
Appendix

A.1 Shallow water equation formulation for the

numerical model

A.1.1 Boundary conditions

The boundary conditions used in the shallow water model (equations 2.1) are

explicitly given in the following. The kinematic boundary condition states

that there is no flow through the boundary, i.e.

u(x = 0) = u(x = Lx) = v(y = 0) = v(y = Ly) = 0. (A.1)

Additionally, for numerical convenience, we require no gradient of η across

the boundary, hence

∂xη(x = 0) = ∂xη(x = Lx) = ∂yη(y = 0) = ∂yη(y = Ly) = 0, (A.2)

The tangential velocity at the boundary should vanish, which is usually

referred to as no-slip boundary conditions

v(x = 0) = v(x = Lx) = 0, u(y = 0) = u(y = Ly) = 0. (A.3)

However, sometimes these equations are replaced by

∂xv(x = 0) = ∂xv(x = Lx) = ∂yu(y = 0) = ∂yu(y = Ly) = 0, (A.4)

which are called free-slip boundary conditions, omitting a flux of momentum

through the boundary, which are here given only for completeness but not

used in this study.

51

Appendix

A.1.2 Reformulation with Bernoulli potential and potential

vorticity

The prognostic variables in the shallow water equations 2.1 so far are u, v, η,

however, as η only appears in gradients, also h can be used as prognostic

variable. We can separate from the advective terms in equations 2.1a,b the

spatial gradient of kinetic energy. In combination with the pressure gradient

term we introduce the Bernoulli potential p as

p =
1

2
(u2 + v2) + gh (A.5)

Furthermore, with the relative vorticity ζ = ∂xv − ∂yu the potential vorticity

can be defined as

q =
f + ζ

h
(A.6)

and equivalent to the shallow water equations we have

∂tu = qhv − ∂xp+ Fx +Mx +Bx + ξx (A.7a)

∂tv = −qhu− ∂yp+ Fy +My +By + ξy (A.7b)

∂tη = −∂x(uh)− ∂y(vh) (A.7c)

which are the equations solved by the numerical model as described in

Appendix A.2.

A.2 Discretization of the shallow water model

In the following we will describe the discretization of equation A.7 in space

and time. This discretization is then implemented into a numerical model

code that can be found at www.github.com/milankl/swm and forms the

numerical shallow water model as used throughout this study.

A.2.0 Notation

Some remarks on the notation used to describe the discretization of the

shallow water model.

Surrounding grid points A superscript arrow points in the direction

relative to the grid point where an operation is evaluated. More clearly,

52

Appendix

regarding a variable a at x = (xa, ya) somewhere in the middle of the domain

away from the boundaries. Then,

b← = b|
x=(xa−1

2Δx,ya)
, b→ = b|

x=(xa+
1
2Δx,ya)

(A.8)

where b is a variable that sits on the grid that is shifted by 1
2Δx in x-direction,

and

c↓ = c|
x=(xa,ya−1

2Δy)
, c↑ = c|

x=(xa,ya−1
2Δy)

(A.9)

where c is a variable that sits on the grid that is shifted by 1
2Δy in y-direction,

and

d� = d|
x=(xa+

1
2Δx,ya+

1
2Δy)

, d� = d|
x=(xa+

1
2Δx,ya−1

2Δy)
(A.10a)

d� = d|
x=(xa−1

2Δx,ya−1
2Δy)

, d� = d|
x=(xa−1

2Δx,ya+
1
2Δy)

(A.10b)

where d is a variable that sits on the grid that is shifted by both 1
2Δx in

x-direction and 1
2Δy in y-direction. The notation is therefore independent

of the indexing. For the description of the advective terms (section A.2.4)

we may relate grid points that are further away by

b⇐ = b|x=(xa−Δx,ya), b⇒ = b|x=(xa+Δx,ya) (A.11)

and similar for ⇑,⇓. The single arrow therefore represents a grid point that

is either (±nΔx, 0), (0,±nΔy) or (±nΔx,±nΔy), with n = 1
2 , away. Same

for the double arrow, but with n = 1. This notation is logically extended for

a triple arrow ⇑↑ (i.e. n = 3
2), and so on.

The operator stencils usually change close to the boundary due to bound-

ary conditions. In order to treat these cases separately we introduce the

following, index-independent notation: Call a grid node northern boundary

(NB), western boundary (WB), southern boundary (SB) or eastern boundary

(EB), when the evaluation of a stencil for that grid node involves unresolved

variables, because they sit either outside the domain D or on the boundary,

where they are given by the boundary conditions.

Note that there is an overlap of two adjacent boundaries that we call

accordingly north-east corner (NE), north-west corner (NW), south-west

corner (SW) or south-east corner (SE). This notation is unfortunately only

53

Appendix

Figure 1: Illustrating the idea of an arrow-based notation for surrounding
grid points. Here, the grid points around a grid point on the T -grid.

useful when stencils are small, but then provide a readable alternative.

Non-linear operations As the equations of interest are non-linear we

cannot describe all operations in the model in terms of matrix-vector multi-

plications, additions of vectors or multiplications of a scalar with a vector.

In fact, it turns out that all non-linear operations in equation (2.1), once

discretized, are element-wise vector-vector multiplications. Let a, b be two

vectors of same length N , respectively element of a vector space V . Hence,

they should sit on the same grid. We then define the element-wise vector-

vector multiplication ∗ as

∗ : V ×V → V, a∗b →




a1b1

a2b2
...

aNbN




, with a =




a1

a2
...

aN




, b =




b1

b2
...

bN




(A.12)

and define the order of computation as inferior to matrix-vector multiplication,

i.e.

Ab ∗ c = (Ab) ∗ c �= A(b ∗ c) (A.13)

54

Appendix

� �� ��� ��

�

�

��

���

��

�

�� �� ��

�� �� ��

�� �� ��

�� ��

�� ��

�� ��

�� �� ��

�� �� ��

�� �� �� ��

�� �� �� ��

�� ��� ��� ���

��� ��� ��� ���

Figure 2: Row-first indexing on the Arakawa C-grid for an example grid with
nx = ny = 3. The variables on the boundary as denoted by faint green and
blue discs are not explicitly resolved but given by the boundary conditions.
In contrast, the values of q in the corners (i.e. q1, q4, q13 and q16 here) are
numbered for simplicity although always being 0 (also referred to as ghost
points).

for all matrices A, and vectors b, c. Furthermore, we write

1

a
=




1
a1

1
a2
...

1
aN




(A.14)

to denote the element-wise multiplicative inverse of a.

55

Appendix

A.2.1 Arakawa C-Grid

The domain D is divided into nx × ny grid cells, evenly spaced, so that

each grid cell has the side length Δx = Lx
nx

in x-direction and Δy =
Ly

ny
in

y-direction. The total amount of grid cells is nxny. Let the variable ηi sit

in the middle of the i-th grid cell at position (xi, yi), i.e. ηi = η(xi, yi). We

use only one index i so that i ∈ {1, ..., nxny} in order to index all grid cells.

We choose row-first indexing as in Fig. 2, which is used throughout the

numerical model code.

Following the ideas of the Arakawa C-grid [Arakawa & Lamb, 1977, 1981],

the discretization of the variables u, v and q is staggered. In general, we

might use an independent indexing for u, v and q and therefore introduce

j, k, l ∈ N. We distinguish between 4 different grids: (i) the T -grid, for η, h,

(ii) the u-grid, (iii) the v-grid, (iv) the q-grid. Not for all grid cells it is

necessary to evaluate u or v, as they might vanish due to the boundary

conditions. The grids therefore carry a different amount of grid points. Let

NT , Nu, Nv, Nq be the total number of grid points on the respective grids

then

NT = nxny, Nu = (nx − 1)ny

Nq = (nx + 1)(ny + 1), Nv = nx(ny − 1) (A.15)

The nx-th column of u-points vanish, as does the ny-th row of v-points.

However, there is no boundary condition for q, which makes it necessary to

evaluate the q-grid for all points within the domain D.

Choosing one index for the grid points leads to the advantage that every

scalar variable can be represented as a vector with the following vector-

representation u, v, h, q of u, v, h and q

u =




u1

u2
...

uNu




, v =




v1

v2
...

vNv




, h =




h1

h2
...

hNT




, q =




q1

q2
...

qNq




. (A.16)

In the special case of nx = ny the vectors u, v are of same size, but in gen-

56

Appendix

eral u, v, h, q all differ in their sizes. Unfortunately, the vector-representation

of the variables leads to complicated distinguishing between grid nodes that

are in vicinity of the boundaries and those in the middle of the domain. In

the following, we will evaluate the model variables on different grids and

denote that with xi, x
u
j , x

v
k and xq

l , which is short-hand for all grid points of

the T -, u-, v- and q-grid, respectively.

A.2.2 Gradients

Matrix-Vector multiplication idea

Representing the model variables in vector-form, as discussed above, enables

us to think of a gradient ∂ as a linear map between two vector spaces1 V1, V2.

Hence, any gradient ∂ in that sense can be written as a matrix G which is

multiplied with a vector z representing one of the model’s variables:

∂ : V1 → V2, z → Gz (A.17)

Having 4 different grids, we have to deal with four different vector spaces

Vu, Vv, VT , Vq with dimensions Nu, Nv, NT , Nq, respectively. In the following

we will investigate the entries of G such that they describe centred finite

differences on the four different grids. The same holds for any linear interpo-

lation I from one grid to another as will be discussed in section A.2.3. We

write then

I : V1 → V2, z → Iz (A.18)

Gradient operation as matrix multiplication

In the following we will use a notation where the subscript denotes the

direction of the derivative, hence x or y, and the superscript u, v, T, q denotes

the vector space, where ∂ is mapping from. For the x-derivative of h on the

T -grid this is

∂T
x : VT → Vu, h → GT

x h (A.19)

and the result GT
x h sits then on the u-grid (as defined in equation A.21) or

equivalently is element of the vector space Vu. The matrix GT
x is therefore

1Strictly speaking, these are not vector spaces as the underlying algebraic field are not
the real numbers but the set of computer representable numbers given a certain precision,
e.g. 64bit. These are mathematically not an algebraic field, but for simplicity here regarded
as an approximation to it.

57

Appendix

of size Nu ×NT and so not a square matrix (see eq. A.15). The derivatives

∂yh, ∂xu, ∂yu, ∂xv, ∂yv, ∂xq and ∂yq can similarly be written as

∂T
y :VT → Vv, h → GT

y h (A.20a)

∂u
x :Vu → VT , u → Gu

xu (A.20b)

∂u
y :Vu → Vq, u → Gu

yu (A.20c)

∂v
x :Vv → Vq, v → Gv

xv (A.20d)

∂v
y :Vv → VT , v → Gv

yv (A.20e)

∂q
x :Vq → Vv, q → Gq

xq (A.20f)

∂q
y :Vq → Vu, q → Gq

yq (A.20g)

All entries of the gradient matrices G follow from the equations A.21, A.22,

A.23, A.24, A.25, A.29 and A.30 and are then only a matter of indexing.

Centred differences

Writing the scalar variables on a grid as vectors comes with the disadvantage,

that the exact mathematical indexing gets rather complicated and lacks read-

ability. We will therefore discuss the gradient and interpolation operations

in the following only in terms of their stencil, i.e. the linear combination of

the variables at the surrounding grid points that yields the desired result.

To be a bit more precise and to include the treatment of the boundaries, we

will use the notation described in section A.2.0.

Centred finite difference approximation of the gradient in x-direction of

a variable η on the T -grid yields a result that sits on the u-grid and reads

∂xη|x=xu
j
≈ η→ − η←

Δx
(A.21)

This is the well-known (−1, 1)-stencil. The y-derivative of a variable of the

T -grid sits on the v-grid:

∂yη|x=xv
k
≈ η↑ − η↓

Δy
(A.22)

The x-derivative of a variable on the u-grid includes the kinematic bound-

ary conditions, hence a 0 appears for computations involving the boundary

58

Appendix

nodes. The result sits on the T -grid:

∂xu|x=xi ≈
1

Δx





u→ − 0 if western boundary

0− u← if eastern boundary

u→ − u← else.

(A.23)

Similarly for the y-derivative on the v-grid which sits again on the T -grid:

∂yv|x=xi ≈
1

Δy





v↑ − 0 if southern boundary

0− v↓ if northern boundary

v↑ − v↓ else.

(A.24)

The discretization of ∂xq and ∂yq are in close relation to equation A.21

and A.22 and do not involve any boundary conditions

∂xq|x=xv
k
≈ q→ − q←

Δx
, ∂yq|x=xu

j
≈ q↑ − q↓

Δy
(A.25)

Note, that some grid nodes of q on the boundary are simply not evaluated

in this computation.

Implementing the tangential boundary conditions

For ∂yu, ∂xv the tangential boundary conditions as no-slip (equation A.3)

or free-slip (equation A.4) come into play. For simplicity we first look at

∂yu|x=xq
l
for l = 2, i.e. at x = (Δx, 0), where the derivative is

∂yu|x=(Δx,0) ≈
u1 − ub
Δy

(A.26)

with ub = u(Δx,−1
2Δy) the velocity just outside the domain if the grid where

extend in negative y direction. To match the no-slip boundary condition

(equation A.3) we set ub = −u1, so that at x = (Δx, 0), i.e. right on the

boudary we have u = 0, when applying linear interpolation. This yields

∂yu|x=(Δx,0) ≈
2u1
Δy

(A.27)

59

Appendix

In contrast, when choosing free-slip boundary conditions (equation A.4) we

set ub = u1 for similar reasoning. Then

∂yu|x=(Δx,0) ≈
0u1
Δy

= 0 (A.28)

as desired. With introducing the parameter α ∈ {0, 2} Madec [2016] switch

between no-slip (α = 2) and free-slip boundary conditions (α = 0). A choice

of 0 < α < 2 corresponds to partial-slip. Following these ideas we write the

y-derivative on the u-grid as

∂yu|x=xq
l
≈ 1

Δy





0 if western or eastern boundary

αu↑ if southern boundary without SW,SE

−αu↓ if northern boundary without NW, NE

u↑ − u↓ else.

(A.29)

which sits then on the q-grid. Similarly we have the discretization of ∂xv as

∂xv|x=xq
l
≈ 1

Δx





0 if northern or western boundary

αv→ if western boundary without NW,SW

−αv← if eastern boundary without NE, SE

v→ − v← else.

(A.30)

Higher order derivative at the boundary

Shchepetkin & O’Brien [1996] propose for no-slip boundary conditions (α = 2)

to use instead of equation (A.29), (A.30) the larger stencil (4,−1, 15) at the

boundary

∂yu|x=xq
l
≈ 1

Δy





0 if western or eastern boundary

4u↑ − u⇑ + 1
5u

⇑↑ if southern boundary without SW,SE

−4u↓ + u⇓ − 1
5u

⇓↓ if northern boundary without NW, NE

u↑ − u↓ else.

(A.31)

60

Appendix

∂xv|x=xq
l
≈ 1

Δx





0 if northern or western boundary

4v→ − v⇒ + 1
5v ⇓↓ if western boundary without NW,SW

−4v← + v⇐ − 1
5v ⇑↑ if eastern boundary without NE, SE

v→ − v← else.

(A.32)

These operators will be called 2Gu
y and 2Gv

x (see next section). Note that

in the interior of the domain we have 2Gu
y = Gu

y and 2Gv
x = Gv

x. These

operators only appear in the lateral mixing of momentum terms (section

A.2.5). For the case of α �= 2 (i.e. free-slip, partial-slip or hyper-slip) we

might stick to the notation with 2 as prescript but mean the operator defined

by equation (A.29), (A.30) for simplicity.

A.2.3 Interpolation

2-point spatial interpolation

With variables that sit on four different grids it is sometimes necessary to

transform one variable from one grid onto another. Regarding the term

∂x(uh) from equation 2.1 we either need to find a representation of u on the

T -grid or of h on the u-grid in order to multiply them (the latter is actually

preferred, see eq. A.70). This is done via linear interpolation of the closest

grid points. In the following we will investigate the interpolations from any

of the four grids to any other.

From T -grid to u- or v-grid and vice versa

Let IuT (h) = hu be the linear interpolation of h from the T -grid (subscript of

the interpolation function I) onto the u-grid (superscript of I), then

hu = h|x=xu
j
≈ h← + h→

2
(A.33)

which corresponds to spatial averaging of two neighbouring grid points in

the x-direction. Similarly to the gradients, we can write this operation via a

matrix multiplication with IuT (sub- and superscript meaning as above)

IuT : VT → Vu, h → IuTh (A.34)

61

Appendix

Due to the similarity in equation (A.33) and (A.21), IuT is the same as GT
x

but all non-zero entries replaced by 1
2 . Same holds for the interpolation of h

onto the v-grid, i.e. a spatial averaging in y-direction of two neighbouring

grid points

hv = h|x=xv
k
≈ h↑ + h↓

2
(A.35)

which can again be written as

IvT : VT → Vv, h → IvTh. (A.36)

with IvT obtained from GT
y by setting all non-zero entries to 1

2 . Same relations

hold for Ivq and Gq
x (2-point interpolation in x-direction), Iuq and Gq

y (2-point

interpolation in y-direction). And also, including the kinematic boundary

condition (equation A.1), for ITu and Gu
x as well as ITv and Gv

y. Interestingly,

ITu = IuT
� , ITv = IvT

� (A.37)

where � denotes the matrix transpose.

From u-grid and v-grid to q-grid

For the interpolation matrices Iqu, I
q
v the lateral boundary conditions are

important. In fact, following the ideas around equation (A.29) we obtain the

2-point interpolation from the u-grid onto the q-grid as

uq = u|x=xq
l
≈





0 if western or eastern boundary

(1− α
2)u

↑ if southern boundary without SW,SE

(1− α
2)u

↓ if northern boundary without NW,NE

1
2(u

↑ + u↓) else.

(A.38)

62

Appendix

with α being the tangential boundary condition parameter (α = 0 is free-slip,

α = 2 is no-slip). Again, Iqv is then straight forward

vq = v|x=xq
l
≈





0 if northern or western boundary

(1− α
2)v

→ if western boundary without NW,SW

(1− α
2)v

← if eastern boundary without NE, SE

1
2(v

→ + v←) else.

(A.39)

4-point spatial interpolation

From u-grid to v-grid and vice versa

The previous interpolations involve 2-point spatial averaging, however, the

interpolations Ivu, I
u
v , I

T
q , I

q
T require averaging from the four surrounding grid

points and will be described in the following.

The interpolation Ivu from the u-grid onto the v-grid is

uv = u|x=xv
k
≈ 1

4





(u� + u�) if western boundary

(u� + u�) if eastern boundary

(u� + u� + u� + u�) else.

(A.40)

and similarly the interpolation Iuv reads

vu = v|x=xu
j
≈ 1

4





(v� + v�) if northern boundary

(v� + v�) if southern boundary

(v� + v� + v� + v�) else.

(A.41)

Note, that both Ivu and also Iuv include the kinematic boundary condition.

Once we write this interpolation as a matrix Ivu, following the same arguments,

we can deduce that

Iuv = Ivu
� (A.42)

The interpolation from the u-grid to the v-grid is the transpose of the

interpolation from v to u.

63

Appendix

From q-grid to T -grid and vice versa

The interpolation ITq from the q-grid to the T -grid is

qT = q|x=xi ≈
1

4
(q� + q� + q� + q�) (A.43)

And finally the interpolation I
q
T makes use of the additional boundary

condition in equation A.2 for numerical purposes.

hq = h|x=xq
l
≈





h� if north-east corner (NE)

h� if north-west corner (NW)

h� if south-east corner (SE)

h� if south-west corner (SW)

1
2(h

� + h�) if northern boundary without NW,NE

1
2(h

� + h�) if eastern boundary without NE,SE

1
2(h

� + h�) if western boundary without NW, SW

1
2(h

� + h�) if southern boundary without SW, SE

1
4(h

� + h� + h� + h�) else.

(A.44)

A.2.4 Advection term

In the following two different schemes are discussed that aim at discretizing

the advection terms

(qhv,−qhu), with q =
f + ∂xv − ∂yu

h
(A.45)

with the potential vorticity q, that appear in equation (A.7). The Arakawa

and Lamb scheme [Arakawa & Lamb, 1981] used in all model simulations of

this study and its implementation is presented in the following.

Arakawa and Lamb (1981) energy and enstrophy conserving scheme

The energy and enstrophy conserving scheme developed by Arakawa & Lamb

[1981], called AL hereafter, has a wider stencil compared to the scheme from

Sadourny [1975] (hereafter SZ), i.e. computationally more costly, but was

64

Appendix

also found to perform better [Salmon, 2007]. That means AL transports less

enstrophy (which is essentially squared vorticity) to higher wavenumbers,

which reduces the numerical noise on the grid scale compared to SZ. For

further details see also Salmon [2004] where the scheme is provided in a much

more readable notation as in the original AL paper.

As in SZ compute the mass fluxes U = uh and V = vh as

U = uh|x=xu
j
≈ u ∗ IuTh (A.46a)

V = vh|x=xv
k
≈ v ∗ IvTh (A.46b)

The advective term in the u-component qhv is then discretized as a

summation of linear combinations of the surrounding potential vorticity points

q and the mass fluxes U, V . We start with computing the linear combinations

of q. Let AL1,AL2,AL3,AL4 (without meaning of the subscripts) be four

different interpolations1 (directly written as matrix) fom the q- to the T -grid

defined as

AL1q = 1
24(2q

� + q� + q� + 2q�), AL2q = 1
24(q

� + 2q� + 2q� + q�)

(A.47a)

AL3q = 1
24(q

� + q� − q� − q�), AL4q = 1
24(q

� − q� + q� − q�)

(A.47b)

for visualization the corresponding stencils (denoted with subscript 1, 2, 3, 4)

are

1
24

������
2 1

1 2

������
1

, 1
24

������
1 2

2 1

������
2

, 1
24

������
1 1

−1 −1

������
3

, 1
24

������
1 −1

1 −1

������
4

(A.48)

We might use AL and mean then any of matrices in equation (A.47). We

define interpolation matrices R to get the variables ALq from the T - to the

u- or v-grid. As the matrices R contain a maximum of one entry per row,

they are rather shift matrices or correspond to nearest-point interpolation.

Hence, they could also be written in terms of an index (as actually done in

the model code). We first look at R↑
v which picks for all v-grid points the

1AL3 and AL4 should be rather regarded as potential vorticity gradient due to the
minus sign in their stencil.

65

Appendix

corresponding ALq-value that sits 1
2Δy North of this point on the T -grid.

R↑
vALq = (ALq)

↑ (A.49)

Hence, the interpolation of this operator shifts the T -grid southward by 1
2Δy

to place them on the v-grid. The grid cell row closest to y = 0 is therefore

left-out. Similar for R↓
v, R←

u and R→
u , which are

R↓
vALq = (ALq)

↓, R←
u ALq = (ALq)

←, R→
u ALq = (ALq)

→. (A.50)

Once the AL-interpolated potential vorticity sits on the u- and v-grid they are

multiplied with the mass fluxes U, V . In order to get a discretized advection

term, AL interpolate the surrounding absolute vorticity fluxes qU, qV onto

each u- and v-grid point. For this final interpolation we further need another

set of shift-matrices T (they could again be written in terms of an index)

that shift a variable v from the v to the u-grid as follows

T�
v→uv =




0 if northern boundary

v� else.
(A.51)

and include the kinematic boundary condition (case 1). Similarly, we have

T�
v→uv =




0 if southern boundary

v� else.
(A.52)

T�
v→uv =




0 if southern boundary

v� else.
(A.53)

T�
v→uv =




0 if northern boundary

v� else.
(A.54)

and also T�
u→v,T

�
u→v,T

�
u→v,T

�
u→v as well as T⇒

u ,T⇐
u ,T⇑

v ,T
⇓
v . We are now

66

Appendix

able to write the u-component of the advection term as

qhv|x=xu
j
≈ T�

v→u

�
R↓

vAL1q ∗ V
�
+T�

v→u

�
R↑

vAL2q ∗ V
�

T�
v→u

�
R↓

vAL2q ∗ V
�
+T�

v→u

�
R↑

vAL1q ∗ V
�

T⇐
u (R→

u AL3q ∗ U)−T⇒
u (R←

u AL3q ∗ U) ≡ Au (A.55)

and the v-component as

−qhu|x=xv
k
≈ −T�

u→v (R
→
v AL1q ∗ U)−T�

u→v (R
→
v AL2q ∗ U)

−T�
u→v (R

←
v AL2q ∗ U)−T�

u→v (R
←
v AL1q ∗ U)

−T⇑
v

�
R↓

vAL4q ∗ V
�
+T⇓

v

�
R↑

vAL4q ∗ V
�
≡ Av (A.56)

These equations correspond to equation B.2 from Salmon [2004] and 3.5

and 3.6 together with 3.34 from Arakawa & Lamb [1981]. However, from

this notation it is clear that there are essentially four costly computations

that can be precomputed: AL1q,AL2q,AL3q and AL4q. The remaining

shift matrices R,T have at maximum one entry per row and can also be

implemented as index.

A.2.5 Discrete friction

Discrete bottom friction

We discretize equation (2.6) with the interpolation operators from the previ-

ous sections as

−cD
h
|u|u ≈ −cD

h
IuT

��
ITuu

2 + ITv v
2

�
∗ u ≡ Bx (A.57a)

−cD
h
|u|v ≈ −cD

h
IvT

��
ITuu

2 + ITv v
2

�
∗ v ≡ By (A.57b)

In fact, the brackets only have to be computed once, and the term in the

square-root also appears in the discrete form of equation (A.5).

Discrete lateral mixing of momentum

The discretization of equation (2.11) is done in the following way:

67

Appendix

The stress tensor S is discretized as

S ≈


 Gu

xu−Gv
yv

2Gv
xv+

2Gu
yu

2Gv
xv+

2Gu
yu −(Gu

xu−Gv
yv)


 ≡


S11 S12

S12 −S11


 (A.58)

Note, as S is symmetric and has a vanishing trace, only two entries need to

be computed explicitly. Then, with hq = IqTh

1

h
∇ · hS ≈




1
hu

∗ (GT
x (h ∗ S11) +Gq

y(hq ∗ S12))
1
hv

∗ (Gq
x(hq ∗ S12)−GT

y (h ∗ S11))


 ≡


du

dv


 (A.59)

which is the harmonic viscosity term without coefficient (which is still assumed

to be constant). To obtain a biharmonic viscosity term, we formulate another

tensor R = (R11, R12; R12, R22) as

R11 = Gu
xdu −Gv

ydv (A.60a)

R12 =
2Gv

xdv +
2Gu

ydu (A.60b)

Which is, in principal, evaluating equation (A.58) with (du, dv) instead of

(u, v). The divergence of this tensor yields the complete biharmonic lateral

mixing of momentum terms

νBh
−1∇ · (hS(h−1∇ · hS(u, v))) ≈

νB




1
hu

∗ (GT
x (h ∗ R11) +Gq

y(hq ∗ R12))
1
hv

∗ (Gq
x(hq ∗ R12)−GT

y (h ∗ R11))


 ≡


Mx

My


 (A.61)

for a constant biharmonic viscosity coefficient νB.

A.2.6 Choosing the viscosity and friction coefficients

The bottom fricton coefficient cD (equation 2.6) and the biharmonic viscosity

νB (equation 2.11) that are used in the shallow water model of this study,

cannot be chosen from physical principles but their choices should involve

considerations of numerical stability [Griffies & Hallberg, 2000]. Arguments

for the choice of cD, νB are presented in the following.

68

Appendix

Harmonic and biharmonic viscosity

For the given configuration as described in section 2.1.1 we find the choice

for the harmonic viscosity

νA,0 = 540m2 s−1 (A.62)

for a resolution with Δx0 = Δy0 = 30 km appropriate once a diffusion

operator of the form in equation 2.10 is used. That means it is chosen as

small as possible but still removing clearly numerical oscillations that occur

at the grid scale. This choice also resolves the Munk boundary layer width

[Gill, 1982]

WM = 3

�
νA,0

β
≈ Δx0 (A.63)

with approximately one grid cell. It was proposed to use this as an argument

to set νA = βΔx3 [Cooper & Zanna, 2015]. Although this might a criterion for

stability, for Δx < 30 km it was not found to prevent numerical oscillations

at the grid scale from occuring. Instead, the following scaling argument is

proposed: At the grid scale Δx the advective terms are desired to balance

with viscosity

O((u ·∇)u) =
U2

Δx
∼ νA

U

Δx2
= O(νA∇2u) (A.64)

with a velocity scale U . It follows a linear scaling of νA with Δx

νA = UΔx (A.65)

under the assumption that the velocity scale does not change considerably

with Δx. Based on the empirically found value νA,0 from equation A.62, it

is therefore proposed to use dependent on the resolution

νA =
νA,0

Δx0
Δx =

540m2 s−1

30 km
Δx (A.66)

The biharmonic eddy viscosity scaling is derived from the requirement that

harmonic and biharmonic viscosity should be on the same order of magnitude

1 =
O(νA∇2u)

O(νB∇4u)
=

νA
νB

Δx2 (A.67)

69

Appendix

Hence, we propose a scaling for νB as

νB =
νA,0

Δx0
Δx3 =

540m2 s−1

30 km
Δx3. (A.68)

Based on this equation, we set the biharmonic viscosity coefficients for all

model runs as listed in Table 2.1.

Bottom friction coefficient

Arbic & Scott [2008] propose for general purpose a choice of cD = 0.0025 in

equation 2.6 based on a comparison of model simulations with observational

data. However, using this value in combination with the physical parameters

of section 2.1.1 the model reaches a steady state (all ∂t → 0) within a month

or so. Although this steady state resembles a double gyre, no eddies are

permitted to develop. Therefore a smaller cD is needed to reduce the friction

in the model. Some tuning experiments lead to the choice of

cD = 10−5 (A.69)

which removes energy especially on larger scales but retains vorticity dynamics

as discussed in the results of chapter 3. The factor 250 discrepancy between

our choice and the one from Arbic & Scott [2008] might be further justified

as for a one-layer shallow water model the bottom friction is computed via

the vertically averaged velocity, not the bottom velocity which would be

smaller.

A.2.7 Summary on spatial discretization

The spatially discretized equations of the reformulated shallow water model

(equation A.7) are

∂tu = Au −GT
x p+ Fx + Bx − Mx (A.70a)

∂tv = Av −GT
y p+ By − My (A.70b)

∂tη = −Gu
x(u ∗ IuTh)−Gv

y(v ∗ IvTh) (A.70c)

with

p =
1

2

�
ITu (u

2) + ITv (v
2)
�
+ gh (A.71)

70

Appendix

and Au, Av from equations (A.55,A.56), and Bx, By from equation (A.57) as

well as Mx, My from equation (A.61).

A.2.8 Time discretization: Runge-Kutta 4th order

The discrete shallow water model is integrated forward in time with the

4th order Runge-Kutta scheme (RK4, Butcher [2008]). Summarizing the

right-hand side of equations A.70 with rhs(u, v, h) = (du, dv, dh) the model

equations reduce to

∂t




u

v

h


 =




du

dv

dh


 . (A.72)

Using RK4, discretizing the temporal derivative reads




un+1

vn+1

hn+1


 =




un

vn

hn


+

Δt

6




ku1 + 2ku2 + 2ku3 + ku4

kv1 + 2kv2 + 2kv3 + kv4

kh1 + 2kh2 + 2kh3 + kh4


 (A.73)

with the superscript n, n + 1 denoting the current and next time step,

respectively, that lie time Δt apart. The choice of Δt is discussed in section

section A.2.9. (ku, kv, kh) are approximations for (∂tu, ∂tv, ∂tk) and defined

as

(ku1 , k
v
1, k

h
1) = rhs(un, vn, hn) (A.74a)

(ku2 , k
v
2, k

h
2) = rhs(un + Δt

2 ku1 , v
n + Δt

2 kv1, h
n + Δt

2 kh1) (A.74b)

(ku3 , k
v
3, k

h
3) = rhs(un + Δt

2 ku2 , v
n + Δt

2 kv2, h
n + Δt

2 kh2) (A.74c)

(ku4 , k
v
4, k

h
4) = rhs(un +Δtku3 , v

n +Δtkv3, h
n +Δtkh3) (A.74d)

A.2.9 Choosing the time step Δt

In the shallow water model, the fastest propagating signals are gravity waves.

The phase speed cp of those waves is [Gill, 1982; Vallis, 2006]

cp =
�
gh ≈

�
gH (A.75)

71

Appendix

where the approximation holds in the barotropic case where |η| � H. In

contrast, using a reduced gravity g� � g = 10 m/s2 usually yields much

larger variations in η and the approximation in equation (A.75) may become

less justified, but will in many cases still be useful. As a consequence, waves

might propagate significantly faster in certain regions, which can affect the

numerical stability. The CFL-number � (named after Courant, Friedrichs

and Levy; Courant et al. [1967]) is then � =
cpΔt
Δx . Hence, for a desired

CFL-number, we obtain the time step Δt as

Δt = �
Δx

cp
(A.76)

Using RK4, a choice of � ≤ 0.9 was found to be stable in the barotropic set-up

of equation 2.2. Multi-step schemes such as Adams-Bashforth [Butcher, 2008]

have the advantage, that they only require one evaluation of the right-hand

side per time step (in contrast to RK4 which requires 4 evaluations of the

right-hand side), which could theoretically decrease the computational time

required in order to integrate the model forward. However, in practice,

the 3rd order Adams-Bashforth method was found to be stable for � ≤ 0.2

(i.e. a decrease of Δt by a factor of 4 to 5), which means that the effective

computational performance is on the same order but slightly better with

RK4. Therefore all simulations in this study use RK4 with � = 0.9.

A.3 Derivations

A.3.1 Energetics in the shallow water model

The derivation of the energy equation follows the one in Gill [1982] and

Vallis [2006] but is here extended to a fully non-linear system. The shallow

water equations without forcing or dissipation of momentum and h as the

prognostic variable

∂tu+ u∂xu+ v∂yu− fv = −g∂xh (A.77a)

∂tv + u∂xv + v∂yv + fu = −g∂yh (A.77b)

∂th+ ∂x(uh) + ∂y(vh) = 0 (A.77c)

72

Appendix

are transformed into an energy equation by (A.77a) · uh + (A.77b) · vh +

(A.77c) · gh, which results in

h∂t(
1
2u

2) + h∂t(
1
2v

2) + ∂t(
1
2gh

2)� �� �
(I)

+hu · (u ·∇)u� �� �
(II)

+ ghu ·∇h+ gh∇ · (uh)� �� �
(III)

= 0.

(A.78)

The terms marked with (I) are with κ = 1
2(u

2 + v2) and the continuity from

equation (A.77c) rearranged to

(I) = ∂t(hκ+ 1
2gh

2)− κ∂th = ∂t(hκ+ 1
2gh

2) + κ∇ · (uh). (A.79)

The term marked with (II) is reformulated to

(II) = hu2∂xu+ huv∂yu+ hvu∂xv + hv2∂yv

= hu∂x(
1
2u

2) + hv∂y(
1
2u

2) + hu∂x(
1
2v

2) + hv∂y(
1
2v

2) = hu ·∇κ.

(A.80)

Adding (I) and (II) therefore yields

(I)+ (II) = ∂t(hκ+ 1
2gh

2) +∇ · (uhκ). (A.81)

The terms marked with (III) are equal to

(III) = g∇ · (uh2). (A.82)

Together, this is

∂t(hκ+ 1
2gh

2) +∇ · (uhκ+ guh2) = 0. (A.83)

Horizontal integration �...� =
�
D
... dx under kinematic boundary conditions

eliminiates the divergence term. Multiplying with the constant density ρ

for correct unit Joule yields the conservation of energy in the shallow water

model

∂t�ρhκ+ 1
2gρh

2� = 0 (A.84)

which motivates us to call ρhκ = 1
2ρh(u

2 + v2) the (vertically integrated)

kinetic energy and 1
2gρh

2 the (vertically integrated) potential energy. As

for the initial conditions u0 = v0 = η0 = 0 the energy in the shallow water

system is not zero, we are more interested in the available potential energy

73

Appendix

(or perturbation energy) which is obtained by regarding η = h−H instead

of h. The conservation of mass �ρh� or �ρη� is also valid and follows from

the continuity equation

∂t�ρh� = �ρ∂th� = �−ρ∇ · (uh)� = 0 (A.85)

which integrates to zero with kinematic boundary conditions. Therefore

∂t�h2� = ∂t
�
�η2�+ �2ηH�+ �H2�

�
= ∂t�η2� (A.86)

and we can replace h by η in equation (A.84) to yield

∂t�12ρh(u2 + v2) + 1
2gρη

2� = 0. (A.87)

A.3.2 Simplifications in the backscatter formulation

We simplify ∇u · S∗ with the symmetric, trace-vanishing tensor S∗ =

(S∗
11,S

∗
12;S

∗
12,−S∗

11) using the notation ux ≡ ∂xu

∇u · S∗ = uxS
∗
11 + vxS

∗
12 + uyS

∗
12 − vyS

∗
11

= S11S
∗
11 + S12S

∗
12 (A.88)

so that replacing S∗ by S yields

∇u · S = S2
11 + S2

12 (A.89)

A.3.3 Energetics of the symmetric stress tensor

It is to show that ∇u ·S with S from equation (2.9) is indeed positive definite.

It follows in equation (A.89) that

∇u · S = (∂xv + ∂yu)
2 + (∂xu− ∂yv)

2 = |D|2 ≥ 0, (A.90)

where |D| is the deformation rate from equation (2.33).

74

