
Chapter 2

Methodology

This chapter describes the methods that are used in this study. Prior to

the methodology, the notation used in this chapter is explained in section

2.0. Section 2.1 introduces the shallow water model whose simulations are

used throughout this study. Energetics in the shallow water model and the

formulation of the backscatter parametrization are succeedingly discussed

in section 2.1.4. The analysis of Reynolds and Rossby numbers is based on

definitions provided in section 2.2. In section 2.3, details on the computation

of the eddy kinetic energy spectrum are given. The analysis of Lagrangian

trajectories is presented in section 2.4 and finally a short remark on the data

sampling from the shallow water model is provided in section 2.5.
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2. Methodology

2.0 Notation

In the following, we will make use of a notation, where

(i) a scalar variable a,A is written in normal font with either lower or

upper case letter. A vector a = (a1, a2) is written in bold-font but

lower case. A tensor A = (A1, A2;A3, A4) is written with upper case

bold letters.

(ii) the product · between a vector a = ai and a tensor C = Cij is defined

as a ·C =
�

i aiCij = dj and yields a vector dj = d.

(iii) two vectors a = (a1, a2),b = (b1, b2) concatenated without any symbol,

i.e. ab, yield a tensor C, such that ab = (a1b1, a1b2; a2b1, a2b2) = C.

Example given: ∇u = (∂xu, ∂xv; ∂yu, ∂yv)

(iv) the 2-norm of a vector a = (a1, a2) is written as |a| =
�

a21 + a22.

Similarly the 2-norm of the tensor A is |A| =
�
A2

1 +A2
2 +A2

3 +A2
4.

For a complex number z = a+ ib, |z| =
√
a2 + b2.
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2. Methodology

2.1 The shallow water model

The shallow water model follows from the depth-integrated Navier-Stokes

equations with the assumption that the vertical length scale is negligible

compared to the horizontal length scale [Gill, 1982; Vallis, 2006]. In this

study we use the shallow water equations of the form

∂tu+ u∂xu+ v∂yu− fv = −g∂xη + Fx +Bx +Mx + ξx (2.1a)

∂tv + u∂xv + v∂yv + fu = −g∂yη + Fy +By +My + ξy (2.1b)

∂tη + ∂x(uh) + ∂y(vh) = 0 (2.1c)

with

u = (u, v) = (u(x, y, t), v(x, y, t)) horizontal velocity vector

η = η(x, y, t) surface displacement

h = h(x, y, t) = η +H layer thickness

H = constant undisturbed layer thickness

f = f(y) Coriolis parameter

g = constant gravitational acceleration

f = (Fx, Fy) = (Fx(x, y, t), Fy(x, y, t)) forcing vector

b = (Bx, By) = (Bx(u, v, h), By(u, v, h)) bottom friction term

m = (Mx,My) = (Mx(u, v, h),My(u, v, h)) lateral mixing of momentum

Ξ = (ξx, ξy) negative viscosity backscatter

and differential operators ∂x = ∂
∂x , ∂y = ∂

∂y , ∂t = ∂
∂t on the rectangular

domain D = (0, Lx)× (0, Ly) of width (or east-west extent) Lx and north-

south extent Ly and with cartesian coordinates x, y and time t. As initial

conditions we choose to start from rest, so that u = v = η = 0 at t = 0. There

is no flow through the boundary, which is usually referred to as the kinematic

boundary condition (equaton A.1). We set the tangential velocity at the

boundary to zero in order to have no-slip boundary conditions (equation

A.3). This is motivated as free-slip boundary conditions (equation A.4) in

contrast yield an enormous western boundary current that is maintained by

eddies propagating via the northern boundary towards the east. In order to
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2. Methodology

have some resemblance of the shallow water model with the circulation in

mid-latitudinal ocean basins, we favour no-slip boundary conditions.

In the following, the formulation of the terms appearing in the shal-

low water equations 2.1 are presented. A detailed description about the

discretization of the shallow water equations 2.1 is found in appendix A.2.

It is based on an equivalent formulation of the shallow water equations as

presented in appendix A.1.2.

2.1.1 Barotropic double gyre wind forcing

In order to simulate mid-latitudinal dynamics, we choose the physical pa-

rameters of the previous section as [Berloff, 2005; Cooper & Zanna, 2015;

Porta Mana & Zanna, 2014; Zanna et al., 2017]

g = 10 ms−2, H = 500 m, Lx = Ly = 3840 km (2.2)

with beta-plane approximation [Gill, 1982]

f = f0 + β(y − Ly

2
), f0 = 2Ω sin(2π

θ0
360

), β =
2Ω

R
cos(2π

θ0
360

) (2.3)

at northern hemisphere mid-latitudes, with the domain D being centred

around the latitude θ0 = 30 with

R = 6371 km, Ω =
2π

86400
s−1 . (2.4)

The forcing is set to be Fy = 0 and

Fx =
γ

ρh
(2.5a)

γ = F0

�
cos

�
2π

�
y

Ly
− 1

2

��
+ 2 sin

�
2π

�
y

Ly
− 1

2

���
(2.5b)

with amplitude F0 = 0.12 Pa and density ρ = 1000 kgm−3. The forcing

Fx resembles the trade winds in the southern part of the domain and the

westerlies in the northern part of the domain (Fig. 2.1). We admit that the

choice of H yields an unrealistically shallow ocean basin. The wind forcing

is increased by a factor of three compared to reference values [Cooper &

Zanna, 2015]. However, we thereby increase the allowed numerical time step

(see section A.2.9) leading to a reduced effective computing time for a more
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turbulent shallow water system.
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Figure 2.1: (a) The wind forcing (Fx, Fy) resembling trade winds and west-
erlies over the domain D. (b) Wind profile γ. The points A, B will used for
the analysis of autocorrelation (section 3.6, Fig. 3.10 and 3.11).

2.1.2 Bottom friction

A quadratic drag of the following form is used for all model runs with bottom

friction

b = −cD
h
|u|u (2.6)

with cD being a dimensionless drag coefficient [Arbic & Scott, 2008]. In

contrast to a linear drag, a quadratic drag was found to be more realistic.

It removes energy especially at the larger scales, leaving the smaller scales

almost unaffacted. This is supported in this study (see section 3.4).

The energetics of the bottom friction term are presented in section 2.1.4.

In this study, we investigate a set of model runs containing bottom friction

where we choose cD = 10−5 and another set of model runs without bottom

friction (cD = 0) as described in Table 2.1. The choice of cD is discussed in

section A.2.6.
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2. Methodology

2.1.3 Lateral mixing of momentum

The viscosity is formulated as lateral mixing of momentum and represented

by the term m. A general approach m0 of this family being

m0 = ∇ · νS (2.7)

with the viscosity coefficient ν and a stress tensor S (sometimes also called

viscous flux tensor [Eden, 2016]). With S = ∇u and a constant ν the

equation 2.7 reduces to

mL = ν∇2u (2.8)

with ∇2 = ∂2
x + ∂2

y the two dimensional Laplace operator. However, as

discussed by Shchepetkin & O’Brien [1996] a more sophisticated alternative

is found with the symmetric 2x2 stress tensor S defined by

S =

�
ux − vy vx + uy

vx + uy −(ux − vy)

�
. (2.9)

Their harmonic lateral mixing of momentum term m2 is then formulated for

the shallow water model as

m2 = νAh
−1∇ · hS. (2.10)

Note that for h being a constant equation 2.10 simplifies to equation 2.8.

Equation 2.10 can be extended to a biharmonic operator by applying it twice

m = νBh
−1∇ · (hS(h−1∇ · hS(u, v))). (2.11)

where the stress tensor is regarded as a linear map, once evaluated with (u, v)

and then with h−1∇ · hS(u, v). Both viscosity coefficients νA and νB are for

simplicity taken as constants. Again, for a constant h equation 2.11 reduces

to νB∇4u, with ∇4 = ∂4
x+∂4

y +2∂2
x∂

2
y . Hence, for a barotropic system, where

η � H it might be justified to linearize the viscous term by assuming h to

be constant as in Cooper & Zanna [2015]. However, here we keep the form

of equation 2.11 to have a fully non-linear system. A higher order derivative

implies the use of higher order boundary conditions: Applying the harmonic
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2. Methodology

operator twice yields additional boundary conditions as

h∇2u+∇h ·
�
ux − vy

vx + uy

�
= 0, at x = 0 and x = Lx (2.12)

and

h∇2v +∇h ·
�
vx + uy

vy − ux

�
= 0, at y = 0 and y = Ly (2.13)

For the case of a constant h this simplifies to a vanishing second derivative

of the normal velocity component at the boundaries.

A biharmonic operator acts especially on the small scales, where waves

are rapidly damped compared to the large scales, which remain mostly

unaffected [Griffies & Hallberg, 2000; Shchepetkin & O’Brien, 1996]. To have

an additional energy sink at the large scales, bottom friction from equation

2.6 is used in combination with the biharmonic lateral mixing of momentum

as presented here. For a discussion on the choice of νB the reader is referred

to section A.2.6. The choices for the different model runs are listed in Table

2.1.

2.1.4 Energetics in the shallow water model

In the following, energy sources/sinks and reservoirs in the shallow water

system are discussed as they will be analyzed for all model runs in section

3.4.

The shallow water equations without forcing or dissipation (i.e. f = m =

b = 0) obey a conservation of energy of the form

∂t�12ρh(u2 + v2) + 1
2gρη

2� = 0. (2.14)

For a detailed derivation see Appendix A.3.1. The first term represents

kinetic energy KE and the second (available) potential energy PE, both

horizontally integrated by �� =
��

D
dx and vertically as are the momentum

equations (2.1).
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2. Methodology

Energetics of wind forcing Once we consider wind forcing Fx in equation

2.1a of the form as in equation 2.5

∂tu = ...+
γ

ρh
(2.15)

the energy �KE+PE� is not conserved

∂t�KE+PE� = �uγ� (2.16)

Once u and Fx are of the same sign, i.e. the flow follows the direction of

the wind, the wind forcing term is a source of energy to the shallow water

system. As we start the model runs from rest we can expect at least in the

sense of a spatial and temporal average that the wind forcing is a source

of energy to the shallow water system. This is discussed and supported in

section 3.4.

Energetics of bottom friction Consider adding a drag term of the form

in equation 2.6

∂tu = ...− cD
h

�
u2 + v2u (2.17)

that acts physically as bottom friction. The energy equation is then

∂t�KE+PE� = −�ρcD(u2 + v2)
3
2 � ≤ 0. (2.18)

which is with non-vanishing velocities an energy sink throughout the domain

D at every time step.

Energetics of lateral mixing A term of the form

∂tu = ...+ h−1∇ · (νhS) (2.19)

with viscosity coefficient ν > 0 and stress tensor S is added to the momentum

equations. In fact, using a biharmonic lateral mixing of momentum this term

should be negative to account for the correct sign of diffusion. Adaptation

of the following for a biharmonic operator is straight forward. The energy

equation is then

∂t�KE+PE� = �ρu · (∇ · νhS)�. (2.20)
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2. Methodology

By evaluating

u · (∇ · νhS) = ∇ · (νhS · u)−∇u · νhS (2.21)

and making use of the kinematic boundary condition the first term vanishes

in the global integral as divergence of a flux and it follows that

∂t�KE+PE� = −�ρνh∇u · S�. (2.22)

For the case of S being the symmetric stress tensor defined in equation 2.9,

i.e. harmonic diffusion, lateral mixing is an energy sink as ∂t�KE+PE� =
−�ρνh∇u ·S� ≤ 0 not just spatially integrated but everywhere in the domain

D (see section A.3.3 for details). This is in contrast to biharmonic mixing

operators (equation 2.11), which are not sign-definite in that respect. As a

result, the harmonic diffusion is always down-gradient, but the biharmonic

diffusion can also lead to local power input in equation 2.22 [Griffies, 2004],

but is in general also an energy sink.

Mean and eddy kinetic and potential energy Using Reynolds - de-

composition in time allows to split every quanitity a into a time mean a and

anomalies a� relative to a as

a = a+ a�. (2.23)

However, in the shallow water system it is proposed to use thickness-weighted

averaging [Aiki et al., 2016]

�a =
ha

h
(2.24)

The thickness-weighted average �a is then used to compute the respective

anomalies a��

a�� = a− �a (2.25)

Note that ha�� = 0. We can split the potential energy PE into mean

potential energy (MPE) and eddy potential energy (EPE) with the thickness-

unweighted decomposition

PE = 1
2gρ(η + η�)2 = 1

2gρη
2 + 1

2gρη
�2 ≡ MPE+EPE . (2.26)
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2. Methodology

For mean kinetic energy (MKE) and eddy kinetic energy (EKE) we use

thickness-weighted decomposition on u and v

KE = 1
2ρh ((�u+ u��)2 + (�v + v��)2)

= 1
2ρ

�
h(�u2 + �v2) + h(u��2 + v��2) + 2�uhu�� + 2�vhv��

�

= 1
2ρh(�u2 + �v2) + 1

2ρh(u
��2 + v��2)

≡ MKE+EKE (2.27)

2.2 Reynolds and Rossby numbers

Definitons of the Reynolds and Rossby numbers directly calculated from

the size of terms in the shallow water equations and adapted to the energy

budget-based backscatter parametrization are presented.

Reynolds number The Reynolds number, defined as the ratio between

advective and viscous terms, is traditionally estimated via scale analysis

�Re =
O((u ·∇)u)

O(ν∇2u)
=

UL

ν
(2.28)

with some velocity scale U , length scale L and viscosity ν. It is also possible

to directly compute the size of the advective and viscous term, i.e. replacing

the O()-operation by the 2-norm of a vector and using the lateral mixing of

momentum from equation (2.11)

Re =
|(u ·∇)u|

|νBh−1∇ · (hS(h−1∇ · hS(u, v)))| (2.29)

In the case of the backscatter parametrization, the effective Reynolds number

R∗
e also includes the backscatter term

R∗
e =

|(u ·∇)u|
|νBh−1∇ · (hS(h−1∇ · hS(u, v))) + νbackh−1∇ · hS| (2.30)

in order to account for the negative viscosity introduced by the backscatter

parametrization. In fact, the terms in the denominator counteract each other:

The first tends to smooth gradients, whereas the second tends to steepen

them. Using the backscatter parametrization we can expect that R∗
e > Re in

an average sense.
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2. Methodology

Rossby number Via scale analysis the Rossby number �Ro results from

the ratio of advective terms and Coriolis terms as

�Ro =
O((u ·∇)u)

O(fk× u)
=

U

fL
(2.31)

with f being the Coriolis parameter and k the unity vector in the vertical.

As in equation (2.29) the direct calculation for the Rossby number Ro yields

Ro =
|(u ·∇)u|
|fk× u| . (2.32)

It is also possible to base an estimation R∗
o of the Rossby number on the

deformation rate

|D| =
�

(∂xu− ∂yv)2 + (∂yu+ ∂xv)2 (2.33)

which yields a large Rossby number R∗
o in regions with strong shear flow

R∗
o =

|D|
f

(2.34)

Histogram computation The direct Reynolds numbers Re and Rossby

numbers Ro will be investigated in terms of their histogram computed for all

grid cells and all available time steps (without the spin-up phase, see section

2.5) at daily resolution. Hence, the histograms are computed from roughly

1.5 · 108 values in the low resolution case and 2.4 · 109 at high resolution.

The high resolution histograms are divided by a factor 16 to account for this

and allow normalization onto the low resolution histograms. As Rossby and

Reynolds numbers are approximately log-normally distributed the histogram

is computed over their respective logarithms with a bin width of about 0.027

for Reynolds numbers and 0.018 for Rossby numbers. Also, a spatio-temporal

mean Rossby and Reynolds number is computed, where the logarithm is

applied afterwards for visualization purposes. For the model runs including

backscatter, the effective Reynolds number R∗
e is used instead to account for

the backscatter term.

Rossby radius of deformation The Rossby radius of deformation LRo

is defined via the shallow water phase speed for gravity waves cph =
√
gH

(see discussion around equation A.75 for further details) and the Coriolis
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parameter f = f(y) as

LRo =
cph
f

. (2.35)

In the beta-plane approximation (equation 2.3), the Rossby radius is

largest at the southern edge of the domain (y = 0) and smallest at the

northern edge (y = Ly), it is therefore further distinguished between

Lmax
Ro

=
cph

f0 − β
Ly

2

and Lmin
Ro

=
cph

f0 + β
Ly

2

. (2.36)

2.3 Eddy kinetic energy spectrum

To have an objective analysis about the effect of sub-grid scale parametriza-

tions, the eddy kinetic energy spectrum EKE(K) as a function of the total

wavenumber K =
√
k2 + l2 is regarded. k is the zonal wavenumber (in

x-direction), l the meridional wavenumber (in y-direction). Such a spectrum

is especially sensitive to oscillations that may appear at the grid scale once

dissipation is too weak. In this case, kinetic energy tends to pile up at the

largest wave numbers, which results from the numerics and is physically

undesired. The spectrum is defined as [Jansen et al., 2015]

EKE(K) =
d

dK

��

k2+l2<K2

1

2

�
|�ut|2 + |�vt|2

�
dkdl (2.37)

with �ut, �vt being the spectral transforms of the two dimensional fields u, v for

a given time t. The overbar denotes a temporal mean. The EKE spectrum

regarded here therefore describes the energy per wavenumber (regardless of

the direction) averaged in spectral space over all available time steps.

2.4 Lagrangian trajectories

To calculate the trajectory of a Lagrangian float, we follow the idea that at

a given time t the position xp = (xp, yp) of that particle changes by passive

advection of the flow field

dxp
dt

= u(x = xp),
dyp
dt

= v(x = xp). (2.38)
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Providing the initial position of the float xp(t = 0) we can solve equation

2.38 numerically with a given flow field (u, v). As the flow field is gridded

on the native model grid, which in general does not correspond to the float

positions, we interpolate bilinearly from the four surrounding grid points.

Taking the boundary conditions of the flow field into account, no float was

observed to leave the domain D. However, due to a vanishing flow some

floats remain at the boundary for a long time, which is thought of to be

physically reasonable.

Discretizing the time derivative in equation 2.38 is done with a predictor-

corrector method (also known as trapezoidal rule, [Butcher, 2008]). With

x0, y0 the intial positions at time t = t0 and x1, y1 the positions at time

t = t0 + δt this is

x1 = x0 +
δt

2
(u0 + u1), y1 = y0 +

δt

2
(v0 + v1) (2.39)

where u0 = u(t = t0,x = x0) and v0 = v(t = t0,x = x0) and u1 = u(t =

t0+δt,x = x∗
1) and v1 = v(t = t0+δt,x = x∗

1) with the initial guess positions

x∗1 = x0 + δtu0, y∗1 = y0 + δtv0 (2.40)

that are computed with Euler forward. The float trajectories are calculated

offline, hence the time step δt is 6 hours, as this is the smallest time step at

which data from the numerical model is stored. We calculate trajectories

from a total 100,000 floats, that where injected at 1000 random starting

dates (after the spin-up phase) in groups of 100 floats. The trajectories are

then calculated forward in time for one year. The results are presented in

terms of accumulated float density, which accounts for all floats that have

been at the respective location at some time within one year after release.

That means, accumulated float density is a histogram that counts all floats

that have been in a given grid box (equal boxes of Δx = Δy = 15km are

used), regardless of when they have been there within one year after release.

The zero-isoline of that histogram therefore denotes the line that no float was

able to cross within one year. As release locations, we pick for every float a

random position within a rectangle that spans from x = 100km to x = 200km

and from y = 100km to y = 1920km as marked in Fig. 3.12 to place the

floats close to the boundary within the subtropical gyre (a discussion is given

in section 3.7). If all floats were always far away from the boundary, then the
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accumulated float density would be calculated from in total 146,000,000 float

positions (100,000 floats at 1460 time steps that result from 6-hourly data for

365 days). However, as some floats stay for a long time close to the boundary,

as discussed above, these are neglected from analysis by disregarding all float

positions that are closer than 30km to the boundary. In practice, this means

that 98% of all theoretical positions enter the analysis for the control runs

and 94% for the model runs with backscatter.

2.5 Model runs and data sampling

For the list of model runs that are analysed in this study see Table 2.1.

List of model runs cD Nx Δx νB ndiss tc

[km] [m4s−1]

with bottom friction

Low resolution (LR) 10−5 1282 30 4.86 · 1011 - 1

High resolution (HR) 10−5 5122 7.5 7.59 · 109 - 50.2

LR + weak backscatter 10−5 1282 30 4.86 · 1011 1
2 1.39

LR + moderate backscatter 10−5 1282 30 4.86 · 1011 1
6 1.39

LR + strong backscatter 10−5 1282 30 4.86 · 1011 0 1.39

without bottom friction

Low resolution (LR) 0 1282 30 4.86 · 1011 - 0.93

High resolution (HR) 0 5122 7.5 7.59 · 109 - 46.7

LR + weak backscatter 0 1282 30 4.86 · 1011 1
2 1.30

LR + moderate backscatter 0 1282 30 4.86 · 1011 1
3 1.30

LR + strong backscatter 0 1282 30 4.86 · 1011 1
4 1.30

Table 2.1: List of model runs used in this study. The choice of the bottom
friction coefficient cD and the biharmonic viscosity νB is discussed in section
A.2.6. The tuning parameter for backscatter ndiss appears in equation ??.
The total number of grid cells is denoted with Nx, the grid spacing with Δx.
The computing time tc is given in relation to the computing time of the low
resolution control run with bottom friction. Please note that the computing
time is only roughly estimated and strongly dependent on the computing
architecture.

For the analyses in this study, we use from every model run daily in-
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stantaneous values on the native model grid of 30 year long integrations.

Spatial interpolation is only used in the computation of terms that involve

prognostic variables from different grids (see section A.2.1). Only for the

analysis of autocorrelation (section 3.6) and Lagrangian trajectories (section

3.7) 6-hourly data is used for a better temporal resolution. A spin-up phase

of 5 years, as discussed in section 3.2, is disregarded from all analysis except

the timeseries in Fig. 3.2.
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