discuss the gradient and interpolation operations in the following only in terms of
their stencil, i.e. the linear combination of the variables at the surrounding grid points
that yields the desired result. To be a bit more precise and to include the treatment of
the boundaries, we will use in the following the notation that is visualized in Fig. 2.

A superscript arrow points in the direction relative to the grid point where an operation
is evaluated. More clearly, regarding a variable a at x = (xa, ya) somewhere in the middle
of the domain away from the boundaries. Then,

b← = b|
x=(xa−

1
2

∆x,ya)
, b→ = b|

x=(xa+
1
2

∆x,ya)
(33)

where b is a variable that sits on the grid that is shifted by 1
2
∆x in x-direction, and

c↓ = c|
x=(xa,ya−

1
2

∆y)
, c↑ = c|

x=(xa,ya−
1
2

∆y)
(34)

where c is a variable that sits on the grid that is shifted by 1
2
∆y in y-direction, and

d↗ = d|
x=(xa+

1
2

∆x,ya+
1
2

∆y)
, d↘ = d|

x=(xa+
1
2

∆x,ya−
1
2

∆y)
(35a)

d↙ = d|
x=(xa−

1
2

∆x,ya−
1
2

∆y)
, d↖ = d|

x=(xa−
1
2

∆x,ya+
1
2

∆y)
(35b)

where d is a variable that sits on the grid that is shifted by both 1
2
∆x in x-direction and

1
2
∆y in y-direction. The notation is therefore independent on the indexing, which is for

1Strictly speaking, these are not vector spaces as the underlying algebraic field are not the real num-
bers but the set of computer representable numbers given a certain precision, e.g. 64bit. These are
mathematically not an algebraic field, but for simplicity here regarded as an approximation to it.
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comparison still given in appendix A. For the description of the advective terms (section
2.5) we may relate grid points that are further away by

b⇐ = b|x=(xa−∆x,ya), b⇒ = b|x=(xa+∆x,ya) (36)

and similar for ⇑,⇓. The single arrow therefore represents a grid point that is either
(±n∆x, 0), (0,±n∆y) or (±n∆x,±n∆y), with n = 1

2
, away. Same for the double arrow,

but with n = 1. This notation is logically extended for a triple arrow ⇑↑ (i.e. n = 3
2
), and

so on.
The operator stencils usually change close to the boundary due to boundary conditions.

In order to treat these cases separately we introduce the following, index-independent
notation: Call a grid node

(i) Northern boundary (NB)

(ii) Western boundary (WB)

(iii) Southern boundary (SB)

(iv) Eastern boundary (EB)

when the evaluation of a stencil for that grid node involves unresolved variables (because
they sit either outside the domain D or sit on the boundary but always given by the
boundary condition) at

(i) y = Ly

(ii) x = 0

(iii) y = 0

(iv) x = Lx

Note that there is an overlap of two adjacent boundaries that we call accordingly

North-East corner (NE)

North-West corner (NW)

South-West corner (SW)

South-East corner (SE)

This notation is unfortunately only useful when stencils are small, but then provide a
readable alternative.

2.2.3 Centred differences

Centred finite difference approximation of the gradient in x-direction of a variable h on
the T -grid yields a result that sits on the u-grid (as can be seen from Fig. 1) and reads

∂xh|x=xu
j
≈ h→ − h←

∆x
(37)
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This is the well-known (−1, 1)-stencil. The y-derivative of a variable of the T -grid sits on
the v-grid:

∂yh|x=xv
k
≈ h↑ − h↓

∆y
(38)

The x-derivative of a variable on the u-grid includes the kinematic boundary condi-
tions, hence a 0 appears for computations involving the boundary nodes. The result sits
on the T -grid:

∂xu|x=xi
≈ 1

∆x


u→ − 0 if Western boundary

0− u← if Eastern boundary

u→ − u← else.

(39)

Similarly for the y-derivative on the v-grid which sits again on the T -grid:

∂yv|x=xi
≈ 1

∆y


v↑ − 0 if Southern boundary

0− v↓ if Northern boundary

v↑ − v↓ else.

(40)

The discretization of ∂xq and ∂yq are in close relation to equation 37 and 38 and do
not involve any boundary conditions

∂xq|x=xv
k
≈ q→ − q←

∆x
, ∂yq|x=xu

j
≈ q↑ − q↓

∆y
(41)

Note, that some grid nodes of q on the boundary are simply not evaluated in this com-
putation.

2.2.4 Implementing the tangential boundary conditions

For ∂yu, ∂xv the tangential boundary conditions as no-slip (equation 5) or free-slip (equa-
tion 6) come into play. For simplicity we first look at ∂yu|x=xq

l
for l = 2, i.e. at x = (∆x, 0),

where the derivative is

∂yu|x=(∆x,0) ≈
u1 − ub

∆y
(42)

with ub = u(∆x,−1
2
∆y) the velocity just outside the domain if the grid where extend

in negative y direction. To match the no-slip boundary condition (equation 5) we set
ub = −u1, so that at x = (∆x, 0), i.e. right on the boudary we have u = 0, when applying
linear interpolation. This yields

∂yu|x=(∆x,0) ≈
2u1

∆y
(43)

In contrast, when choosing free-slip boundary conditions (equation 6) we set ub = u1 for
similar reasoning. Then

∂yu|x=(∆x,0) ≈
0u1

∆y
= 0 (44)
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as desired. With introducing the parameter α ∈ {0, 2} we can switch between no-slip
(α = 2) and free-slip boundary conditions (α = 0). A choice of 0 < α < 2 corresponds
to partial-slip (see Madec, 2016). Following these ideas we write the y-derivative on the
u-grid as

∂yu|x=xq
l
≈ 1

∆y


0 if Western or Eastern boundary

αu↑ if Southern boundary without SW,SE

−αu↓ if Northern boundary without NW, NE

u↑ − u↓ else.

(45)

which sits then on the q-grid. Similarly we have the discretization of ∂xv as

∂xv|x=xq
l
≈ 1

∆x


0 if Northern or Western boundary

αv→ if Western boundary without NW,SW

−αv← if Eastern boundary without NE, SE

v→ − v← else.

(46)

2.2.5 Higher order stencil at the boundary

Shchepetkin and O’Brien, 1996 propose for no-slip boundary conditions (α = 2) to use
instead of equation (45), (46) the larger stencil (4,−1, 1

5
) at the boundary

∂yu|x=xq
l
≈ 1

∆y


0 if Western or Eastern boundary

4u↑ − u⇑ + 1
5
u⇑↑ if Southern boundary without SW,SE

−4u↓ + u⇓ − 1
5
u⇓↓ if Northern boundary without NW, NE

u↑ − u↓ else.

(47)

∂xv|x=xq
l
≈ 1

∆x


0 if Northern or Western boundary

4v→ − v⇒ + 1
5
v ⇓

↓

if Western boundary without NW,SW

−4v← + v⇐ − 1
5
v ⇑

↑

if Eastern boundary without NE, SE

v→ − v← else.

(48)

2.2.6 Gradient operation as matrix multiplication

In the following we will use a notation where the subscript denotes the direction of the
derivative, hence x or y, and the superscript u, v, T, q denotes the vector space, where ∂
is mapping from. For the x-derivative of h on the T -grid this is

∂Tx : VT → Vu, h→ GT
xh (49)

and the result GT
xh sits then on the u-grid (as defined in equation 37) or equivalently

is element of the vector space Vu. The matrix GT
x is therefore of size Nu × NT and so

not a square matrix (see eq. 26). The derivatives ∂yh, ∂xu, ∂yu, ∂xv, ∂yv, ∂xq and ∂yq can

11

Arthur
Texte surligné 

Arthur
Texte surligné 

Arthur
Rectangle 

Arthur
Texte surligné 



similarly be written as

∂Ty :VT → Vv, h→ GT
y h (50a)

∂ux :Vu → VT , u→ Gu
xu (50b)

∂uy :Vu → Vq, u→ Gu
yu (50c)

∂vx :Vv → Vq, v→ Gv
xv (50d)

∂vy :Vv → VT , v→ Gv
yv (50e)

∂qx :Vq → Vv, q→ Gq
xq (50f)

∂qy :Vq → Vu, q→ Gq
yq (50g)

All entries of the gradient matrices G follow from the equations 37, 38, 39, 40, 41, 45
and 46 and are then only a matter of indexing (one way how to index all grid nodes can
be seen in appendix A). For simplicity and visualization, the entries are shown for an
example grid (nx = ny = 5) in Fig 3 - 6.

Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm operators.py

�

set grad mat()

2.3 Interpolation

2.3.1 2-point spatial interpolation

With variables that sit on four different grids it is sometimes necessary to transform one
variable from one grid onto another. Regarding the term ∂x(uh) from equation 9 we either
need to find a representation of u on the T -grid or of h on the u-grid in order to multiply
them. This is done via linear interpolation of the closest grid points. In the following we
will investigate the interpolations from any of the four grids to any other.

From T -grid to u- or v-grid and vice versa

Let IuT (h) = hu the linear interpolation of h from the T -grid (subscript of the interpolation
function I) onto the u-grid (superscript of I), then

hu = h|x=xu
j
≈ h← + h→

2
(51)

which corresponds to spatial averaging of two neighbouring grid points in the x-direction.
Please note the similarity to equation (37). Similarly to the gradients, we can write this
operation via a matrix multiplication with IuT (sub- and superscript meaning as above)

IuT : VT → Vu, h→ IuTh (52)

Due to the similarity in equation (51) and (37), IuT is the same as GT
x but all non-zero

entries replaced by 1
2
. Same holds for the interpolation of h onto the v-grid, i.e. a spatial
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averaging in y-direction of two neighbouring grid points

hv = h|x=xv
k
≈ h↑ + h↓

2
(53)

which can again be written as

IvT : VT → Vv, h→ IvTh. (54)

with IvT obtained from GT
y by setting all non-zero entries to 1

2
. Same relations hold for

Ivq and Gq
x (2-point interpolation in x-direction), Iuq and Gq

y (2-point interpolation in y-
direction). And also, including the kinematic boundary condition (equation 3), for ITu and
Gu
x as well as ITv and Gv

y. Interestingly,

ITu = IuT
′ , ITv = IvT

′ (55)

where ′ denotes the matrix transpose.

From u-grid and v-grid to q-grid

For the interpolation matrices Iqu, I
q
v the lateral boundary conditions are important. In

fact, following the ideas around equation (45) we obtain the 2-point interpolation from
the u-grid onto the q-grid as

uq = u|x=xq
l
≈


0 if Western or Eastern boundary

(1− α
2
)u↑ if Southern boundary without SW,SE

(1− α
2
)u↓ if Northern boundary without NW,NE

1
2
(u↑ + u↓) else.

(56)

with α being the tangential boundary condition parameter (α = 0 is free-slip, α = 2 is
no-slip). Again, Iqv is then straight forward

vq = v|x=xq
l
≈


0 if Northern or Western boundary

(1− α
2
)v→ if Western boundary without NW,SW

(1− α
2
)v← if Eastern boundary without NE, SE

1
2
(v→ + v←) else.

(57)

2.3.2 4-point spatial interpolation

From u-grid to v-grid and vice versa

The previous interpolations involve 2-point spatial averaging, however, the interpolations
Ivu, Iuv , ITq , I

q
T require averaging from the four surrounding grid points (see Fig. 1) and

will be described in the following.
The interpolation Ivu from the u-grid onto the v-grid is

uv = u|x=xv
k
≈ 1

4


(u↘ + u↗) if Western boundary

(u↙ + u↖) if Eastern boundary

(u↘ + u↗ + u↙ + u↖) else.

(58)
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and similarly the interpolation Iuv reads

vu = v|x=xu
j
≈ 1

4


(v↘ + v↙) if Northern boundary

(v↗ + v↖) if Southern boundary

(v↘ + v↗ + v↙ + v↖) else.

(59)

Note, that both Ivu and also Iuv include the kinematic boundary condition. Once we write
this interpolation as a matrix Ivu, following the same arguments, we can deduce that

Iuv = Ivu
′ (60)

The interpolation from the u-grid to the v-grid is the transpose of the interpolation from
v to u.

From q-grid to T -grid and vice versa

The interpolation ITq from the q-grid to the T -grid is

qT = q|x=xi
≈ 1

4
(q↘ + q↗ + q↙ + q↖) (61)

And finally the interpolation IqT makes use of the additional boundary condition in
equation (4), which is ∇h = 0 at all boundaries.

hq = h|x=xq
l
≈



T↙ if North-East corner (NE)

T↘ if North-West corner (NW)

T↖ if South-East corner (SE)

T↗ if South-West corner (SW)
1
2
(T↘ + T↙) if Northern boundary without NW,NE

1
2
(T↙ + T↖) if Eastern boundary without NE,SE

1
2
(T↗ + T↘) if Western boundary without NW, SW

1
2
(T↗ + T↖) if Southern boundary without SW, SE

1
4
(T↘ + T↗ + T↙ + T↖) else.

(62)
As for the gradient matrices G all interpolation matrices are for simplicity and read-

ability shown in Fig. 7-12 for a sample grid with nx = ny = 5.

Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm operators.py

�

set interp mat()
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2.4 Linear and non-linear operations

As the equations of interest are essentially non-linear we can not describe all operations
in the model in terms of matrix-vector multiplications or additions of vectors. In fact, it
turns out that all non-linear operations in equation (9), once discretized, are element-wise
vector-vector multiplications. Let a, b two vectors of same length N respectively element
of a vector space V

a =


a1

a2
...
aN

 , b =


b1

b2
...
bN

 (63)

Hence, they should sit on the same grid. We then define the element-wise vector-vector
multiplication ∗ as

∗ : V × V → V, a ∗ b→


a1b1

a2b2
...

aNbN

 (64)

and define the order of computation as inferior to matrix-vector multiplication, i.e.

Ab ∗ c = (Ab) ∗ c 6= A(b ∗ c) (65)

for all matrices A, and vectors b, c. Furthermore, we may write 1
a

and mean then

1

a
=


1
a1
1
a1
...
1
aN

 (66)

the element-wise multiplicative inverse of a.

2.5 Advection term

In the following two different schemes are discussed that aim at discretizing the advection
terms

(qhv,−qhu), with q =
f + ∂xv − ∂yu

h
(67)

with the potential vorticity q, that appear in equation (9).

2.5.1 Sadourny (1975) enstrophy conserving scheme

Sadourny, 1975 proposed the following enstrophy conserving scheme

qhv|x=xu
j
≈ Iuqq ∗ Iuv(v ∗ IvTh) (68a)

−qhu|x=xv
k
≈ −Ivqq ∗ Ivu(u ∗ IuTh) (68b)

where the brackets () simply denote that the ∗-operation is computed first and the result
is then interpolated via the matrix-vector-multiplication.
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Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm rhs.py

�

rhs()

swm integration.py

�

time integration() ← RK4()

�

RK4() ← rhs()

2.5.2 Arakawa and Lamb (1981) energy and enstrophy conserving scheme

The energy and enstrophy conserving scheme developed by Arakawa and Lamb, 1981,
called AL hereafter, has a wider stencil compared to the scheme from Sadourny, 1975
(hereafter SZ), i.e. computationally more costly, but was also found to perform better
(Salmon, 2007). That means AL transports less enstrophy (which is essentially squared
vorticity) to higher wavenumbers, which reduces the numerical noise on the grid scale
compared to SZ. For further details see also Salmon, 2004 where the scheme is provided
in a much more readable notation as in the original AL paper.

As in SZ compute the mass fluxes U = uh and V = vh as

U = uh|x=xu
j
≈ u ∗ IuTh (69a)

V = vh|x=xv
k
≈ v ∗ IvTh (69b)

The advective term in the u-component qhv is then discretized as a summation of
linear combinations of the surrounding potential vorticity points q and the mass fluxes
U, V . We start with computing the linear combinations of q. Let AL1,AL2,AL3,AL4

(without meaning of the subscripts) be four different interpolations2 (directly written as
matrix) fom the q- to the T -grid defined as

AL1q = 1
24

(2q↖ + q↗ + q↙ + 2q↘), AL2q = 1
24

(q↖ + 2q↗ + 2q↙ + q↘) (70a)

AL3q = 1
24

(q↖ + q↗ − q↙ − q↘), AL4q = 1
24

(q↖ − q↗ + q↙ − q↘) (70b)

for visualization the corresponding stencils (denoted with subscript 1, 2, 3, 4) are

1
24

∣∣∣∣2 1
1 2

∣∣∣∣
1

, 1
24

∣∣∣∣1 2
2 1

∣∣∣∣
2

(71a)

1
24

∣∣∣∣ 1 1
−1 −1

∣∣∣∣
3

, 1
24

∣∣∣∣1 −1
1 −1

∣∣∣∣
4

(71b)

We might use AL and mean then any of matrices in equation (70). We define interpolation
matrices R to get the variables ALq from the T - to the u- or v-grid. As the matrices R
contain a maximum of one entry per row, they are rather shift matrices or correspond to
nearest-point interpolation. Hence, they could also be written in terms of an index (as

2AL3 and AL4 should be rather regarded as potential vorticity gradient due to the minus sign in their
stencil.
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actually done in the model code). We first look at R↑v which picks for all v-grid points
the corresponding ALq-value that sits 1

2∆y
North of this point on the T -grid.

R↑vALq = (ALq)↑ (72)

Hence, the interpolation of this operator shifts the T -grid southward by 1
2∆y

to place them

on the v-grid. The grid cell row closest to y = 0 is therefore left-out. Similar for R↓v, R←u
and R→u , which are

R↓vALq = (ALq)↓, R←u ALq = (ALq)←, R→u ALq = (ALq)→. (73)

Once the AL-interpolated potential vorticity sits on the u- and v-grid they are multiplied
with the mass fluxes U, V . In order to get a discretized advection term, AL interpolate
the surrounding absolute vorticity fluxes qU, qV onto each u- and v-grid point. For this
final interpolation we further need another set of shift-matrices T (they could again be
written in terms of an index) that shift a variable v from the v to the u-grid as follows

T↗v→uv =

{
0 if Northern boundary

v↗ else.
(74)

and include the kinematic boundary condition (case 1). Similarly, we have

T↘v→uv =

{
0 if Southern boundary

v↘ else.
(75)

T↙v→uv =

{
0 if Southern boundary

v↙ else.
(76)

T↖v→uv =

{
0 if Northern boundary

v↖ else.
(77)

and also T↖u→v,T
↗
u→v,T

↘
u→v,T

↙
u→v as well as T⇒u ,T

⇐
u ,T

⇑
v ,T

⇓
v . We are now able to write

the u-component of the advection term as

qhv|x=xu
j
≈ T↗v→u

(
R↓vAL1q ∗ V

)
+ T↘v→u

(
R↑vAL2q ∗ V

)
T↖v→u

(
R↓vAL2q ∗ V

)
+ T↙v→u

(
R↑vAL1q ∗ V

)
T⇐u (R→u AL3q ∗ U)−T⇒u (R←u AL3q ∗ U) (78)

and the v-component as

−qhu|x=xv
k
≈ −T↗u→v (R→v AL1q ∗ U)−T↘u→v (R→v AL2q ∗ U)

−T↖u→v (R←v AL2q ∗ U)−T↙u→v (R←v AL1q ∗ U)

−T⇑v
(
R↓vAL4q ∗ V

)
+ T⇓v

(
R↑vAL4q ∗ V

)
(79)

These equations correspond to equation B.2 from Salmon, 2004 and 3.5 and 3.6 together
with 3.34 from Arakawa and Lamb, 1981. However, from this notation it is clear that there
are essentially four costly computations that can be precomputed: AL1q,AL2q,AL3q and
AL4q. The remaining shift matrices R,T have at maximum one entry per row and can
also be implemented as index.

17



Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm rhs.py

�

rhs() ← ALadvection()

�

ALadvection()

2.6 Discrete dissipation

2.6.1 Discrete bottom friction

We discretize equation (18) with the gradient and interpolation operators from the pre-
vious sections as

−cD
H
|u|u ≈ −cD

H
IuT

(√
ITuu

2 + ITv v
2
)
∗ u (80a)

−cD
H
|u|v ≈ −cD

H
IvT

(√
ITuu

2 + ITv v
2
)
∗ v (80b)

In fact, the brackets only have to be computed once, and the term in the square-root also
appears in the discrete form of equation (7).

2.6.2 Discrete lateral mixing of momentum

The discretization of equation (22) is done in the following way:
The stress tensor S is discretized as

S ≈
(

Gu
xu−Gv

yv Gv
xv + Gu

yu

Gv
xv + Gu

yu −(Gu
xu−Gv

yv)

)
≡
(
S11 S12

S12 −S11

)
(81)

Note, as S is symmetric and has a vanishing trace, only two entries need to be computed
explicitly. Then, with hq = IqTh

1

h
∇ · hS ≈

(
1
hu
∗ (GT

x (h ∗ S11) + Gq
y(hq ∗ S12))

1
hv
∗ (Gq

x(hq ∗ S12)−GT
y (h ∗ S11))

)
≡
(
du
dv

)
(82)

which is the harmonic viscosity term without coefficient (which is still assumed to be
constant). To obtain a biharmonic viscosity term, we formulate another tensor R =
(R11, R12; R12, R22) as

R11 = Gu
xdu −Gv

ydv (83a)

R12 = Gv
xdv + Gu

ydu (83b)

Which is, in principal, evaluating equation (81) with (du, dv) instead of (u, v). The diver-
gence of this tensor yields the complete biharmonic lateral mixing of momentum terms

νBh
−1∇ · (hS(h−1∇ · hS(u, v))) ≈ νB

(
1
hu
∗ (GT

x (h ∗ R11) + Gq
y(hq ∗ R12))

1
hv
∗ (Gq

x(hq ∗ R12)−GT
y (h ∗ R11))

)
(84)

for a constant viscosity coefficient νB.
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2.7 Choosing the viscosity and friction coefficients

The remaining coefficients νA, νB, cD in equation (9) together with equation (23), can
not be chosen from physical principles but its choice should arise from considerations of
numerical stability (Griffies and Hallberg, 2000).

2.7.1 Harmonic and biharmonic viscosity

For the given configuration as described in section 1.2 we find the choice

νA,0 = 540 m2 s−1 (85)

for a resolution with ∆x0 = ∆y0 = 30 km appropriate. That means it is chosen as small
as possible but still removing clearly numerical oscillations that occur at the grid scale.
This choice also resolves the Munk boundary layer width

WM = 3

√
νA,0
β
≈ ∆x0 (86)

with approximately one grid cell. It was proposed to use this as an argument to choose
νA dependent on the resolution (Cooper and Zanna, 2015)

νA = β∆x3 (87)

Although, this might a criterion for stability, for ∆x < 30 km it was not found to prevent
numerical oscillations at the grid scale to occur. Instead a following scaling argument is
proposed: At the grid scale ∆x = ∆y the advective terms are desired to balance with
viscosity

O((u · ∇)u) =
U2

∆x
∼ νA

U

∆x2
= O(νA∇2u) (88)

with a velocity scale U . It follows a linear scaling of νA with ∆x

νA = U∆x (89)

under the assumption that the velocity scale does not change considerably. Based on the
empirically found value νA,0 from equation (85) it is therefore proposed to use dependent
on the resolution

νA =
νA,0
∆x0

∆x =
540 m2 s−1

30 km
∆x (90)

and this way also implemented in the model code. The biharmonic eddy viscosity scaling
is derived from the requirement that harmonic and biharmonic viscosity should be on the
same order of magnitude

1 =
O(νA∇2u)

O(νB∇4u)
=
νA
νB

∆x2 (91)

Hence, we propose a scaling for νB as

νB =
νA,0
∆x0

∆x3 =
540 m2 s−1

30 km
∆x3 (92)
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2.7.2 Bottom friction coefficient

Arbic and Scott, 2008 propose for general purpose a choice of cD = 0.0025 in equation
18 based on comparison of model simulations with observational data. However, using
this value in combination with the physical parameters of section 1.2 the model reaches
a steady state (all ∂t → 0) within a month or so. Although this steady state resembles
a double gyre, no eddies are permitted to develop. Therefore a smaller cD is needed to
reduce the friction in the model. Some tuning experiments lead to the choice of

cD = 10−5 (93)

which removes energy especially on larger scales but retains vorticity dynamics. The
factor 250 discrepancy between our choice and the one from Arbic and Scott, 2008 might
be further justified as for a one-layer shallow water model the bottom friction is computed
via the vertically averaged velocity, not the bottom velocity which would be smaller.
Additionally, when using H = 500m this value, as it appears in equation (18) is on the
order of 10× smaller than a real ocean.

2.8 Summary

All gradients are now approximated by centred finite differences and

∂tu = Iuqq ∗ Iuv(v ∗ IvTh)−GT
xp + Fx + νBL2

uu (94a)

∂tv = −Ivqq ∗ Ivu(u ∗ IuTh)−GT
y p + νBL2

vv (94b)

∂th = −Gu
x(u ∗ IuTh)−Gv

y(v ∗ IvTh) (94c)

with

p =
1

2

(
ITu (u2) + ITv (v2)

)
+ gh (95a)

q =
fq + Gv

xv−Gu
yu

IqTh
(95b)

3 Time discretization

3.1 Runge-Kutta 4th order

The discrete shallow water model is integrated forward in time with the 4th order Runge-
Kutta scheme (RK4, CITE!). Summarizing the right-hand side of equations 94 with
rhs(u, v, h) = (du, dv, dh) the model equations reduce to

∂t

u

v

h

 =

du

dv

dh

 . (96)

Using RK4, discretizing the temporal derivative readsun+1

vn+1

hn+1

 =

un

vn

hn

+
∆t

6

ku1 + 2ku2 + 2ku3 + ku4
kv1 + 2kv2 + 2kv3 + kh4
kh1 + 2kh2 + 2kh3 + kh4

 (97)
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with the superscript n, n + 1 denoting the current and next time step, respectively, that
lie time ∆t apart. The choice of ∆t is discussed below. (ku, kv, kh) are approximations
for (∂tu, ∂tv, ∂tk) and defined as

(ku1 , k
v
1, k

h
1) = rhs(un, vn, hn) (98a)

(ku2 , k
v
2, k

h
2) = rhs(un + ∆t

2
ku1 , v

n + ∆t
2
kv1, h

n + ∆t
2
kh1) (98b)

(ku3 , k
v
3, k

h
3) = rhs(un + ∆t

2
ku2 , v

n + ∆t
2
kv2, h

n + ∆t
2
kh2) (98c)

(ku4 , k
v
4, k

h
4) = rhs(un + ∆tku3 , v

n + ∆tkv3, h
n + ∆tkh3) (98d)

Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm integration.py

�

time integration() ← RK3() or RK4()

�

RK3() ← rhs()

�

RK4() ← rhs()

swm rhs.py

�

rhs()

3.2 Adams-Bashforth

The shallow water model code also allows to use Adams-Bashforth (AB, CITE!) methods
of order 1 to 5. As AB methods are multi-step methods, in this case, order 1 (i.e. Euler
forward) is used for the first time step, order 2 is used for the second time step, and so
on until the desired order is reached. However, this method is not discussed further here,
as it was found to perform not better than RK4, as explained in the next section.

Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm integration.py

�

time integration() ← rhs(), ABcoefficients()

�

ABcoefficients()

swm rhs.py

�

rhs()

3.3 Choosing the time-step size ∆t

In the shallow water model, the fastest propagating signals are gravity waves. The phase
speed cp of those waves is Gill, 1982

cp =
√
gh ≈

√
gH (99)
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where the approximation holds in the barotropic case where η � H. In contrast, using
a reduced gravity g′ � g = 10 m/s2 usually yields much larger variations in η and the
approximation in equation (99) may become less justified, but in many cases still be useful.
As a consequence, waves might propagate significantly faster in certain regions, which can
affect the numerical stability. The CFL-number ε (named after Courant, Friedrichs and
Lewy, CITE!) is then

ε =
cp∆t

∆x
(100)

Hence, choosing the CFL-number ε, we obtain the time step ∆t as

∆t = ε
∆x

cp
(101)

Using RK4, a choice of ε ≤ 0.9 was found to be stable in the barotropic set up of equation
(10). Multi-step schemes such as AB have the advantage, that they only require one
evaluation of the right-hand side per time step (in contrast to RK4 which requires 4
evaluations of the right-hand side), which could theoretically decrease the computational
time required in order to integrate the model forward. However, in practice, the 3rd order
Adams-Bashforth method was found to be stable for ε ≤ 0.2 (i.e. a decrease of ∆t by
a factor of 4 to 5), which means that the effective computational performance is on the
same order but slightly outperformed by RK4.

Please note, that in general it is possible to recompute ∆t during the model integra-
tion based on cp = max(

√
gh) with equation (101). This comes unfortunately with the

disadvantage of unevenly spaced time steps but might be a way to avoid instability arising
from large variations of η, for example in a baroclinic set up with reduced gravity g′ � g.

Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm param.py

�

set param() ← set grid(), set timestep()

�

set grid()

�

set timestep()

4 Data output

4.1 Temporal subsampling

In order to avoid huge data sets, not every model time step n is stored, but an eligible
subsample nout, which can be chosen by specifying the output time step ∆tout. This is
done as follows

nout = floor

(
∆tout

∆t

)
(102)

As the desired output time step ∆tout is not necessarily an integer multiple of ∆t the actual
output time step is (in most applications) slightly less than desired due to rounding within
the floor-operation. However, the data output is therefore evenly spaced in time and no
temporal interpolation is applied.
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Model code

Relevant scripts .py and functions, denoted with (), and dependencies ←

swm param.py

�

set param() ← set output()

�

set output() ← set timestep()

�

set timestep()

swm integration.py

�

time integration() ← feedback ini(), feedback()

�

feedback ini() ← output nc ini(), set output()

�

feedback() ← output nc(), set output()

swm output.py

�

output nc ini()

�

output nc()

5 Figures
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Figure 1: Grid cell numbering following the ideas of an Arakawa C-grid. The values of
u, v vanish at the faint grid nodes on the boundary (kinematic boundary condition, see
equation 5 and 6) and therefore these grid nodes are not explicitly resolved.
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Figure 2: For readability the respective surrounding grid points are marked with a super-
script arrow that points the direction. Here shown for a point on the T -grid but easily
extendable for all surrounding points on any grid.

Figure 3: Spatial gradients on the T -grid for an example grid of nx = ny = 5 omitting
the 1

∆x
, 1

∆y
factors written as Matrix operations. (left) GT

x , the discretized x-derivative,

(right) GT
y the discretized y-derivative. Blank entries are zero. Please note, that the

indexing starts here with 0 as common in many programming languages.
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Figure 4: Same as Fig. 3 but for (left) Gu
x and (right) Gv

y.

Figure 5: Same as Fig. 3 but for (left) Gu
y and (right) Gv

x. These are shown here for
no-slip boundary conditions, such that α = 2 in equation 45. Replacing all entries with
±2 by 0 yields free-slip boundary conditions.
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Figure 6: Same as Fig. 3 but for (left) Gq
x and (right) Gq

y.

Figure 7: Spatial interpolation between different grids for an example grid of nx = ny = 5
written as Matrix operations. (left) ITu , the interpolation from u- to T -grid, (right) ITv ,
the interpolation from v- to T -grid. Blank entries are zero. Please note, that the indexing
starts here with 0 as common in many programming languages.

Figure 8: Same as Fig. 7, but for (left) IuT and (right) IvT .
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Figure 9: Same as Fig. 7, but for (left) Ivu and (right) Iuv .

Figure 10: Same as Fig. 7, but for (left) Iqu and (right) Iqv. The tangential boundary
condition parameter is here α = 2, which corresponds to the no-slip case. Replacing the
marked entries with 0 by 1 yields free-slip boundary conditions (α = 0).
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Figure 11: Same as Fig. 7, but for (left) Iuq and (right) Ivq .

Figure 12: Same as Fig. 7, but for (left) ITq and (right) IqT . For IqT the von-Neumann
boundary conditions for h, i.e. ∇h = 0, results in the increased values of 0.5 and 1 at the
boundaries.
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Appendices

A Indexed equations

∂xh|x=xu
j
≈ hj+r+1 − hj+r

∆x
, with r = floor(

j − 1

nx − 1
), ∀ j ∈ {1, ..., Nu} (103)

∂yh|x=xv
k
≈ hk+nx − hk

∆y
, ∀ k ∈ {1, ..., Nv} (104)

∂xu|x=xi
≈ 1

∆x


ui − 0 if (i mod nx) = 1

0− ui−1 if (i mod nx) = 0

ui − ui−1 else.

, ∀ i ∈ {1, ..., NT} (105)

∂yv|x=xi
≈ 1

∆y


vi − 0 if i ≤ nx

0− vi−nx if i > Ny

vi − vi−nx else.

, ∀ i ∈ {1, ..., NT} (106)

r = 3 + 2 floor

(
l − 1

nx + 1

)
(107)

∂yu|x=xq
l
≈ 1

∆y


0 if l mod (nx + 1) ≤ 1

αul−1 if 1 < l ≤ nx

−αul−r−nx+1 if Nq − nx < l < Nq

ul−r − ul−r−nx+1 else.

, ∀ l ∈ {1, ..., Nq} (108)

hu = h|x=xu
j
≈ hj+r+1 + hj+r

2
, with r = floor(

j − 1

nx − 1
), ∀ j ∈ {1, ..., Nu} (109)

hv = h|x=xv
k
≈ hk+nx + hk

2
, ∀ k ∈ {1, ..., Nv} (110)

uq = u|x=xq
l
≈


0 if l mod (nx + 1) ≤ 1

(1− α
2
)ul−1 if 1 < l ≤ nx

(1− α
2
)ul−r−nx+1 if Nq − nx < l < Nq

1
2
(ul−r + ul−r−nx+1) else.

, ∀ l ∈ {1, ..., Nq} (111)

∀ k ∈ {1, ..., Nv}

uv = u|x=xv
k
≈ 1

4


(uk−r + uk−r+nx−1) if (k − 1) mod nx = 0

(uk−r−1 + uk−r+nx−2) if k mod nx = 0

(uk−r + uk−r+nx−1 + uk−r−1 + uk−r+nx−2) else.

(112)
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r = floor

(
k − 1

nx

)
(113)

qT = q|x=xi
≈ 1

4
(qi+r+1 + qi+r+nx+2 + qi+r + qi+r+nx+1), ∀ i ∈ {1, ..., NT} (114)

r = floor

(
i− 1

nx

)
(115)

qhv|x=xu
j
≈ 1

24
(qαV

↗ + qβV
↘ + qγV

↖ + qδV
↙ + qλU

← + qρU
→) (116)

where

qα = 2q↗ + 2q↓ + q↑ + q↘ (117a)

qβ = 2q↑ + 2q↘ + q↓ + q↗ (117b)

qγ = 2q↖ + 2q↓ + q↑ + q↙ (117c)

qδ = 2q↑ + 2q↙ + q↓ + q↖ (117d)

qλ = q↑ + q↖ − q↓ − q↙ (117e)

qρ = q↓ + q↘ − q↑ − q↗ (117f)
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