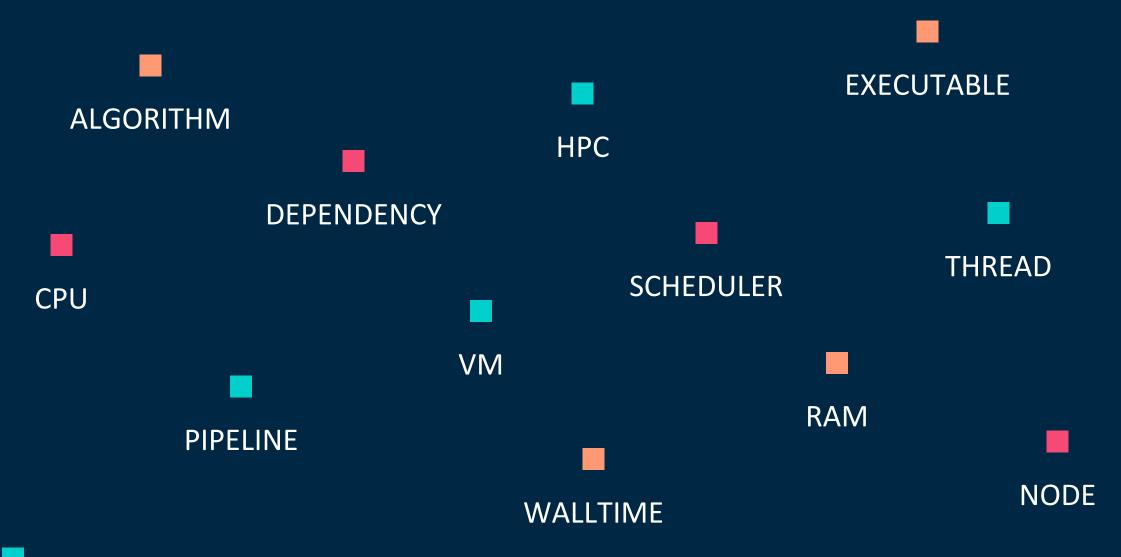
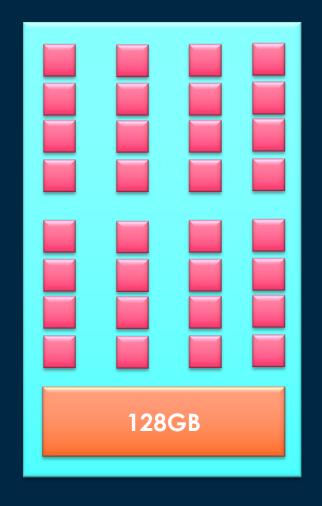
Ten Simple Rules

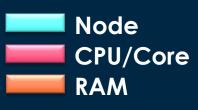
for getting started with command-line bioinformatics

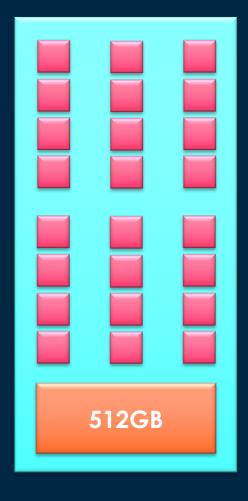
Brandies PA, Hogg CJ (2021)
PLOS Computational Biology 17(2): e1008645

TEN SIMPLE RULES

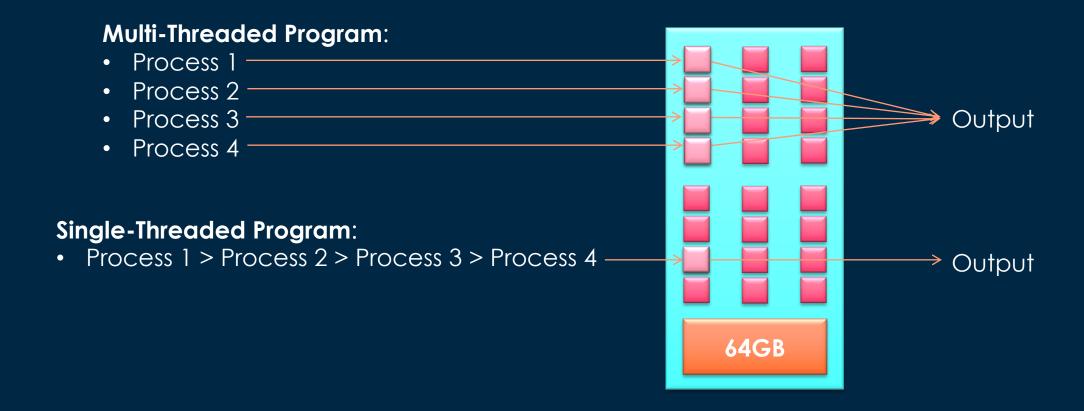





COMPUTING TERMINOLOGY


GET FAMILIAR WITH COMPUTER TERMINOLOGY

GET FAMILIAR WITH COMPUTER TERMINOLOGY



STANDARD

HIGH-MEMORY

GET FAMILIAR WITH COMPUTER TERMINOLOGY

TOOL/PIPELINE SELECTION

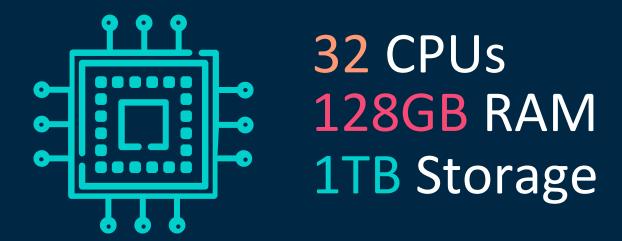
KNOW YOUR DATA AND ASSESS YOUR NEEDS

- TARGET SPECIES/QUALITY OF DATA?
- AVAILABLE COMPUTING RESOURCES?
- AVAILABLE/TESTED TOOLS?

KNOW YOUR DATA AND ASSESS YOUR NEEDS

https://australianbiocommons.github.io/2_tools.html

	Home	Compute systems Tools &	& workflows Featu	red tools & wo	rkflows Help!	Attribu	tions				
Tool information Search: Search:											
	Tool / workflow = name	Tool identifier (module name / bio.tools ID / placeholder)	Primary purpose (EDAM, if \$\pi\$ available)	Galaxy 🍦 Australia	Available in Galaxy = toolshed	NCI 🔷 (Gadi)	Pawsey (Zeus)	Pawsey 🌲 (Magnus)	QRIScloud / UQ-RCC (Flashlite, Awoonga, Tinaroo)	bio.tools	BioContainers
1	3D-DNA	3D-DNA	Sequence assembly								
2	<u>ABRicate</u>	abricate	Sequence analysis	Yes	abricate				1.0.1	<u>•</u>	•
3	<u>ABySS</u>	abyss	Sequence assembly		<u>abyss</u>	2.2.3			2.0.2	•	•
4	ALLMAPS	allmaps	Sequence assembly								
5	<u>allpathslg</u>	allpathslg	Sequence assembly								
6	<u>amos</u>	amos	Sequence assembly				3.1.0			•	•
7	anaconda	anaconda	Gene structure						2019.07 2020.02 4.2.0 4.3.1 5.2.0	•	
8	ANGSD	angsd	Population genomics						0.931 0.933	•	•
9	ant	ant				1.10.7					•
10	<u>Apollo</u>	apollo	Genomics / Genome annotation		<u>apollo</u>					•	•
11	arima mapping	arima mapping	Chromosome conformation capture								


ESTIMATING RESOURCES

ESTIMATE YOUR COMPUTING REQUIREMENTS

TOOL DOCUMENTATION + TEST DATASETS

TOOL PUBLICATION + CITED PAPERS

ASK COLLEAGES + USE ONLINE Q&A

ESTIMATE YOUR COMPUTING REQUIREMENTS

https://github.com/AustralianBioCommons

IPA on Zeus @ Pawsey Supercomputing Centre

Accessing workflow

The scripts for using IPA on Zeus have been made available below in the Quick start tutorial.

Quick start tutorial

Below is a tutorial for install and annotation of IPA on Zeus.

Note: Purge_Dups is not included below as it requires a manual install. Documentation is currently not available for this, but may be in the future.

Install the improved phased assembler via bioconda

Note:

- the instructions below will install the latest version of miniconda and IPA.
- to install a specific version of IPA, use the following install script: conda install pbipa=1.1.2

It is recommended to use an interactive session on zeus to install IPA. To launch an interactive session use: >salloc -n 1 -t 1:00:00

- 1. Download miniconda: curl -0 https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
- 2. Install miniconda: sh Miniconda3-latest-Linux-x86_64.sh
 - Note: During the setup steps you will be asked where to install Miniconda. DO NOT install under \$HOME, the suggested directory for miniconda is /group//project>/<user>/miniconda3. Whenever you need to use miniconda from the command line you will need to run export PATH=\$PATH:/group/.../miniconda3/bin, and in some cases also run exec bash

EXPLORE DIFFERENT COMPUTING OPTIONS

CLOUD SHARED HPC

Customised computing resources

Fixed computing resources

Unshared resource (live programming)

Shared resource (scheduled jobs)

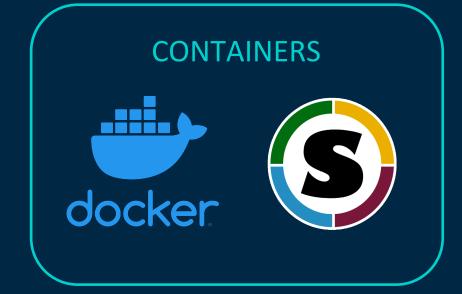
Complete control of compute environment

Compute environment largely controlled by IT

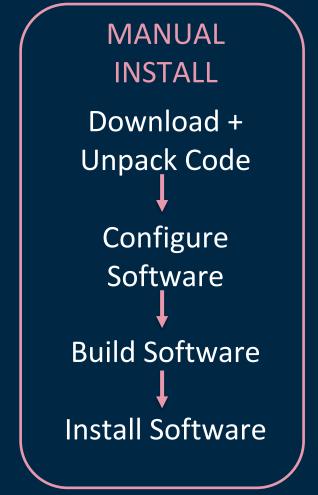
Both free and paid commercial options

Usually freely available based on institution/merit

https://ronin.cloud


SOFTWARE INSTALLATION

UNDERSTAND THE BASICS OF SOFTWARE INSTALLATION


PACKAGE MANAGERS

APT – DEBIAN

YUM – REDHAT

CONDA EOCONDA

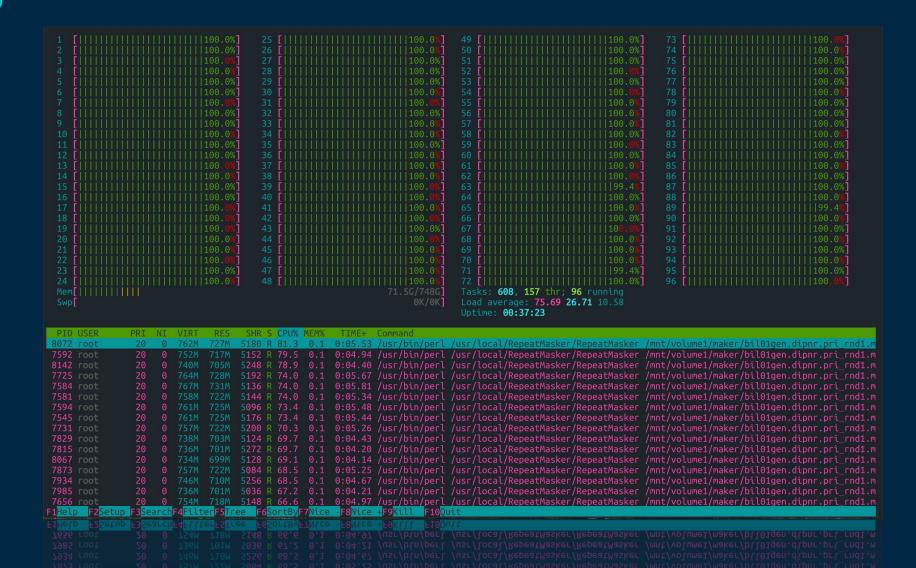
SCRIPT >- CURATION

CAREFULLY CURATE AND TEST YOUR SCRIPTS

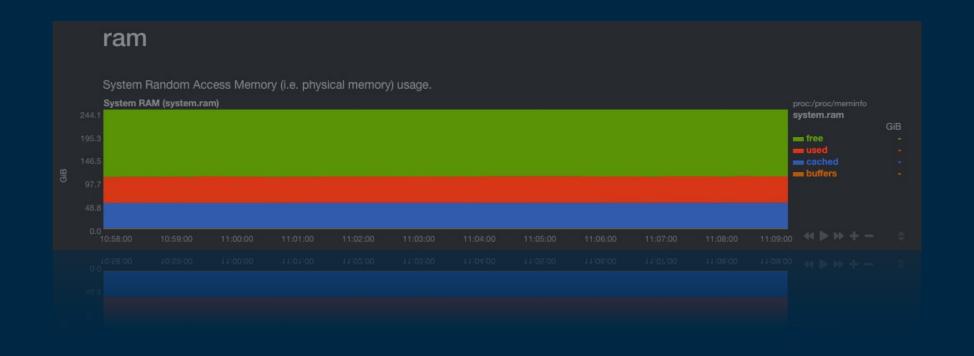
- SYNTAX OR MINOR SCRIPTING ERRORS
- SOFTWARE INSTALLATION ERRORS
- DEPENDENCY ISSUES
- SUBOPTIMAL COMPUTE RESOURCES

WHEN WORKNG WITH HPC
ENVIRONMENTS, INTERACTIVE QUEUES
ARE YOUR FRIEND!

MONITORING & OPTIMISATION


CLOUD VM

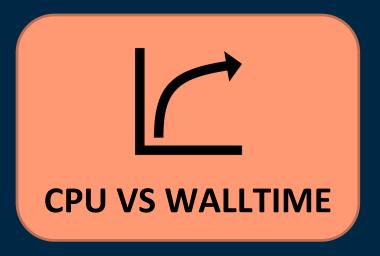
- HTOP
 - Simple real-time monitoring of machine resources
- NETDATA
 - Extensive monitoring using hundreds of preconfigured charts


HPC

- SCHEDULER LOGS
 - Summary of maximum and total compute resources used

HTOP

NETDATA



SCHEDULER LOGS

```
Job Id: 2566026.pbsserver in queue normal
Job Name: variant_only_vcfs
Project: GENOMICS
Exit Status: 0
Job run as chunks (hpc140:ncpus=12:mem=100663296kb)
Walltime requested: 12:00:00:
-- Nodes Summary --
-- node hpc140 summary
   Cpus requested:
                           12:
         Cpu Time: 03:29:21:
  Mem requested:
                    96.0GB:
```

OPTIMISATION

FILE MANIPULATION

GET FAMILIAR WITH BASIC BASH COMMANDS

grep

Pattern
Matching
grep "chromosome 5"

awk

Data

Processing

awk '\$1 == 5 {print \$2, \$3}'

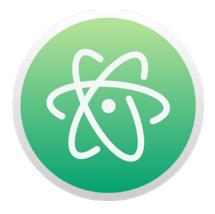
sed

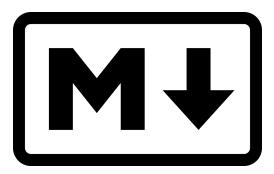
Find & Replace

sed 's/sample1/ID7037/g'

RECORD KEEPING

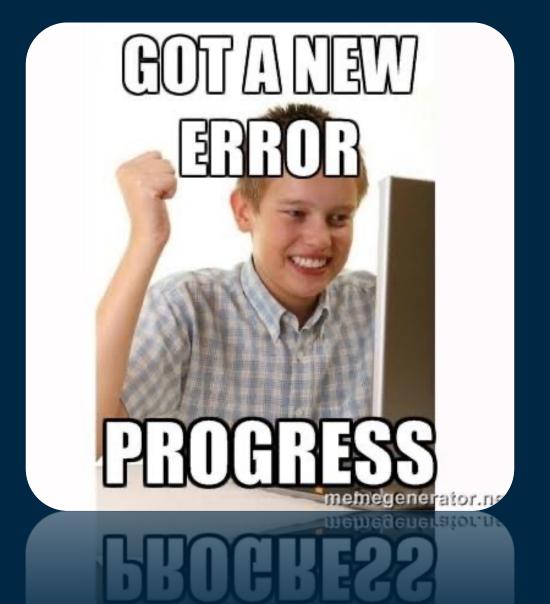
WRITE IT DOWN!





VISUAL STUDIO CODE

ATOM



MARKDOWN

10

PATIENCE

PATIENCE IS KEY!

parice.brandies@sydney.edu.au

@PariceBrandies