
Self-assessment Oracles for Anticipatory Testing

TECHNICAL REPORT: TR-Precrime-2020-02

Valerio Terragni, Gunel Jahangirova, Mauro Pezzè, Paolo Tonella
Università della Svizzera italiana
Evolutionary Improvement of Assertion Oracles

Project no.: 787703
Funding scheme: ERC-2017-ADG
Start date of the project: January 1, 2019
Duration: 60 months

Technical report num.: TR-Precrime-2020-02
Date: January 2020
Organization: Università della Svizzera italiana

Authors: Valerio Terragni, Gunel Jahangirova, Mauro Pezzè, Paolo Tonella
Università della Svizzera italiana

Dissemination level: Public
Revision: 1.0

Disclaimer:
This Technical Report is a pre-print of the following publication:
Valerio Terragni, Gunel Jahangirova, Mauro Pezzè, Paolo Tonella: Evolutionary Improvement of Assertion
Oracles. Proceedings of the ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), Sacramento, USA, November, 2020

Please, refer to the published version when citing this work.

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Università della Svizzera Italiana (USI)

Principal investigator: Prof. Paolo Tonella
E-mail: paolo.tonella@usi.ch
Address: Via Buffi, 13 – 6900 Lugano – Switzerland
Tel: +41 58 666 4848
Project website: https://www.pre-crime.eu/

TECHNICAL REPORT ii

mailto:paolo.tonella@usi.ch
https://www.pre-crime.eu/

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Abstract

Assertion oracles are executable boolean expression placed inside the program. A perfect assertion oracle
should pass (return true) for all correct executions and fail (return false) for all incorrect executions. The
difficulty of manually design or automatically generate perfect oracles often leads to assertions that fail to
distinguish between correct and incorrect executions. In other words, they have false positives and false
negatives that we call oracle deficiencies.
In this paper, we propose GASSERT (Genetic ASSERTion improvement), the first technique to automatically
improve assertions oracles. Given an assertion oracle and its oracle deficiencies, GASSERT uses a novel
evolutionary algorithm that explores the space of possible assertions to identify a new assertion with fewer
oracle deficiencies than the original assertion.
Our empirical evaluation on 34 JAVA methods from 7 JAVA code bases shows that GASSERT effectively im-
proves assertion oracles. Moreover, GASSERT outperforms two baselines (unguided-random and invariant-
based oracle improvement) and was competitive with and in some cases even outperformed human im-
proved assertions.

TECHNICAL REPORT iii

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Contents

1 Introduction 1

2 Problem Formulation 2

3 GASSERT 4
3.1 Running Example . 4
3.2 Program State Serialization . 5

4 Oracle Improvement 7

5 Evaluation 10
5.1 Subjects . 10
5.2 RQ1: Effectiveness . 10
5.3 RQ2: Comparison with Random and Invariant-Based Oracle Improvement 12
5.4 RQ3: Comparison with Human Oracle Improvement . 13

6 Related Work 14

7 Conclusion 14

TECHNICAL REPORT iv

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

1 Introduction

While recent progresses in test case generation produced effective techniques and tools, capable of achiev-
ing high code coverage [15, 33, 53, 50], the oracle problem still represents a major obstacle to the widespread
adoption of automated testing approaches [20, 5, 30].
A commonly used oracle in software testing consists of program assertions, i.e., executable boolean expres-
sions placed inside the program that predicates on the values of variables at a specific program point. A
perfect oracle should pass (return true) for all correct executions and fail (return false) for all incorrect exe-
cutions. Perfect oracles are often difficult to design, and assertion oracles often fail to distinguish between
correct and incorrect executions [30], that is, they are prone to both false positives and false negatives [23].
A false positive is a correct program state in which the assertion fails (but should pass), and a false nega-
tive is an incorrect program state in which the assertion passes (but should fail). False positives and false
negatives are jointly called oracle deficiencies.
Oracle deficiencies are a serious problem also for invariant generators, which are known to produce in-
variants that are incomplete and imprecise when used as assertion oracles [6, 36, 47]. They are incomplete
because most dynamic invariant generators, notably DAIKON [10, 11] and INVGEN [19], rely on a set of
pre-defined templates of Boolean expressions to produce program invariants, and cannot generate asser-
tions that do not match the templates [6]. As such they can explore only a limited portion of the search
space of all possible assertions. Moreover, most invariant generators (such as DAIKON) ignore internally
observable variables (method-local variables and private fields). This further reduces the expressiveness of
the assertions they generate. Existing invariant generators are also imprecise, because the invariants they
generate automatically often do not generalize well with unseen test cases. In fact, Nguyen et al.’s and
Staats et al.’s studies [36, 47] report high false positive rates for DAIKON invariants. One of the reasons is
that invariant generators produce invariants using only positive counterexamples [10, 11, 19]. Moreover,
by ignoring incorrect execution states (false negatives) there is no guarantee that the resulting assertions
will be effective in exposing software faults.
Improving the quality of program assertions by removing oracle deficiencies is of paramount importance.
It would improve the fault detection capability and reduce the false alarms of both automatically generated
and manually written test cases.
Recently, Jahangirova et al. proposed the OASIS approach [24, 25] to automatically identify evidence of
oracle deficiencies in program assertions. Given a program assertion, OASIS generates test cases and mu-
tations that indicate the presence of false positives and false negatives. The found evidence is meant to
support the developers in assessing and improving assertion oracles.
A recent study by OASIS’s authors shows that manual improvement of assertion oracles is difficult [26].
Given the oracle deficiencies detected by OASIS, for only 67% of the given assertions humans successfully
removed all oracle deficiencies. Staats et al. [47] confirmed that for humans is hard reasoning about sound-
ness and completeness of program assertions. Their study shows that developers often fail to find false
positives in DAIKON invariants.
The difficulty of manually improving assertion oracles motivated us to study the problem of an automated
improvement: given a program assertion α and some evidence of the presence of false positives and false
negatives provided by an oracle assessor OA (such as OASIS), we want to automatically generate an im-
proved assertion α′ with fewer oracle deficiencies than α. While there are many techniques to automatically
generate program assertions, e.g., program invariants [18, 17, 43, 54, 32, 9, 19, 41, 1], automatically improv-
ing assertions oracles is a largely unexplored problem.
In this paper, we propose GASSERT, Genetic ASSERTion improvement, the first technique to automatically
improve assertions oracles. Given an assertion oracle and its oracle deficiencies, GASSERT explores the
space of possible assertions to identify those with zero false positives and the lowest number of false nega-
tives. GASSERT favors assertions with zero false positives as manually removing false alarms in assertions
is costly and difficult [36].
GASSERT addresses the challenge of a huge search space with an evolutionary approach that evolves pop-
ulations of assertions by rewarding assertions with fewer deficiencies. GASSERT initializes the popula-
tions of assertions by mutating the original assertion, so as to produce “good” genetic material for evo-
lution. GASSERT formulates the oracle improvement problem as a multi-objective optimization problem
(MOOP) [48] with three competing objectives: (i) minimizing the number of false positives, (ii) minimizing
the number of false negatives, (iii) minimizing the size of the assertion, i.e., the number of variables and
function calls in it.
The key challenge of defining a multi-objective fitness function is that these three objectives are competing

TECHNICAL REPORT 1

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

with each other. Simply merging the objectives into the same fitness function is not an effective solution, as
in MOOPs it is difficult to simultaneously reduce all competing objectives [48, 40, 37, 44]. For an evolution-
ary algorithm, a possible strategy to improve a given program assertion might be either by first removing
all false negatives (accepting more program behaviors, i.e., generalizing the assertion) or by removing false
positives (accepting less program behaviors, i.e., specializing the assertion), or by an interleaving of these
two strategies.
GASSERT addresses this challenge with a co-evolutionary approach that evolves two populations in parallel
with different fitness functions for each population. The fitness functions of the first and second popula-
tion reward solutions with fewer false positives and false negative, respectively, considering the remaining
objectives only in tie cases. The two populations exchange their best individuals (population migration) on
a regular basis, to supply both populations with good genetic material, useful to improve both the primary
and secondary objectives.
We empirically evaluated GASSERT on 34 methods from 7 JAVA code bases.We evaluated the ability of
GASSERT to improve an initial set of DAIKON [9] generated assertions. The improved assertions eliminate
all false positives present in the initial DAIKON assertions, and reduce the false negatives by 40% (on av-
erage) with respect to the initial DAIKON assertions. When executed with unseen tests and mutants, the
GASSERT assertions increase the mutation score by 34% with respect to the mutation score obtained with
the initial assertions. This paper makes the following contributions:

• We formulate the problem of automatically improving assertion oracles given some evidence of the
presence of false positives and false negatives,

• We propose GASSERT, an evolutionary approach to automatically improve a given assertion oracle
by reducing its false positives and false negatives,

• We evaluate GASSERT on 34 methods from seven JAVA code bases, and show that GASSERT outper-
forms both unguided-random and invariant-based approaches,

• We release our evaluation results and tool to facilitate future work in this area http://tiny.cc/
jkqxkz

2 Problem Formulation

This section provides the preliminaries for this work and formulates the problem of improving oracle as-
sertions.
In this paper, P is an object-oriented program composed of a set of classes, each defining a set of methods
and fields. Given a program point ρρ of a method m in P , Sρρ denotes the set of all program states that can
reach ρρ when m is executed. A state s ∈ Sρρ defines an assignment of values to memory locations that are
accessible (visible) at the program point ρρ, e.g., instance fields, method parameters and local variables. Sρρ
is partitioned into two disjoint sets: correct (S+ρρ) and incorrect (S−ρρ) program states. We say that a state is
correct if it satisfies the intended program behaviour, incorrect otherwise. We drop the subscript ρρ and use
S, S+ and S− when ρρ is clear from the context.
A program point ρρ can be associated with an assertion oracle α, a quantifier-free first-order logic formula
that predicates on variables and functions of Boolean or numerical types and returns a Boolean value (T
or F). Let Σ denote the set of variables visible at the assertion point ρρ and let F denote the set of boolean
and numerical operators that GASSERT uses to synthesize assertions. The content of Σ depends on ρρ,
while F is fixed for any ρρ. Table 1 shows the 17 functions in F grouped by operand and output type.
An assertion oracle α aims to distinguish between correct and incorrect executions. More specifically, an
assertion oracle expresses a correctness property that is intended to be true at ρρ in all correct executions (i.e.,
∀s+ ∈ S+, α[s+] = T) and false in all incorrect executions (i.e., ∀s− ∈ S−, α[s−] = F), where α[s] denotes
the evaluation of the Boolean expression α on state s. We call an assertion that meets such a condition a
perfect oracle.
We consider oracle assertions inserted into program P , and not into its test cases. The difference is that
assertions in P handle all the test case executions, while assertions in the test cases check the correctness
of executions of a single (possibly parameterized) test.Perfect oracles are difficult to design, and assertion
oracles often fail to distinguishing between correct and incorrect executions. In other words, they are prone
to false positives and false negatives, which we call oracle deficiencies.

TECHNICAL REPORT 2

http://tiny.cc/jkqxkz
http://tiny.cc/jkqxkz

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Table 1: Functions F considered by GASSERT

operand output functions
type type

〈 number, number 〉 number +, *, -, /, % (modulo)
〈 number, number 〉 boolean ==, ¡, ¿, ≤, ≥, 6=
〈 boolean, boolean 〉 boolean AND, OR, XOR, EXOR,→ (implies), == (equiv.)
〈 boolean 〉 boolean NOT

Definition 1 A false positive of an assertion α at a program point ρρ is a reachable program state where α is false,
although such state is correct (according to the intended program behavior). More formally, it is a state s+ ∈ S+ρρ :
α[s+] = F .

Definition 2 A false negative of an assertion α at a program point ρρ is a reachable program state where α is
true, although such state is incorrect (according to the intended program behavior). More formally, it is a state
s− ∈ S−ρρ : α[s−] = T .

In this paper, we study the problem of automatically improving oracle assertions, that is, given an assertion α and
a set of oracle deficiencies, generating a new assertion α′ with fewer deficiencies.
Identifying oracle deficiencies by enumerating all correct and incorrect states is infeasible, because it re-
quires to enumerate infinitely many executions [42]. Thus, we rely on a precise but incomplete oracle
assessor OA that returns evidence of false positives and false negatives (if any) for a given assertion. An
oracle assessor OA can be a human or an automated technique. We assume OA to be precise, that is, it
reports only real oracle deficiencies, but possibly incomplete, that is, it may miss oracle deficiencies, because
it cannot enumerate all possible correct and incorrect executions. To enable full automation, in this paper
we use OASIS [23, 26] as an OA. Given an assertion α, OASIS leverages search-based test generation and
mutation testing to report evidence of false positives and false negatives, if any can be found in the given
time budget.
OASIS finds false positives of an assertion α by generating test cases that reach the program point of α,
and make α return false in the reached state. Such states are false positives if the behavior of the program
is correct (otherwise, OASIS discovered a fault in the program, not in the assertion) [23, 26].
OASIS finds false negatives for an assertion α by seeding artificial faults (mutations) into program P with
mutation testing [15]. OASIS generates a test case and a mutation that produce a corrupted program state
s− ∈ S− at the assertion point ρρ, where α does not reveal the fault, i.e., its outcome is true.
We now define the oracle improvement problem, given an oracle assessor OA. Let A denote the universe
of possible Boolean expressions containing variables in Σ and functions in F . To make A a finite set,
we bound the size of assertions (the number of variables and functions occurring in the assertions) to a
maximum value (50 in our experiments).
Let FP(α,S+) denote the number of false positives of α wrt a finite subset S+ of S+, i.e., FP(α,S+) is the
number of states s+ ∈ S+ ⊆ S+ : α[s+] = F . Similarly, FN(α,S−) denotes the number of false negatives of
α wrt a finite subset S− of S−, i.e., FN(α,S−) is the number of states s− ∈ S− ⊆ S− : α[s−] = T .

Problem Definition 1 Given an assertion α at a program point ρρ in P , given a set of false positives S+ ⊆ S+
and a set of false negatives S− ⊆ S− reported by an oracle assessor OA, and an overall time budget B, the oracle
improvement of α is the process of finding a new assertion α′ ∈ A such that FP(α′,S+) = 0 and either FP(α′,S+) <
FP(α,S+) or FN(α′,S−) < FN(α,S−) within B.

In defining oracle improvement, we give priority to false positive over false negative reduction, by requir-
ing all false positives to disappear in the improved oracle. The rationale for this choice is that assertions
that easily reduce false negatives likely introduce many false alarms. Such assertions trigger an expensive
debugging process since the root of those bugs may likely be the assertion itself. Therefore we privilege
assertions with no false alarms.
The ideal improved assertion oracleα′ has zero oracle deficiencies wrt to S+ and S− (FP(α′,S+) = FN(α′,S−) =
0). However, generating ideal assertions is expensive and difficult, and may be infeasible within a reason-
able time budget, as an oracle that detects all faults could be as complex as the method under test [23].
Therefore, an oracle with zero false positives and the lowest number of false negatives is deemed suffi-
ciently adequate in practice [26].

TECHNICAL REPORT 3

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Algorithm 1: GASSERT, iterative oracle improvement process

input : initial assertion α at progr. point ρρ in P , time-budget B
output: improved assertion α′

1 function GASSERT
2 P ′ ← INSTRUMENT-METHOD-AT-PROGRAM-POINT(ρρ, P)
3 〈S+, S−〉 ← GET-INITIAL-CORRECT-AND-INCORRECT-STATES(P ′)
4 while time-budget B is not expired do
5 Σ← GET-DICTIONARY-OF-VARIABLES(S+, S−)
6 α′ ← ORACLE-IMPROVEMENT(α, S+, S−, Σ)
7 〈S+

NEW, S−NEW〉 ← ORACLE-ASSESSMENT(a′) // OASIS [24]
8 if S+

NEW = ∅ ∧ S−NEW = ∅ then
9 return α′

10 S+← S+ ∪ S+
NEW

11 S−← S− ∪ S−NEW

12 α← α′

13 return α′

Table 2: Input and output of the oracle assessor (OA) of our running example
False Positives (FP) False Negatives (FN)

iter. input assertion α test state test mutant state

0 (min < x) t1=min(x=3,y=5) s+1 ={x=3,y=5,min=3} t2=min(x=9,y=7) M1 s−2 ={x=9,y=7,min=8}
1 (min ≤ x) AND (min ≤ y) ∅ ∅ t3=min(x=3,y=7) M2 s−3 ={x=3,y=7,min=0}
2 ((min == x) OR (min == y)) AND ((min ≤ x) AND (min ≤ y)) ∅ ∅ ∅ ∅ ∅

3 GASSERT

In this section, we overview the GASSERT approach and illustrate the GASSERT oracle improvement pro-
cess with a running example.

Overview. GASSERT improves oracle assertions with an iterative process (see Algorithm 1). GASSERT’s
required inputs are an oracle assertion α, the program point ρρ in P where α is placed, and a time budget
B. GASSERT’s output is an improved assertion α′.
GASSERT starts by instrumenting P to capture program states at runtime (line 2 Algorithm 1). It then pro-
duces an initial set of correct and incorrect states S+ and S−, by executing an initial test suite on the instru-
mented version P ′ and its faulty versions (i.e., mutants), respectively (line 3 Algorithm 1). The while loop
(lines 4–13) implements the iterative process, within which GASSERT creates the dictionary of variables Σ
from the states S+ and S− and uses these variables to build new oracle assertions (line 5 Algorithm 1). The
ORACLE-IMPROVEMENT algorithm that we discuss in detail in Section 4 returns an improved assertion α′

(line 6 of Algorithm 1). If OA cannot find any oracle deficiencies of α′, Algorithm 1 returns α′, and the pro-
cess terminates (lines 8 and 9 Algorithm 1). Otherwise, GASSERT adds the newly identified false positives
and false negatives (S+NEW and S−NEW) to S+ and S− (lines 10 and 11 of Algorithm 1). The improved assertion
α′ replaces the initial assertion α (line 12 Algorithm 1) and a new iteration starts.

3.1 Running Example

Figure 1 shows a JAVA method that accepts two integers x and y as parameters ~p, and returns the minimum
between them. The figure shows also (i) the assertion point ρρ (line 9), (ii) two instrumented method calls
to collect the program states (lines 1 and 8), and (iii) two mutants M1 and M2 used to identify FN (lines 6
and 4).
Table 2 illustrates how GASSERT improves an incomplete and trivially wrong initial assertion (min < x)
into a stronger assertion that intuitively captures the expected behavior of a “min” function ((min ==
x) OR (min == y)) AND ((min ≤ x) AND (min ≤ y)). Column “input assertion α” shows the assertions
that the oracle assessor (OA) receives as input at each iteration. The first assertion (min < x) provided to
GASSERT as an input, while the following two assertions are automatically generated by its evolutionary
algorithm. The initial assertion can be manually generated or inferred with a tool. Column “False Positives
(FP)” shows the false positive states with the test cases that produced them. On such states α fails while
it should pass. Similarly, Column “False Negatives (FN)” shows the false negative states with the test cases
and the mutants that produced them. On such states α passes but it should fail.

TECHNICAL REPORT 4

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

public static int min(int x, int y) {
serializer(x, y); // instrumentation
int min;
if (x <= y) {

min = x; // mutant M2 : min = 0;
} else {

min = y; // mutant M1 : min = y + 1;
}
serializer(x, y, min); // instrumentation
// program point pp
return min;

}

1
2
3
4
5
6
7
8
9
10

Figure 1: Java source code of the running example

In the example, OA identifies both false positives and false negatives for α : min < x. Table 2 reports
a sample test case t1 that OA generates for α and for which α incorrectly returns false. The test cases t1
produces the state s+1 that is a false positive for α (see Def. 1). The table reports also a sample test case t2
and mutant M1 that OA generates for α and for which α incorrectly returns true: α does not kill the killable
mutant M1. The initial assertion α wrongly returns true for the faulty program state s−2 , thus s−2 is a false
negative for α (see Def. 2).
At the first iteration, GASSERT takes as input α, the false positive s+1 and the false negative s−2 of α, and
returns the improved assertion α′ : min ≤ x AND min ≤ y. GASSERT produces the new assertion with an
evolutionary algorithm that evolves populations of assertions towards an assertion with zero false positives
and the lowest number of false negatives. More specifically, the evolutionary algorithm explores the search
space by (i) selecting pairs of assertions (parents) by means of fitness functions that reward solutions with
fewer oracle deficiencies, (ii) creating new (and possibly fitter) offspring by exchanging genetic materials
(portions of assertions) of the parents with crossover operators, (iii) mutating the offspring (with a certain
probability) using mutation operators.
Let us consider the initial assertion α : min < x, and let us assume that GASSERT selects two parents:
αp1 : min ≤ x and αp2 : min 6= y. The assertion αp1 reduces the number of false positives with respect to
the initial assertion (FP(αp1,S+) = 0, where S+ = {s+1 }) but it does not reduce the number of false negatives
because αp1 evaluates true under s−2 (FN(αp1,S−) = 1, where S− = {s−2 }). On the contrary, the assertion
αp2 reduces the number of false negatives (FN(αp2,S−) = 0), but it has the same number of false positives
as α (FP(αp2,S+) = FP(α,S+) = 1).
The crossover operator merge crossover applied to αp1 and αp2 would produce the offspring αo1 : (min ≤
x) AND (min 6= y) and αo2 : (min < x) OR (min 6= y). If the mutation operator node mutation mutates αo1
into (min ≤ x) AND (min ≤ y), GASSERT would obtain an improved assertion with zero oracle deficiencies
wrt the states S+ and S−, and the first iteration would terminate.
At the second iteration, OA takes in input α : min ≤ x AND min ≤ y to find oracle deficiencies. For this
assertion, OA does not find false positives, but it reports a false negative: execution of test t3 with mutant
M2 leads to the state s−3 , which is a false negative for α (i.e., FN(α,S−) = 1, where S− = {s−2 , s

−
3 }).

Given the assertion α : (min ≤ x) AND (min ≤ y), the correct states S+ = {s+1 } and the incorrect states
S− = {s−2 , s

−
3 }, the evolutionary algorithm successfully finds (with crossover and mutation) the improved

assertion α′ : ((min == x) OR (min == y)) AND ((min ≤ x) AND (min ≤ y)), with zero oracle deficiencies
(FP(α′,S+) = FN(α′,S−) = 0). AsOA does not find any oracle deficiencies for α′, the improvement process
terminates.
The following two sections describe in detail how GASSERT serializes program states and how improves
the oracle assertions.

3.2 Program State Serialization

A program state is a set of variables s = {v1, · · · , vn} that are in memory at a certain execution point.
Each variable vi has a type type(vi), an identifier id(vi) and a value value(vi). Selecting the variables that a
program state should contain is a key design decision as it defines the expressiveness of the assertions that
GASSERT can produce. Given a method m(~p) with formal parameters ~p, GASSERT constructs the program
state at ρρ considering as variables all parameters pi of ~p and all the local variables created in m that are

TECHNICAL REPORT 5

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

visible at ρρ. Note that when m(~p) is a non-static method, the object receiver of m (this in JAVA) is m’s first
parameter p0. GASSERT captures the values of the parameters both at the beginning of the method (adding
the prefix old to the variable names) and immediately before ρρ. By considering “old” values, GASSERT
can generate assertions that also predicate on methods preconditions [9].
When the considered variable is a primitive, GASSERT simply adds it to the program state (rounding floats
with a fixed precision). When variable vi is not a primitive but an object, there are two well-established
approaches to obtain primitive values: Object serialization [49] captures the values of all primitive-type
object fields that are recursively reachable from vi. Observer methods [1] are side-effect free methods on vi
that return a primitive value.
Object serialization can introduce many variables into state s, thus increasing the search space, which makes
finding oracle improvements more difficult. Indeed, many recursively obtained primitive variables often
do not capture interesting properties of methods. The effectiveness of the second approach relies on the
availability of user-defined observer methods that capture all important aspects of the object under test.

Hybrid State Serialization. To address the aforementioned problem, GASSERT opts for a hybrid solution
that uses both approaches. We rely on observer methods for all non-primitive variables considered by
GASSERT. We use object serialization only for the object receiver (this) of the method under analysis m.
For non-primitive fields of the object receiver we again consider observer methods. The rationale is that
the primitive fields of m’s object receiver are more likely to capture important aspects of the behavior of m
than recursively reachable primitive fields or other method parameters.
If id(vi) = this, GASSERT serializes the object by adding variable this.fieldj to the state s, for each
primitive-type field fieldj of this. For each non-primitive variable vi (including this), GASSERT gets
the observer methods {f1, f2, . . . , fm} of vi’s class C using a static analyzer that scans the bytecode instruc-
tions of the public methods in C. GASSERT marks a method m as an observer, if (i) m returns a number or
a boolean, and (ii) m cannot directly or indirectly execute putfield or putstatic bytecode instructions,
i.e., m is side-effect free; (iii) m does not have additional parameters (besides the object receiver). For each
observer method fj with return type τj , the analyzer updates the state s by adding a variable with identifier
“id(vi).fj”, type τj and value the result of the invocation of vi.fj .
For non-primitive variables of type array, string or JAVA collection (i.e., objects that extend java. util.Collection)
GASSERT considers a smaller set of observer methods that capture the most important properties of such
object types. GASSERT adds vi.size (vi.length for arrays and String) and vi.isEmpty to the state s.

State Collection. Function INSTRUMENT-METHOD-AT-PROGRAM-POINT instruments P at the beginning
and one immediately before ρρ (Algorithm 1, line 2). When a test execution reaches ρρ in the instrumented
program, GASSERT performs the state serialization described above. Every time GASSERT executes a new
test, it stores the observed states so that it can compute the number of FP and FN without requiring expen-
sive program re-executions.

Initial Program States. Function GET-INITIAL-CORRECT-AND-INCORRECT-STATES (line 3 Algorithm 1) gen-
erates a set of initial correct (S+) and incorrect (S−) program states by executing an initial test suite on both
the instrumented program P ′ and its faulty versions. The rationale of considering these initial states (as
opposed to immediately relying on the oracle assessor OA) is to minimize the number of iterations of the
while loop (line 4 Algorithm 1). In this way, GASSERT avoids invoking OA to detect obvious oracle defi-
ciencies, and rather lets OA focus on hard-to-find ones.

Post-processing of the States. Function GET-INITIAL-CORRECT-AND-INCORRECT-STATES post-processes
the states with two scans. The first scan removes redundant states from S+, so that 6 ∃s1, s2 ∈ S+ such that s1
and s2 are equivalent (s1 ≡ s2), i.e., all corresponding variables have identical values (∀v1 ∈ s1,∀v2 ∈ s2, if
id(v1) = id(v2) then value(v1) = value(v2)). The second scan checks that each state in S− is indeed incorrect,
i.e. that the seeded fault (the mutant) has successfully corrupted the program state. If not, GASSERT found
an equivalent mutant [27] which it then removes from S−.

Dictionary of Variables. Function GET-DICTIONARY-OF-VARIABLES (line 5 Algorithm 2) builds the dictio-
nary of variables Σ that function ORACLE-IMPROVEMENT uses to create new assertions. GASSERT picks an
arbitrary state s in either S+ or S− (by construction all states have the same variables), and adds all the
variables in s to Σ.

TECHNICAL REPORT 6

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

4 Oracle Improvement

A major challenge to automatically improve assertion oracles is the huge search space of candidate solutions
(A in Section 2), which grows exponentially with the number of variables and functions.
GASSERT addresses this challenge with Genetic Programming (GP) [2, 52]. We formulate the oracle im-
provement problem as a multi-objective optimization problem (MOOP) [48, 40, 37, 44] with three compet-
ing objectives: (i) minimize the number of false positives (FP); (ii) minimize the number of false negatives
(FN); (iii) minimize the size of the assertion, i.e., the number of variables and functions in it. The latter
objective helps to improve the quality of assertions, as long assertions are often difficult to understand.
Classic multi-objective evolutionary approaches, for instance NSGA-II [8, 51], rely on Pareto optimality [46,
48, 21] to produce solutions that offer the best trade-off between competing objectives [48]. However, in
our case not all assertions with an optimal trade-off between FPs and FNs are acceptable solutions. As
discussed in Section 2, we aim to obtain assertions with zero FPs and the lowest number of FNs. On the
other hand, primarily focusing on reducing FPs may be inadequate, as there may not be enough evolution
pressure [52] to reduce the FNs at the same time.
Hence, we propose a co-evolutionary approach that evolves in parallel two distinct populations of asser-
tions (PopulFP and PopulFN) with two competing objectives: reduce the false positives (fitness function φFP)
and reduce the false negatives (fitness function φFN), respectively. These populations periodically exchange
their best individuals (population migration) to introduce promising genetic material for the evolution in
both PopulFP and PopulFN. Eventually PopulFP will more likely produce assertions with zero false positives
and fewer false negatives. In fact, the periodic migration of best individuals guarantees that PopulFP works
on assertions with a decreasing amount of false negatives.

Fitness Functions. Both φFP and φFN are multi-objective fitness functions. The former gives priority to
reducing false positives, while the latter to reducing false negatives. Both functions consider the remaining
objectives only in tie cases. In multi-objective optimization, the fitness of a solution is determined by the
concept of dominance (≺) [8]. While the standard definition of dominance gives the same importance to all
objectives being optimized, we need an unbalanced definition of dominance towards false positives and
negatives, respectively, that we define as follows:

Definition 3 FP-fitness (φFP). Given two solutions α1 and α2 and two sets of correct S+ and incorrect S− states,
α1 dominatesFP α2 (≺FP) if any of the following conditions is satisfied:

– FP(α1,S+) < FP(α2,S+)

– FP(α1,S+) = FP(α2,S+) ∧ FN(α1,S−) < FN(α2,S−)

– FP(α1,S+) = FP(α2,S+) ∧ FN(α1,S−) = FN(α2,S−) ∧ size(α1) < size(α2)

Definition 4 FN-fitness (φFN). Given two solutions α1 and α2 and two sets of correct S+ and incorrect S− states,
α1 dominatesFN (≺FN) α2 if any of the following conditions is satisfied.

– FN(α1,S−) < FN(α2,S−)

– FN(α1,S−) = FN(α2,S−) ∧ FP(α1,S+) < FP(α2,S+)

– FN(α1,S−) = FN(α2,S−) ∧ FP(α1,S+) = FP(α2,S+) ∧ size(α1) < size(α2)

In tie cases (FP(α1,S+) = FP(α2,S+) ∧ FN(α1,S−) = FN(α2,S−)), both functions give preference to small
assertions in terms of amount of variables and terms. If neither α1 ≺ α2 nor α2 ≺ α1, the choice between
α1 and α2 is random. We now describe the details of our co-evolutionary algorithm (Algorithm 2).

Building the Initial Populations. Both populations PopulFP and PopulFN contain N assertions each. We
represent an assertion α ∈ Popul as a rooted binary tree [7], where leaf nodes are variables or constants
(terminals) and inner nodes are functions. Each node has a type, either Boolean or Numerical. The type
of leave nodes is the type of the associated variable, the type of the inner nodes is the type of the function
outputs. We define the size of an assertion α, size(α), as the number of nodes in its tree representation.
Function GET-INITIAL-POPULATION at lines 2 and 3 of Algorithm 2 initializes the two populations, PopulFP

and PopulFN, respectively, in the same way. Half of the initial population consists of randomly-generated
assertions (to guarantee genetic diversity), the other half of assertions is obtained by randomly mutating
the input assertion α (to have “good” genetic material for evolution). Intuitively, an improved assertion

TECHNICAL REPORT 7

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Algorithm 2: Evolutionary algorithm for the oracle improvement

input : correct S+ and incorrect S− states, assertion oracle α
output: improved assertion oracleα′

1 function ORACLE-IMPROVEMENT
2 PopulFP ← GET-INITIAL-POPULATION(α, Σ)
3 PopulFN ← GET-INITIAL-POPULATION(α, Σ)
4 for gen from 1 to max-number-of-gen do
5 if ∃a′∈{PopulFP∪PopulFN}:FP(a′,S+) = FN(a′,S−) = 0
6 AND gen ≤ min-number-of-gen then
7 return a′ // optimal assertion

8 do in parallel
9 PopulFP←SELECT-AND-REPRODUCE(PopulFP, φFP,Σ,S+,S−)

10 PopulFN←SELECT-AND-REPRODUCE(PopulFN,φFN,Σ,S+,S−)

11 if gen % frequency-migration = 0 then
12 do in parallel
13 PopulFP ← MIGRATE(PopulFN, φFP, φFN)
14 PopulFN ← MIGRATE(PopulFP, φFN, φFP)

15 return a′ with zero FP and the lowest number of FN

input : population Popul, fitness function φ, dictionary of variables Σ, correct S+ and incorrect S− states,
generation gen

output: new population PopulNEW

16 function SELECT-AND-REPRODUCE
17 Popul← COMPUTE-FITNESS(Popul, S+, S−)
18 PopulNEW ← ∅
19 if gen % frequency-of-elitism = 0 then
20 PopulNEW ← GET-BEST-INDIVIDUALS(φ)

21 while PopulNEW is not full do
22 〈ap1, ap2〉 ←SELECT-PARENTS(Popul, φ)
23 〈ao1, ao2〉 ←CROSSOVER-AND-MUTATION(ap1, ap2,Σ)
24 add 〈ao1, ao2〉 to PopulNEW

25 return PopulNEW

could include fragments similar to the input assertion, thus initializing the populations with variants of α
increases the chances of introducing “good” genetic material.
GASSERT produces the first half of individuals with a tree factory operator that takes a type τ (either
Number or Boolean) and a depth d, and returns a randomly-generated assertion with root of type τ and
depth of the tree d. Because the root of an assertion must be of Boolean type, GASSERT always sets τ to
Boolean, and invokes tree factory N/2 times with random values of d and τ .

Tree Mutations. To obtain the second half of individuals, GASSERT relies on two classic tree-based mutation
operators:
Node Mutation changes a single node in the tree [4]. It takes as input an assertion α and one of its nodes n,
and returns an assertion α1 obtained by replacing the node n in α1 with a new node with the same type of
n (chosen randomly).
Subtree Mutation replaces a subtree in the tree [4]. It takes as input an assertion α and one of its nodes n,
and returns a new assertion a1 obtained by substituting the subtree rooted at n with a randomly-generated
subtree (generated by the tree factory operator with the type of n as τ and a random number as d).

Stopping Criterion. Algorithm 2 evolves the two populations in parallel until either PopulFP or PopulFN

contains a perfect assertion α′ with respect to the correct and incorrect states in input (line 6 of Algorithm 2).
If GASSERT finds the perfect assertion before a minimum number of generations, it continues the evolution
process to see if it can find perfect assertions of smaller size. Algorithm 2 prematurely terminates when
the overall time-budget B expires or when it reaches a maximum number of generations. In such cases,
GASSERT returns the best archived assertion, the one with zero false positives and the lowest number of
false negatives, i.e., α′ s.t. 6 ∃α ∈ {PopulFP∪PopulFN} : α ≺FP α

′ (line 15 Algorithm 2).
Lines 9 and 10 of Algorithm 2 evolve in parallel the two populations by invoking function SELECT-AND-
REPRODUCE (lines 17-25) implementing a classic selection–crossover–mutation evolutionary approach [52].
Our problem requires the definition of novel selection and crossover operators, that are specific for auto-

TECHNICAL REPORT 8

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

matic oracle improvement.

Fitness Computation. GASSERT initializes the selection process by computing the number of false posi-
tives FP(α,S+) and false negatives FN(α,S−) for each α ∈ Popul (function COMPUTE-FITNESS line 17 Al-
gorithm 2). Both fitness functions need this information to compute the dominance relation. GASSERT
optimizes the computation of FP(α,S+) and FN(α,S−) by (i) loading the states in the memory, (ii) com-
puting multiple fitness values in parallel threads, (iii) caching the results for each assertion α, to avoid
recomputing them upon encountering α multiple times during the evolution.
Function SELECT-AND-REPRODUCE initializes the new population PopulNEW with the empty set (line 18 of
Algorithm 2) performing elitism if gen % frequency-migration = 0. Then it proceeds with parent selection,
parent crossover and offspring mutation, adding the resulting offspring to PopulNEW until PopulNEW reaches
size N .

Parent Selection. Function SELECT-PARENTS selects two parents ap1 and ap2 from Popul (line 22 in Algo-
rithm 2). GASSERT implements two different selection criteria, tournament and best-match selection, and
chooses between them with a given probability.
Tournament Selection [34] is a classic GP selection criterion [52]. It runs “tournaments” amongK randomly-
chosen individuals and selects the winner of each tournament (the one with the highest fitness) [34]. As
GASSERT needs two parents, it plays two tournaments to obtain αp1 and αp2. We choose K = 2 (the most
commonly used value [31]) as it mitigates the local optima problem [52].
Best-match Selection is a new criterion that we define in this paper, specific to our problem. The best-match
selection criterion exploits semantic information about the identity of the correct and incorrect states that
each individual covers. Let cov+(α,S+) denote the subset of S+ on which α evaluates to true, i.e., cov+(α,S+)
= {s+ ∈ S+ : α[s+] = T} ⊆ S+, and cov−(α,S−) denote the subset of S− on which α evaluates to false, i.e.,
cov−(α,S−) = {s− ∈ S− : α[s−] = F} ⊆ S−. The best-match criterion selects the first parent αp1 randomly
from Popul. If Popul is PopulFP, the best-match selection criterion gets the set of all assertions α1 ∈ PopulFP

such that {cov+(α1,S+)\cov+(α, S+)} 6= ∅. For each assertion α1 in the set, the best-match selection criterion
considers the cardinality of {cov+(α1,S+)\cov+(α,S+)} as the weight of α1. Then, it selects the second parent
αp2 from the set using a weighted random selection, where assertions with a higher weight are more likely
to be selected. To guarantee genetic diversity, the criterion does not to always pick the assertion with
highest weight. Symmetrically, if Popul is PopulFN, the best-match criterion considers cov+ instead of cov−.
Intuitively, the criterion increases the chances of crossover two complementary individuals that are likely
to yield a fitter offspring.

Crossover. Function CROSSOVER-AND-MUTATION exchanges genetic material between the two parents αp1
and αp2, producing two offspring αo1 and αo2 (line 23 in Algorithm 2),which are mutated (with a given
probability) by means of the mutation operators used to initialize the two populations. GASSERT imple-
ments two different crossover operators, subtree crossover and merging crossover, and choses between
them with a given probability.
Subtree Crossover [29] is the canonical tree-based crossover. Given two parents, the subtree crossover
operator selects a crossover point in each parent, and creates the offspring αo1 and αo2 by swapping the
subtrees rooted at each point in the corresponding tree [29].
Merging Crossover. Given two parents αp1 and αp2, the merging crossover operator selects two boolean
subtrees, α1 from αp1 and α2 from αp2, and produces two offsprings αo1 and αo2 such that αo1 = α1 AND
α2 and α02 = α1 OR α2. This operator partially resembles the geometric crossover operator [35] proposed by
Moraglio et al. We defined such operator specifically for the oracle improvement problem. The merging
crossover works well in synergy with our best-match criterion, since merging the subtrees with OR and
AND functions combines their semantics without disrupting them.

Node Selectors. A key design choice is the criterion to select the nodes of the tree α for crossover and
mutation. We implemented two different selection criteria: (i) Random that randomly selects a node in
α, (ii) Mutation-based that selects a node in α if the subtree rooted on this node contains a variable vi s.t.
∃s− ∈ S− in which the value of vi differs from the value of the corresponding state s+ ∈ S+ obtained when
executing on the original program the same test that produced s−. As such, vi can be used to recognize s−

as a false negative of α, which means that the new assertion could solve such a false negative by predicating
on vi.

Migration. GASSERT periodically exchanges the n best individuals between the two populations,where n
is a hyper parameter of the algorithm (see lines 11-14 in Algorithm 2). When selecting the best individuals
GASSERT considers both fitness functions so that both populations can benefit from assertions that have
either the lowest number of false positives or false negatives.

TECHNICAL REPORT 9

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

5 Evaluation

To experimentally evaluate our approach, we developed a prototype implementation of GASSERT for JAVA
classes, and we conducted a series of experiments to answer three research questions:

RQ1 Is GASSERT effective at improving assertion oracles?

RQ2 How does GASSERT compare with unguided (random) and invariant-based oracle improvement?

RQ3 How does GASSERT compare with human oracle improvement?

5.1 Subjects

We conducted our experiments on 34 methods from 7 different JAVA code bases. We experimented with
(i) the SimpleExamples (SE) class that contains four small methods that were used in a previous study on
oracle improvement [26] to train the humans on the oracle improvement task, (ii) StackAr (SA) and QueueAr
(QA) classes that are publicly released subjects of DAIKON often used as evaluation subjects of invariant
generators, each of these classes contains five methods, (iii) 20 methods that we selected from four popular
JAVA libraries, Apache Commons Math (CM), Apache Commons Lang (CL), Google Guava (GG) and JTS
Topology Suite (TS). From each library we selected five methods that (i) contain at least five lines of code,
(ii) produce a return value, (iii) are not recursive, (iv) do not write to files and do not use reflection, as
the outcome of such operations cannot be captured by an assertion oracle. We made no restrictions on the
parameter types or on the presence of loops. We selected the last return statements as program point ρρ.

5.2 RQ1: Effectiveness

To evaluate the effectiveness of GASSERT we need an initial set of test cases and some initial assertions to
be improved. We also need to perform mutation analysis to get incorrect states, in addition to the correct
states obtained by running the test cases on the original program. Then, we run GASSERT and get the
improved assertions. These are evaluated in terms of false positive and false negative rate on the initial test
cases and mutations. To avoid circularity in the evaluation we introduce a new sets of evaluation test cases
and mutations. The false positive rate and the mutation score obtained on the latter provide an external
assessment of effectiveness.

Initial Correct and Incorrect States. We obtained the initial correct (S+0) and incorrect states (S−0) by execut-
ing an initial test suite on the instrumented version of P and on a set of initial mutations, respectively. We
generated the initial test suite with EVOSUITE [13, 15] (v. 1.0.6) and the initial mutations with MAJOR [28]
(v. 1.3.4) (line 3 of Algorithm 1). We ran EVOSUITE with the branch coverage criterion and a time budget
of one minute [13]. We performed ten runs with different random seeds to collect a diverse and large set of
initial test cases. We ran MAJOR with all types of supported mutants. Let T0 andM0 denote the test cases
and mutations produced with EVOSUITE and MAJOR, respectively. Columns “|S+0 |” and “|S−0 |”of Table 4
show the cardinality of the initial states for each subject. Since GASSERT removes redundant states from
S+0 and S−0 and equivalent mutants from S−0 with respect to its definition of state equivalence, |S−0 | ¡ |S

+
0 | for

some subjects.

Initial Assertion Oracles. We obtained an initial assertion for our subjects with DAIKON [9] (v. 5.7.2)
executed with the initial test suite. We chose DAIKON because it represents a fully-fledged and popular
tool, often used as the de-facto approach for generating invariants for JAVA methods [11]. DAIKON accepts
in input a set of observer methods. We executed DAIKON with the same observer methods that GASSERT
used to obtain primitive variables. DAIKON considers all possible exit points of a method, i.e., all returns
and exception throw statements. GASSERT automatically removes all the initial test cases that do not reach
the program point ρρ, to ensures that DAIKON generates invariants that consider only the exit point at ρρ.
DAIKON outputs invariants as a series of precondition α1, α2, . . .αn and postcondition assertions β1, β2,
. . .βm. GASSERT converts them into a single (complete) JAVA assertion in the form of (α1 AND α2, . . . AND αn)→
(β1 AND β2, . . . AND βn). GASSERT initializes half of the populations by adding the complete assertion, all
single α and β, and random mutations of each of these assertions.

Evaluation Setup. Table 3 shows the GASSERT configuration parameters values used in our experiments.
We selected these values with some trial runs according to the basic GP guidelines [2, 52]. We ran GASSERT
with an overall time budget B of 90 minutes. To ensure that GASSERT will leverage the feedback of OASIS,

TECHNICAL REPORT 10

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Table 3: GASSERT configuration parameters values
Parameter Description Value Parameter Description Value

bound on the size of the assertions 50 prob. of crossover 90%
size of each of the populations (N) 1,000 prob. of mutation 20%
minimum number of generations 100 prob. of tournament parent selection 50%
maximum number of generations 10,000 prob. of best-match parent selection 50%
frequency of elitism (every X gen) 1 prob. of merging crossover 50%
frequency of migration (every X gen) 100 prob. of random crossover 50%
number of assertions for elitism 10 prob. of mutate-state-diff node selector 30%
number of assertions to migrate 160 prob. of random node selector 70%

Table 4: Evaluation Results for RQ1 and RQ2
RQ1 RQ2

subj. evaluation sets initial assertion α GASSERT improved α′ (median) RANDOM improved α′ (median) INV-BASED improved α′ (median)
ID |S+0 | | S

−
0 | |TV| |MV| FP0 FN0 FPV MV% size # iter. FP0 FN0 FPV MV% size # iter. FP0 FN0 FPV MV% size # iter. FP0 FN0 FPV MV% size

SE1 36 46 1,010 4 0 10 0 75% 7 3 0 0 0 75% 15 3 0 12 0 75% 11 1 0 10 0 75% 7
SE2 20 250 1,062 8 0 0 0 100% 17 3 0 0 0 100% 17 4 0 10 0 88% 9 1 0 0 0 100% 17
SE3 41 250 1,199 15 0 32 0 33% 23 3 0 32 0 33% 3 3 0 32 0 33% 3 1 0 32 0 33% 23
SE4 10 20 54 7 0 10 0 0% 1 4 0 0 0 57% 23 4 0 0 0 0% 10 - - - - - -
SA1 10 30 1,026 10 0 10 0 60% 43 1 0 0 0 50% 5 4 0 0 0 50% 5 1 0 10 0 60% 43
SA2 68 57 1,026 8 0 12 0 100% 51 3 0 48 0 100% 5 3 0 48 0 100% 5 68 0 12 0 100% 51
SA3 22 20 1,062 8 0 20 0 88% 9 3 0 20 0 50% 5 3 0 20 0 50% 5 72 0 20 0 88% 9
SA4 10 70 1,062 12 0 20 0 67% 37 9 0 0 0 67% 7 6 0 0 0 67% 7 88 0 20 0 67% 37
SA5 13 101 1,026 8 0 13 61 100% 135 3 0 11 0 100% 8 3 0 11 0 100% 7 66 12 13 61 100% 135
QA1 10 90 1,004 9 0 0 89 67% 5 5 0 0 0 89% 15 4 0 3 0 89% 13 68 0 0 89 67% 5
QA2 59 184 1,004 16 0 121 0 88% 127 3 0 56 0 100% 13 3 0 66 0 88% 7 1 0 121 0 88% 127
QA3 42 162 1,004 19 0 31 0 74% 87 3 0 30 0 84% 38 3 0 76 0 63% 12 1 0 31 0 74% 87
QA4 21 52 835 19 0 0 0 0% 147 4 0 0 0 84% 25 4 0 20 0 68% 12 1 0 0 0 0% 147
QA5 21 20 1,004 4 0 20 0 100% 45 3 0 20 0 100% 5 3 0 20 0 100% 6 68 0 20 0 100% 45
CM1 34 53 1,900 20 0 45 0 10% 1 3 0 0 0 25% 5 3 0 0 0 25% 5 - - - - - -
CM2 58 359 872 44 0 359 0 5% 1 3 0 347 0 13% 10 3 0 341 0 23% 11 - - - - - -
CM3 41 202 741 28 0 75 0 11% 1 3 0 0 0 18% 13 3 0 69 0 11% 7 - - - - - -
CM4 29 467 860 30 0 459 0 0% 83 3 0 173 0 60% 49 3 0 440 0 13% 7 1 0 459 0 40% 83
CM5 59 415 1,881 27 0 277 0 7% 1 3 0 42 0 63% 9 1 0 42 0 44% 3 - - - - - -
CL1 21 86 380 9 0 36 0 0% 1 3 0 30 0 0% 7 3 0 36 0 0% 7 - - - - - -
CL2 30 128 114 9 0 128 0 0% 11 3 0 128 0 0% 4 3 0 128 0 0% 4 1 0 128 0 0% 11
CL3 19 542 1,736 23 0 70 0 39% 5 3 0 46 0 48% 3 3 0 47 0 39% 3 2 0 70 0 39% 5
CL4 220 1,502 114 81 0 1,282 0 10% 3 3 0 1,282 0 10% 3 3 0 1,282 0 10% 3 1 0 1,282 0 10% 3
CL5 35 306 1,881 36 2 - 0 47% 5 3 0 207 0 47% 37 3 0 272 0 47% 5 1 0 - 0 47% 5
GG1 72 499 190 38 0 499 0 5% 1 3 0 499 0 5% 15 3 0 499 0 5% 3 - - - - - -
GG2 38 281 57 46 0 281 0 22% 7 3 0 60 0 22% 13 3 0 199 0 23% 8 1 0 281 0 22% 7
GG3 30 550 570 12 0 216 0 0% 3 3 0 16 0 58% 31 3 0 68 0 46% 13 2 0 216 0 0% 3
GG4 56 2,962 1,718 56 0 1,750 0 4% 1 3 0 796 0 43% 42 3 0 1,165 0 46% 11 - - - - - -
GG5 30 192 1,900 19 0 55 0 74% 7 4 0 0 0 68% 23 3 0 36 0 68% 9 1 0 55 0 74% 7
TS1 30 269 1,477 16 0 269 0 0% 11 3 0 19 0 94% 38 3 0 161 0 53% 7 1 0 269 0 0% 11
TS2 40 367 1,881 13 0 365 0 0% 1 3 0 153 0 81% 42 3 0 256 0 31% 6 - - - - - -
TS3 47 91 1,881 8 0 91 0 0% 1 5 0 0 0 88% 44 3 0 80 0 50% 10 - - - - - -
TS4 71 520 1313 31 0 0 0 0 1 3 0 425 0 71% 44 3 0 259 0 0% 3 3 0 519 0 0% 44
TS5 68 235 1,000 14 0 137 0 64% 35 3 0 121 0 64% 49 3 0 160 0 35% 11 1 0 137 0 64% 35

we set an internal time budget of the oracle improvement process to 30 minutes. As such, GASSERT must
receive the feedback of OASIS at least two times. To cope with the stochastic nature of GP we run GASSERT
ten times with the same input assertion and correct and incorrect states. We implemented GASSERT to be
pseudo-deterministic given the same random seed. We avoid biases in selecting the seeds, by considering
the numbers from 0 to 9. We executed each run on a dedicated AMAZON®EC2 instance (c5.4xlarge) with 16
Intel®Xeon®3.9GHz CPUs and 32GB of RAM.

Evaluation Set of Test cases and Mutations. To evaluate if the improved assertions generalize well with
unseen test cases and mutations, we obtained a validation set using different tools than the ones used to
produce the initial correct and incorrect states for GASSERT: RANDOOP (v. 4.2.0) and PIT (v. 1.4.0) to
generate test cases and mutations, respectively. Different tools are expected to generate different test cases
and mutations than the ones that GASSERT leveraged during assertion evolution, i.e., those generated by
EVOSUITE, MAJOR and OASIS. For each subject, we ran RANDOOP ten times with different random seeds
using at least 100 test cases as stopping criterion for each run. Let TV andMV to denote the test cases and
mutations produced by RANDOOP and PIT, respectively. Columns “|Tv|” and “|Mv|” of Table 4 show their
cardinality.

Quality Assessment of Assertions. Let α denote the initial assertion and α′ the assertion that GASSERT
generates. We compute the number of false positives and false negatives of both assertions considering
both the initial and evaluation test cases and mutations. We evaluated the assertions on test cases obtained
by removing the test oracle assertions generated by EVOSUITE and RANDOOP, and by filtering the test cases
that raise exceptions when executed with the original version of the program.
We insert the assertion under evaluation (either α or α′) into the method under analysis at the specified ρρ
for all 〈test cases, mutations〉 〈T ,M〉 pairs (either T0 andM0 or TV andMV). We execute T and count the

TECHNICAL REPORT 11

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

number of failing tests, which represents the number of false positives FP(α,S+), FP in short. If FP is zero,
we compute FN(α,S−), FN in short, by running mutation testing withM and T . If FP is greater than zero,
we cannot run mutation testing because we need a green test suite. In such a case, if the evaluated assertion
has the form assert(α1 AND α2 AND α3), we consider each of the smaller assertions assert(α1), assert(α2) and
assert(α3) and remove those that have false positives. We concatenate the remaining smaller conditions
with an AND and perform mutation testing withM and T for this reduced assertion at ρρ. If all smaller
assertions have false positives then we report FN for assert(true).
While MAJOR returns the source code of each mutation, PIT does not, and thus we cannot compute the
number of false negatives for PIT mutation testing but only the mutation score.

Evaluation Results. Table 4 summarizes the evaluation results of RQ1. The subject ID indicates the Java
code base. Columns “initial assertion α” indicate the quality of the initial assertion generated with DAIKON.
For ten subjects DAIKON does not generate any invariant, and in this case we consider assert(true) (with
size one) as the initial assertion (column size). The false positives on the initial tests (FP0) are always zero
(except for subject CL5), as expected, since DAIKON uses the execution traces of the initial tests to generate
α. The size of DAIKON generated assertions ranges from 1 to 147 (28 on average), confirming that DAIKON
invariants generate many (often redundant) preconditions and postconditions [11]. The number of false
negatives on the initial tests (FN0) ranges from 0 to 1,750 (209 on average). The number of false positives
in the validation tests (FPv) is always zero, except two subjects, indicating that the initial assertions are
successful in generalizing with the unseen tests. This unexpected result may depend on the high branch
coverage of the EVOSUITE generated tests. The mutation score of the validation set ranges from 0% to 100%
(38% on average).
Columns “GASSERT improves α′” indicate the quality of the GASSERT improved assertions. The table
reports the median values of ten execution. The number of iterations ranges from 1 to 9 (3 on average).
The median FP of the initial tests (FP0) is zero for all subjects, as expected, since GASSERT produces only
solutions with zero false positives by construction. The median FN of the initial tests (FN0) ranges from 0
to 1,282 (125 on average). The FN0 median of α′ is less than FN0 of α by 40% on average, for 30 out of 34
subjects. α′ has zero FP0 and zero FN0 for 12 subjects, while α has zero FP0 and zero FN0 for 4 subjects only.
These results demonstrate that GASSERT evolutionary algorithm is effective in improving assertion oracles.
α′ has more false negatives than α only for the subject SA1. This is due to the fact that when generating
invariants DAIKON relies on its own set of helper functions that are not supported by GASSERT, and had
thus to be excluded from the initial assertion when being passed to it for improvement.
The median FP on the validation set (FPv) is zero for all subjects, while the mutation score of the validation
set ranges from 0% to 100% (58% on average). The mutations score of α′ is higher than the one of α with the
increase of 34% on average, for 16 subjects. When DAIKON produces long assertions GASSERT can reduce
their size, showing that GASSERT is able to address all of its three objectives.

5.3 RQ2: Comparison with Random and Invariant-Based Oracle Improvement

In this research question we compare GASSERT with two baselines: GASSERT with no guidance by the
fitness functions (RANDOM) and the invariant inference of DAIKON (INV-BASED). We set up the process
so that these two baselines are used as part of the same iterative oracle improvement process, described in
Algorithm 1. The only difference among GASSERT, RANDOM and INV-BASED is how each of them performs
the oracle improvement step (line 6 of Algorithm 1). When running and evaluating RANDOM and DAIKON
we used the same evaluation setup that we used for RQ1.
RANDOM is a variant of GASSERT, in which there is no evolutionary pressure in the population because
any guidance by the fitness function is disabled. Thus, this variant evolves the two populations in a com-
pletely random fashion. To obtain RANDOM we modified GASSERT as follows: (i) we replaced the tourna-
ment and best-match parent selection with random selection; (ii) we disabled the Merging crossover and
Mutation-based node selector; (iii) we disabled elitism and migration. RANDOM randomly evolves the two
populations and terminates when either population finds a perfect solution or the budget expires. In the
latter case, RANDOM outputs the best assertion all those produced in the performed generations. We opted
to use a random variant of GASSERT rather than another random generator, to perform a fair comparison,
where all possibly confounding factors are the same except for the evolutionary pressure. Otherwise, we
cannot ensure that differences are due to the search strategy and not due to the differences in implementa-
tion details, such as the variables, constants and functions considered.
Column “RANDOM improves α′” shows the quality assessment of the assertion returned by RANDOM. The
results show that the improved assertion of GASSERT dominates the one of RANDOM for 20 (59%) and 17

TECHNICAL REPORT 12

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

Table 5: Evaluation Results for RQ3
subj. Initial α GASSERT α′ Human α′
ID FPv MV Size FPv MV Size type FPv MV Size Ov. Exc. GPB
SE1 523 - 3 0 75% 15 M 0 75% 7 73 25 12
SE2 0 75% 7 0 100% 17 M 0 100% 7 63 28 1
SE3 0 0% 1 0 0.33 3 M 0 0.33 7 52 0 5
SE4 0 40% 9 0 57% 30 M 0 57% 9 60 11 0
SA3 0 50% 7 0 50% 5 M 0 50% 7 14 0 3
SA4 0 0% 3 0 67% 7 M 0 67% 9 14 0 4
SA3 0 50% 7 0 50% 5 M + O 0 50% 11 15 0 0
SA4 0 0% 3 0 67% 7 M + O 1 67% 9 15 0 0

(50%) subjects considering the initial and evaluation sets, respectively. In such cases, GASSERT assertions
are substantially better than the one of RANDOM. For 6 (18%) and 10 (25%) of subjects RANDOM assertions
outperform GASSERT ones, but in this cases the difference in minimal. For the remaining cases the tools are
showing similar results.
INV-BASED is an oracle improvement approach that relies on dynamic invariant generation to improve
oracle assertions. DAIKON does not aim to improve a given assertion α nor relies on incorrect executions
(FN). However, DAIKON can rely on the test cases that OASIS outputs, which represent evidence of false
positives of α. INV-BASED repeats the following two steps until the time budget expires, or it is not able to
generate any invariant, or OASIS does not find any false positives for α: (i) execute the current test suite
and compute the invariant α; (ii) invoke OASIS to get the test cases that lead to FP states of α and add it to
the test suite.
Column “DAIKON improves α′” shows the quality assessment of the assertion returned by DAIKON. For
ten subjects we do not run INV-BASED because DAIKON did not generate an initial assertion, and thus we
compare GASSERT and INV-BASED with the remaining subjects. Considering the fitness function φFP, the
improved assertion of GASSERT dominates the one of INV-BASED for 19 (59%) and 15 (63%) subjects consid-
ering the initial and evaluation sets, respectively. In such cases, GASSERT assertions are substantially better
than the one of INV-BASED. For 2 (8%) and 7 (29%) subjects INV-BASED assertions dominates GASSERT
ones considering the initial and evaluation sets, respectively. For the remaining cases nor GASSERT or
INV-BASED assertions dominate each other.

5.4 RQ3: Comparison with Human Oracle Improvement

Jahangirova et al. [26] conducted a human study to assess the ability of humans to improve assertion ora-
cles. They performed this study in two settings: (i) the assertion is improved manually by humans without
any tool support (M) (ii) the assertion is improved in an iterative setting with the use of GASSERT (M + O).
Overall, they recruited 29 humans to participate in the study. The subject methods they considered were
SA3 and SA4 from the StackAr class. Moreover, the authors also share the data collected from Amazon
Mechanical Turk, which consists of manually improved assertions for four simple methods, performed by
74 different crowd-workers. As the results are publicly available [26], we compare these assertions with the
ones produced by GASSERT.
We run GASSERT with the input assertions that were provided to the study participants. Then, as in RQ1
and RQ2, we measure the oracle deficiencies in the initial and GASSERT improved assertions (wrt the vali-
dation set). We then compare these values to the oracle deficiencies in the assertions improved by humans.
The column type in Table 5 indicates whether this improvement was purely manual (M) or included OASIS
(M + O). As for four methods from our set the oracle improvement was performed by crowd-workers and
no action was taken to ensure that they have a proper background or experience for such a task, we apply
an additional filtering step to the list of assertions for these methods. We exclude the assertions that do
not improve the initial assertion, i.e. they do not have less false positives or a higher mutation score. The
column Ov. shows the overall number of assertions available and the column Exc. shows the number of
assertions that were excluded.
As the results show, GASSERT is always able to improve the initial assertion and achieve a higher mutation
score. Moreover, the median values across 10 runs for GASSERT and across the number of human partici-
pants for manual improvement are always the same. In the column GPB, i.e. GASSERT performs better, we
report the number of manual improvements that achieve a lower mutation score than GASSERT does (10 %

TECHNICAL REPORT 13

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

of cases).

6 Related Work

GASSERT is the first fully-automated technique to improve oracle assertions. The closest related work is on
invariant generation, oracle quality, and oracle improvement.

Invariant Generation. Dynamic invariant generators generate Boolean expressions (called program invari-
ants) that evaluate to true for all the executions of an input test suite [10, 11, 19, 6, 38, 39, 43]. GASSERT
improves oracle assertions by reducing its false positives and false negatives, and as such can improve the
assertions produced by invariant generators, which are known to be incomplete and imprecise when used
as oracle assertions [6, 36, 47].
Ratcliff et al. evolutionary approach [41] to generate invariants by leveraging negative counterexamples
generated with mutation analysis to rank the invariants. Differently from GASSERT, their approach uses
negative counterexamples in a post-processing phase and not as a part of the fitness function. Moreover,
GASSERT uses OASIS to actively generate positive and negative counterexamples.
GASSERT differs from current invariant generators, since it considers both externally (parameters, return
values) and internally (local variables, private fields) observable variables. As such, GASSERT assertions
are more effective in exposing faults because they can assert about the internal states of methods.

Oracle Quality Metrics. Research on measuring oracle quality mostly focuses on assertions in the test cases
(test oracles) [45, 22, 30]. For instance, EVOSUITE [12, 14] and a parameterized test case generator proposed
by Fraser and Zeller [16] select from an initial set of possible assertions those that kill the highest number
of mutations. These studies propose metrics to measure the quality of oracles in the test cases, to select
suitable ones, with no guidance on how to improve them. GASSERT focuses on assertions in the program,
and not in the tests, evaluates the quality of oracles in terms of both false positives and false negatives, and
actively improves program oracles by generating new assertions.

Oracle Improvement. Zhang et al.’s iDiscovery approach [55] improves the accuracy and completeness of
invariants by iterating a feedback loop between DAIKON and symbolic execution. The invariants generated
by iDiscovery are still limited within the set of DAIKON templates. Therefore they are not as expressive as the
ones generated with GASSERT. OASIS [24, 25] relies on human input to improve a given oracle assertion so
that it does not suffer from the reported oracle deficiencies. Given oracle deficiencies identified by OASIS,
GASSERT automates th difficult task of improving assertions with a novel evolutionary approach.

7 Conclusion

Assertion oracles are potent test oracles [3], but designing effective assertion oracles, that is, assertions with
no or very few false positives and negatives, is extremely difficult, and automatically generated assertions
are still largely imprecise [20, 5, 30].
In this paper, we presented GASSERT, the first automated approach to improve oracle assertions. Our
experiments indicate that GASSERT improved assertions present zero false positives, and largely reduce
false negatives with respect to the initial DAIKON assertions. The few sample cases with independently
obtained human improvements indicate that GASSERT is competitive with – and even sometime better
than – human improvements.

TECHNICAL REPORT 14

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

References

[1] Angello Astorga, P. Madhusudan, Shambwaditya Saha, Shiyu Wang, and Tao Xie. Learning stateful
preconditions modulo a test generator. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’19, pages 775–787. ACM, 2019.

[2] Thomas Back. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary program-
ming, genetic algorithms. Oxford university press, 1996.

[3] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The oracle problem in
software testing: A survey. IEEE Transactions on Software Engineering, 41(5):507–525, 2015.

[4] Markus F Brameier and Wolfgang Banzhaf. A comparison with tree-based genetic programming.
Linear Genetic Programming, pages 173–192, 2007.

[5] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and Hong Mei. Support-
ing oracle construction via static analysis. In David Lo, Sven Apel, and Sarfraz Khurshid, editors,
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, pages 178–189. ACM, 2016.

[6] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: Dynamic symbolic execution
for invariant inference. In Proceedings of the International Conference on Software Engineering, ICSE ’08,
pages 281–290. ACM, 2008.

[7] Jason M. Daida, Adam M. Hilss, David J. Ward, and Stephen L. Long. Visualizing tree structures in
genetic programming. In Genetic and Evolutionary Computation - GECCO 2003, Genetic and Evolutionary
Computation Conference, volume 2724, pages 1652–1664. Springer, 2003.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 2002.

[9] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering
likely program invariants to support program evolution. In Proceedings of the 1999 International Confer-
ence on Software Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999., pages 213–224, 1999.

[10] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on Software Engineering,
27(2):99–123, 2001.

[11] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1–3):35–45, 2007.

[12] Gordon Fraser and Andrea Arcuri. Evolutionary generation of whole test suites. In 2011 11th Interna-
tional Conference on Quality Software, pages 31–40. IEEE, 2011.

[13] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-oriented soft-
ware. In Proceedings of the European Software Engineering Conference held jointly with the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE ’11, pages 416–419. ACM,
2011.

[14] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented soft-
ware. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, pages 416–419. ACM, 2011.

[15] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions on Software Engineer-
ing, 39(2):276–291, 2013.

[16] Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, ISSTA ’11, pages 364–374. ACM, 2011.

[17] Juan P. Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and Andreas Zeller. Inferring loop invariants
by mutation, dynamic analysis, and static checking. IEEE Trans. Software Eng., 41(10):1019–1037, 2015.

TECHNICAL REPORT 15

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

[18] Juan Pablo Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and Andreas Zeller. Dynamate: Dynami-
cally inferring loop invariants for automatic full functional verification. In Eran Yahav, editor, Hardware
and Software: Verification and Testing - 10th International Haifa Verification Conference, HVC 2014, Haifa,
Israel, November 18-20, 2014. Proceedings, volume 8855 of Lecture Notes in Computer Science, pages 48–53.
Springer, 2014.

[19] Ashutosh Gupta and Andrey Rybalchenko. Invgen: An efficient invariant generator. In International
Conference on Computer Aided Verification, CAV ’09, pages 634–640, 2009.

[20] Mark Harman, Sung Gon Kim, Kiran Lakhotia, Phil McMinn, and Shin Yoo. Optimizing for the num-
ber of tests generated in search based test data generation with an application to the oracle cost prob-
lem. In Third International Conference on Software Testing, Verification and Validation, ICST 2010, Paris,
France, April 7-9, 2010, Workshops Proceedings, pages 182–191. IEEE Computer Society, 2010.

[21] Mark Harman, William B. Langdon, Yue Jia, David Robert White, Andrea Arcuri, and John A. Clark.
The GISMOE challenge: constructing the pareto program surface using genetic programming to find
better programs (keynote paper). In Michael Goedicke, Tim Menzies, and Motoshi Saeki, editors,
IEEE/ACM International Conference on Automated Software Engineering, ASE’12, Essen, Germany, Septem-
ber 3-7, 2012, pages 1–14. ACM, 2012.

[22] Chen Huo and James Clause. Improving oracle quality by detecting brittle assertions and unused
inputs in tests. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 621–631, New York, NY, USA, 2014. ACM.

[23] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. Test oracle assessment and im-
provement. In Proceedings of the International Symposium on Software Testing and Analysis, ISSTA 2016,
pages 247–258. ACM.

[24] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. Test oracle assessment and im-
provement. In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 247–258. ACM, 2016.

[25] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. OASIs: Oracle Assessment and
Improvement Tool. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, pages 368–371. ACM, 2018.

[26] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. An empirical validation of oracle
improvement. IEEE Transactions on Software Engineering, 2019.

[27] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 37(5):649–678, September 2011.

[28] René Just. The major mutation framework: Efficient and scalable mutation analysis for java. In Pro-
ceedings of the 2014 International Symposium on Software Testing and Analysis, ISSTA ’14, pages 433–436.
ACM, 2014.

[29] John R Koza and John R Koza. Genetic programming: on the programming of computers by means of natural
selection, volume 1. MIT press, 1992.

[30] William B. Langdon, Shin Yoo, and Mark Harman. Inferring automatic test oracles. In 10th IEEE/ACM
International Workshop on Search-Based Software Testing, SBST@ICSE 2017, Buenos Aires, Argentina, May
22-23, 2017, pages 5–6. IEEE, 2017.

[31] Y. Lavinas, C. Aranha, T. Sakurai, and M. Ladeira. Experimental analysis of the tournament size on
genetic algorithms. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
3647–3653, 2018.

[32] David Lo and Shahar Maoz. Mining scenario-based specifications with value-based invariants. In
Shail Arora and Gary T. Leavens, editors, Companion to the 24th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29, 2009,
Orlando, Florida, USA, pages 755–756. ACM, 2009.

[33] Phil McMinn, David W. Binkley, and Mark Harman. Empirical evaluation of a nesting testability
transformation for evolutionary testing. ACM Trans. Softw. Eng. Methodol., 18(3):11:1–11:27, 2009.

TECHNICAL REPORT 16

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

[34] Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and the effects of
noise. Complex systems, 9(3):193–212, 1995.

[35] Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. Geometric semantic genetic program-
ming. In International Conference on Parallel Problem Solving from Nature, pages 21–31. Springer, 2012.

[36] Cu D Nguyen, Alessandro Marchetto, and Paolo Tonella. Automated oracles: An empirical study on
cost and effectiveness. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
FSE ’13, pages 136–146. ACM, 2013.

[37] Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, and Andrea De Lucia. Improving multi-
objective test case selection by injecting diversity in genetic algorithms. IEEE Trans. Software Eng.,
41(4):358–383, 2015.

[38] Corina S. Pasareanu and Willem Visser. Verification of java programs using symbolic execution and
invariant generation. In Susanne Graf and Laurent Mounier, editors, Model Checking Software, 11th
International SPIN Workshop, Barcelona, Spain, April 1-3, 2004, Proceedings, volume 2989 of Lecture Notes
in Computer Science, pages 164–181. Springer, 2004.

[39] Long H. Pham, Jun Sun, Lyly Tran Thi, Jingyi Wang, and Xin Peng. Learning likely invariants to ex-
plain why a program fails. In 22nd International Conference on Engineering of Complex Computer Systems,
ICECCS 2017, Fukuoka, Japan, November 5-8, 2017, pages 70–79. IEEE Computer Society, 2017.

[40] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. CBGA-ES: A cluster-based
genetic algorithm with elitist selection for supporting multi-objective test optimization. In 2017 IEEE
International Conference on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017, pages 367–378. IEEE Computer Society, 2017.

[41] Sam Ratcliff, David R. White, and John A. Clark. Searching for invariants using genetic programming
and mutation testing. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’11, pages 1907–1914, New York, NY, USA, 2011. ACM.

[42] Henry G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the
American Mathematical Society, 74(2):358–366, 1953.

[43] Abhik Roychoudhury and I. V. Ramakrishnan. Inductively verifying invariant properties of parame-
terized systems. Autom. Softw. Eng., 11(2):101–139, 2004.

[44] Federica Sarro, Filomena Ferrucci, Mark Harman, Alessandra Manna, and Jian Ren. Adaptive multi-
objective evolutionary algorithms for overtime planning in software projects. IEEE Trans. Software
Eng., 43(10):898–917, 2017.

[45] D. Schuler and A. Zeller. Assessing oracle quality with checked coverage. In 2011 Fourth IEEE Inter-
national Conference on Software Testing, Verification and Validation, pages 90–99, March 2011.

[46] Oren Shoval, Hila Sheftel, Guy Shinar, Yuval Hart, Omer Ramote, Avi Mayo, Erez Dekel, Kathryn
Kavanagh, and Uri Alon. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype
space. Science, 336(6085):1157–1160, 2012.

[47] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. Understanding user understanding:
Determining correctness of generated program invariants. In Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ISSTA ’12, pages 188–198, New York, NY, USA, 2012. ACM.

[48] Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. Multi-objective optimization by genetic al-
gorithms: A review. In Proceedings of IEEE international conference on evolutionary computation, pages
517–522. IEEE, 1996.

[49] Tao Xie, D. Notkin, and D. Marinov. Rostra: a framework for detecting redundant object-oriented
unit tests. In Proceedings. 19th International Conference on Automated Software Engineering, 2004., pages
196–205, 2004.

[50] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input generation with java pathfinder.
In George S. Avrunin and Gregg Rothermel, editors, Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004,
pages 97–107. ACM, 2004.

TECHNICAL REPORT 17

TR-Precrime-2020-02 — Evolutionary Improvement of Assertion Oracles

[51] Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. Integrating weight assignment strategies with
NSGA-II for supporting user preference multiobjective optimization. IEEE Trans. Evolutionary Compu-
tation, 22(3):378–393, 2018.

[52] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

[53] Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan de Halleux, and Hong Mei. Test
generation via dynamic symbolic execution for mutation testing. In 26th IEEE International Confer-
ence on Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara, Romania, pages 1–10. IEEE
Computer Society, 2010.

[54] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khurshid. Feedback-driven
dynamic invariant discovery. In Corina S. Pasareanu and Darko Marinov, editors, International Sympo-
sium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, pages 362–372.
ACM, 2014.

[55] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khurshid. Feedback-driven
dynamic invariant discovery. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 362–372. ACM, 2014.

TECHNICAL REPORT 18

	Introduction
	Problem Formulation
	GASSERT
	Running Example
	Program State Serialization

	Oracle Improvement
	Evaluation
	Subjects
	RQ1: Effectiveness
	RQ2: Comparison with Random and Invariant-Based Oracle Improvement
	RQ3: Comparison with Human Oracle Improvement

	Related Work
	Conclusion

