Category Theory Framework for Variability Models with Non-Functional Requirements

Daniel-Jesus Munoz, Mónica Pinto and Lidia Fuentes
ITIS Software, Universidad de Málaga, Andalucía Tech, Spain

Dilian Gurov

KTH Royal Institute of Technology, Stockholm, Sweden

Software Product Lines Analyses

The Situation

- Client: Could you analyse our highly configurable systems?
- Software Product Line engineer: Absolutely! Describe one:
- These are the components and alternatives | Ok, a SAT...
- ...,some arithmetical requirements | an SMT/CP could...
- ...,products quality measurements | a hybrid model...
- ..., system requirements | then cross-constraints...
- ..., crossed quality requirements | WAIT!
- Dear Santa Claus...

Our Scenario: Edge Computing

The SPLE Trend in Modelling

Extending pseudo-standards:

2. Creating new pseudo-standards:

3. Transformations or hybrid models:

4. Unification:

Variability and Quality Attributes Modelling

Category Theory to the Rescue!

The unifier of apparently dissimilar models while abstracting individual specifics

Applied Category Theory: Crash Course

- Category: Represent related spaces
 - \square Objects: Structured classes ($_X$)
 - \square Arrows: Structure preserving functions ($\stackrel{X}{\bullet} \stackrel{a}{\rightarrow} \stackrel{Y}{\bullet}$)
 - ightharpoonup Identity: $\overset{X}{\bullet} \xrightarrow{identity} \overset{X}{\bullet}$
 - \triangleright (Associative) Composition: $\stackrel{X}{\bullet} \xrightarrow{a_1 \circ a_2} \stackrel{Z}{\longrightarrow} \stackrel{}{\bullet}$
- * Functor: Mapping among Categories $(\stackrel{C}{\bullet} \stackrel{F}{\longrightarrow} \stackrel{D}{\bullet})$
- \bullet Path: $\overset{X_0}{\bullet} \xrightarrow{a_1} \overset{X_1}{\bullet} \cdots \overset{X_{n-1}}{\bullet} \xrightarrow{a_n} \overset{X_n}{\bullet}$
- * Generalised Element: Select $\overset{U}{\bullet} \xrightarrow{element} \overset{X}{\bullet}$
- Instance: A set-valued functor for elements.

Category Theory Flexibility

A single object can form a category

A category can be formed by, and divided into, sub-categories.

Our Proposal: A Category Theory Framework

■ Models are categories.

Relationships, constraints and requirements are arrows.

Features definitions (i.e., nodes) are generalised elements, and their values are instances.

Category: Numerical Variability Model

NVM Objects:

Tree₁: T_1

Tree₂: \mathcal{T}_2

Tree₃: \mathcal{T}_3

Tree₃ Clone: \mathcal{I}_3^*

Integer Set:

Character Set: String

Boolean Set:

Category: Quality Attributes Model

QAM Objects:

Metric Set: $\mathcal{M}_{\mathcal{S}}$

Integer Set:

Character Set: String

Category: Solution Space

Abstract Components:

Numerical Variability Model Category: \mathcal{NVM}

Measured NVM Sub-Category: $\mathcal{M}_{\mathcal{NVM}}$

Quality Attributes Model Category: QAM

Complete Solution Object: CS

Measurements Set Object: MS

Legend

 \bigcirc

Schema
Solution Space Instances

Object Arrow (Relationship)

Validation: HADAS Edge Computing Category

Evaluation: Edge Computing Case Study

Different Automated Reasoning

From a constraint programming solver for variability plus MariaDB for quality attributes to...

...an automated theorem prover with Knuth-Bendix completion for logic and equations, and hashing, balanced trees and chasing for data-type and cross-object arrows.

CQL IDE Scalability with our Models

- We generated 162 products with their respective 324 measurements with a reasoning time of 0.1 seconds.
- Sub-categories also takes 0.1 seconds
- 3 times cross-product takes 0.2 seconds.
- ➤ Hence, CQL IDE scales linearly, and the minimum runtime is 0.1 seconds.

Results and Optimisation Analysis

- Compressing data increases the energyrate.
- More powerful CPUs barely affects energy consumption besides if compressing.
- While communication peripherals affect similarly, WiFi is slightly more energy efficient for large data sizes, and vice-versa.

ACKNOWLEDGMENTS

- Eu-ropean Union's H2020 research and innovation programme under grant agreement DAEMON 101017109.
- Projects co-financed by FEDER funds LEIA UMA18-FEDERJA-15, MEDEA RTI2018-099213-B-loo and Rhea P18-FR-1081.
- PRE2019-087496 grant from the Ministerio de Ciencia e Innovación

- Extended Variability models with quality requirements can be represented as categorical objects and arrows.
- 2. Our category theory framework is a viable approach, and CQL IDE is a scalable eco-system that can support efficient SPLE analyses.
- 1. Support more types of extensions and analyses.
- 2. Integrate quality models and larger SPLEs.

Thank You!

