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Abstract

In the last decade, astonishing progresses were achieved in asteroseismology thanks to the high-quality data
from the space-based missions CoRoT, Kepler and TESS and the field will further prosper with the future
PLATO mission.

This high precision is however limited by the “so-called” surface effects of solar-like oscillations. Despite several
attempts (Kjeldsen et al. 2008, Ball & Gizon 2014, Sonoi et al. 2015, Ball et al. 2016), current approaches
remain empirical and constitute a weakness in stellar modelling and inversion techniques. As illustrated in
Buldgen et al. (2019) and Bétrisey et al. (2021, submitted), their actual implementation shows biases on the
estimated stellar parameters.

For this reason, we developed a new indicator based on the inversion of frequency ratios instead of individual
frequencies as it is currently done. This approach is motivated by the works of Roxburgh & Voronsov (2003) and
Ot́ı et al. (2005) who pointed out that these frequency ratios and their corresponding kernels are not sensitive
to surface regions. In contrast, they are sensitive to deeper stellar layers. Therefore, our new indicator seems
promising to better probe central stellar regions of intermediate-mass stars.

Context: relevance of inversion techniques

Following their success in helioseismology, inversion techniques applied in asteroseismology can constrain very
precisely the internal structure (e.g. the mean density). The inversions are based on the following equation:
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with ν the oscillation frequency, a and b two structural variables (e.g. the density, the sound speed, the entropy

proxy, ...), Kn,l
a,b and Kn,l

b,a the structural kernels and using the definition δx = (xobs − xref)/xref.

However, frequencies are impacted by surface effects that can only be treated empirically. This motivated
Roxburgh & Voronsov (2003) to define frequency ratios that damp these surface effects. Eq. (1) can be
adapted for these ratios and the new kernels will have their amplitude suppressed in the surface regions and
will be able to better probe central regions.
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Defining new structural kernels

Observations: The classical kernels have a high amplitude in the
surface region, especially at high radial order (Fig. 1), while the kernels
based on ratios of frequencies have their amplitude damped at the
surface and are better at probing central regions (Fig. 2, 3).
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Fig. 1: Structural kernels of the pair (S,Y) based on the fre-
quencies at low (blue) and high (orange) radial order.
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Fig. 2: SY-kernels of ratios with low radial order (n = 5).
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Fig. 3: SY-kernels of ratios with high radial order (n = 25).

Investigating the domain of application

Analysis: We compare the left-hand side (LHS) and right-hand
side (RHS) of Eq. (1) adapted for the r02 ratios. For this purpose,
we define an error function E

r02
a,b that is the relative difference be-

tween the LHS and RHS. Eq. (1) only considers linear terms and
non-linearities are reflected in E

r02
a,b. We investigated several struc-

tural pairs.

Observation 1: Some structural pairs are less suited, especially
if the density is one of structural variables (see e.g. blue curves).
This was expected since we divide by the large separation to get the
ratios and thus suppress the information about the density.

Observation 2: Extreme radial order modes seem to be intrinsi-
cally non-linear. This point should be investigated further.

Observation 3: The error function can point out non-linearities
but has limitations. In fact, if the difference δr02 is very small, Er02a,b
shows numerical noise. This is what happens in Fig. 5 for the modes
n = 16 and n = 17.
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Fig. 4: Comparison between two solar models with different
abundances.
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Fig. 5: Comparison between two models of Kepler-93 with
different overshoot values.

Prospects and discussions

A promising new technique to probe the stellar cores:

•The indicator allows to constrain the physical ingredients of stellar models.

• It provides meaningful corrections even with a limited dataset.

• It is almost insensitive to surface effects by construction.

Necessary investigations:

•Test multiple changes of ingredients (especially overshoot in F type stars)

• Study in details the limits of the linear regime

•Define new indicators based on other frequency ratios (r01 or r10).

The preliminary results for the inversion of the kernels of frequency ratios indicate that it is a promising path to circumvent

surface effects and efficiently constrain the physics of deep stellar cores of solar like oscillators.

A new indicator for the central regions

The indicator: We define our new indicator as following:
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with f (r) a function that depends on the radius and S5/3 = P/ρ5/3, the
entropy proxy.

Analysis: In Fig. 6, we conducted hare and hounds trials by generating
an “observed” model (purple star) that we tried to reproduce (red plus)
by changing the abundances. We then conducted inversions (crosses)
with the new indicator to test if we could retrieve the “observed” value.
We selected different sets of frequencies to see what could be expected
for excellent targets.

Observations: The new indicator provides a correction improving the
reference value for all the models considered. However, as shown in Fig.
7, there are compensations if we include low radial order modes. This
effect should be investigated further.
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Fig. 6: Hare and hounds for the new indicator. We start with the
reference model (red plus), the inversion proposes a corrected value
(crosses) that is closer to the “observed” model (purple star).
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Fig. 7: Averaging kernel error (solid lines), cross-term kernel error
(dashed lines) and residual error (dot-dashed lines) for different sets
of frequencies.
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