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Transition metrics, which quantify the propensity for one event to follow another, are often utilized to study 

sequential patterns of behaviors, emotions, actions, and other states. However, little is known about the 

conditions in which application of transition metrics is appropriate. We report on two experiments in which 

we simulated sequences of states to explore the properties of common transition metrics (conditional 

probability, D’Mello’s L, lag sequential analysis, and Yule’s Q) where results should be null (i.e., random 

sequences). In experiment 1, we found that transition metrics produced statistically significant results with 

non-null effect sizes (e.g., Q > 0.2) when sequences of states were short. In experiment 2, we explored 

situations where consecutively repeated states (i.e., loops, or self-transitions) are impossible – e.g., in digital 

learning environments where actions such as hint requests cannot be made twice in a row. We found that 

impossible loops affected all transition metrics (e.g., Q = .646). Based on simulations, we recommend 

sequences of length 50 or more for transition metric analyses. Our software for calculating transition metrics 

and running simulated experiments is publicly available. 
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1. INTRODUCTION 

Suppose two statistics students are learning about the normal distribution. Both students start 

off engaged, but over time one student becomes frustrated by the difficulty of the learning task, 

eventually disengages, and becomes bored. Meanwhile, the other student finds the task too easy 

and also becomes bored. Both students are experiencing boredom – a highly undesirable 

emotion for learning (Baker et al., 2010) – but for different reasons. Situations like these have 

motivated a growing body of research that analyzes the sequence of behavioral, emotional, 

cognitive, or other states that students experience (Baker et al., 2007; Bosch & D’Mello, 2017; 

D’Mello & Graesser, 2012; McQuiggan et al., 2010, 2008). A key requirement for these studies 

is a method to measure the tendency for one state (e.g., an emotion) to follow another. These 

methods consist of various transition metrics, which quantify probability, likelihood, or other 

measures of how often one state transitions to another. 

When used effectively, transition metrics allow researchers to examine students’ behaviors 

from state to state over time, thereby revealing new insights into learning behaviors that might 

otherwise remain hidden (Chen et al., 2018; Knight et al., 2017). For the example statistics 

students above, we might find that the first student’s tendency to transition through frustration 

to boredom indicates very different learning behaviors than the second student’s tendency to 

transition directly from engagement to boredom. However, some key properties of transition 

metrics are as yet not well understood, especially how sequence length relates to results and 

how differences in the type of sequence may influence results (e.g., non-repeatable vs. 

repeatable action sequences in a computerized learning environment). We focus on these two 

issues in the current paper, uncovering some common situations where transition metrics may 

produce flawed results and comparing these results across metrics. 

1.1. ISSUES OF SEQUENCE LENGTH 

Educational research examines state sequences of various lengths, ranging from less than ten to 

thousands (Andres et al., 2019; Ocumpaugh et al., 2017), depending on the type of data and how 

the data were collected. However, little is known about how sequence length relates to transition 

metric results. Shorter sequences might yield more noise, for example, if the standard deviation 

of a statistic calculated on these data is higher, but it is unclear whether such noise might lead 

to systematic biases in results. Moreover, it is unclear how long sequences should be to minimize 

possible biases. Hence, we explore this issue for several different transition metrics in this paper 

to provide guidance on what sequence lengths researchers should collect when studying state 

transitions and what kinds of problems related to sequence length they should anticipate and 

monitor. 

1.2. ISSUES OF STATE TYPE 

Sequences consist of states including emotions, behaviors, actions in a user interface, or any 

other discrete characterization of educational experiences that might lead to insight into 

learning. The type of state and manner of data collection may have important implications for 

results from transition metric analyses, however. For example, if researchers examine transitions 

between different regions of a user interface, such as tabs (Biswas et al., 2016) or activities 

(Bosch & D’Mello, 2017), it is impossible for sequences to include two consecutive occurrences 

of the same state. Similarly, certain student actions may not be allowed to repeat, such as 
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pressing a hint button twice in a row without taking any actions based on the first hint or pressing 

a “submit answer” button twice in a row (for two consecutive exercises) without entering an 

answer for the second exercise. In a graph of transitions such as Figure 1, these consecutively 

repeating states are represented by arrows from a state to itself and are referred to as state 

persistence, self-transitions, or loops (in graph theory terminology). We refer to situations where 

loops cannot arise (e.g., consecutive hint requests) as sequences with impossible loops. 

In the above examples, states and the transitions between them can be perfectly observed via 

log file analysis. Certain state types cannot be perfectly observed, however, and must be 

obtained via methods such as self-reports (Larson & Csikszentmihalyi, 1983) or periodic 

observation (Ocumpaugh et al., 2015). For example, attentional states are often observed via 

sampling methods (e.g., self-report, classroom observation). In such cases, the transitions 

between states are not directly observed; rather, they are inferred from points where an observed 

state differs from the previously observed state. In these cases, the same state may be observed 

several times in a row. For example, suppose a student pays attention for five minutes; if 

researchers prompt them to self-report attention once per minute, their sequence data will 

include five consecutive “paying attention” reports before transitioning to a new state. However, 

these reports represent only one incident of attention, not five. Increasing the frequency of 

prompts will lengthen the sequence of consecutive identical reports, despite the underlying 

phenomenon not changing at all. Thus, researchers sometimes remove or ignore consecutive 

occurrences of the same state to focus on the transitions only (Bakeman & Quera, 1995; Bosch 

& D’Mello, 2017; D’Mello & Graesser, 2012; Karumbaiah et al., 2019). As a consequence, the 

same situation may arise as in analyses of user interfaces, where a state cannot be consecutively 

repeated. We examine one such scenario in this paper using data from a computer-based learning 

environment (see section 3.3) where events are recorded each time a student completes an 

activity. We explore transitions between activities, where loops are possible, or exercise IDs, 

where loops are not possible and must be removed from the sequence (they occur in the data 

because exercise ID is recorded repeatedly for each activity within an exercise). Such situations 

are relatively common in educational data, where one type of state sequence is nested within 

another and requires loop removal to obtain the actual transitions. 

 

Figure 1: Example transition probabilities between three states in a sequence. Transitions form 

a Markov chain model, where the probability of transitioning to any state is conditioned only on 

the one previous state in the sequence. 
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1.3. CONTRIBUTION AND NOVELTY 

In this paper, we describe results from a series of simulations that illustrate the properties of 

common transition metrics, then compare them to two different types of sequence data from a 

computer-based learning environment. We explore relevant cases that occur in real-world 

scenarios, including short sequences and sequences where loops are impossible, and show how 

transition metric results are affected by these scenarios. We expect that short sequences will 

exacerbate issues caused by state type and random noise and thus seek to discover how long 

sequences must be to avoid large adverse effects on results. 

We make recommendations for proper usage of transition metrics based on simulation results 

and discuss how sequence length interacts with base rate (unconditional probability of a student 

experiencing some state) and number of unique possible states a person might experience. 

Finally, we explore the effect of impossible loops on different transition metrics to determine 

the magnitude of spurious effects that are likely to be observed in these situations. Our software 

(written in Python) for transition metric calculations and simulations is publicly available for 

researchers to utilize and expand upon (Bosch & Paquette, 2020). 

The analyses and contributions in this article are novel in several ways. This article is the 

first to discuss issues of sequence length and the effect of impossible loops across a variety of 

transition metrics. It is also the first to compare several widely-used transition metrics, which 

shows that many patterns are consistent across metrics. Comparison also reveals situations 

where apparently significant results may be due to unexpected properties of the metrics rather 

than meaningful patterns in data. 

2. RELATED WORK 

We consider several types of related work. First, we discuss work that exemplifies how 

transition metrics are commonly utilized to answer behavioral research questions. We then 

discuss work that examines the properties of transition metrics and research on sequences with 

impossible loops. 

2.1. UTILIZING TRANSITION METRICS 

Several different metrics have been utilized to study the transitions between states. Perhaps the 

simplest method is to measure the conditional probability of one state, given the previous state. 

This metric can be represented with the probabilities as edge weights in a graph of states (Figure 

1), forming a Markov chain model (MCM). However, MCM probabilities are heavily influenced 

by the rate of occurrence of each state (the base rate), which can be an undesirable property for 

some research. For example, if state Y in Figure 1 occurs 90% of the time, the transition from X 

to Y is unsurprising, but if state Y occurs only 50% of the time, the X → Y transition is potentially 

indicative of a meaningful effect where X often leads to Y. This issue with MCM has motivated 

researchers to develop and utilize alternative transition metrics, including D’Mello’s L (D’Mello 

& Graesser, 2012), lag sequential analysis (LSA; Faraone & Dorfman, 1987), and association 

measures such as Yule’s Q (Walsh & Ollenburger, 2001). 

Since their inception, transition metrics have been utilized primarily for behavioral research. 

In one of the earliest papers on transition metric methods, researchers explored transitions as a 

means to understand sequences of behavior across individuals (Bakeman & Dabbs, 1976). They 

discussed one example of undergraduate students having conversations, finding that students 

tended to look away before starting to speak to another person. In this application, behaviors of 
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several individuals were combined into a single sequence of events; transition metrics then 

measured the conditional probability of one event following another, including events from 

different individuals. 

Transition metrics are also effective for quantifying within-person phenomena. They have 

been used extensively to model the flow of one emotion to another, primarily during education-

related activities such as learning computer programming (Bosch & D’Mello, 2017; Guia et al., 

2013), medical training (Ocumpaugh et al., 2017), and problem solving (Baker et al., 2007), 

which has enabled the expansion of theories of emotion in learning (D’Mello & Graesser, 2012). 

Researchers have examined transitions and related phenomena for many different types of 

emotion data, such as continuous-valued estimates of valence or discrete states such as bored or 

confused (see Hamaker, Ceulemans, Grasman, & Tuerlinckx [2015] for a review). We focus 

here on metrics for transitions between discrete states in particular. In one such study, D’Mello 

& Graesser (2012) proposed a theoretical model of affect transitions during learning. The model 

suggested, for example, that confusion might be beneficial to learning if it was resolved 

(transitioning to engagement) or not beneficial if it was unresolved (transitioning to frustration), 

and was experimentally tested by applying transition metrics to sequences of emotions. They 

measured these transitions relative to chance with L, a transition metric which measures the rate 

of occurrence of transitions relative to their expected probability. 

In related emotion research, Rodrigo (2011) measured transitions between emotional and 

cognitive states with the L metric in a game-based learning environment and found, for example, 

that boredom tended to persist while confusion was transitory and often led to engagement. 

These findings contribute to psychological theories of learning and also demonstrate how loops 

in a transition graph can be interpreted as “persistence,” i.e., that a person’s behavior is more 

likely to remain unchanged than to transition to another state. Similarly, Ocumpaugh et al. 

(2017) examined transitions between emotions while military trainees engaged with simulation 

software, retaining loops to study persistence. 

Researchers have also examined transitions between other types of states, such as actions 

performed in software systems. For instance, Galyardt & Goldin (2015) examined 

metacognitive strategies represented by sequences of actions in a simulated intelligent tutoring 

system, while Bosch & D’Mello (2017) measured transitions between actions in a computer 

programming environment with emotions interspersed in the sequences of actions. Further 

examples of transition analyses include studying sequences of speech behaviors to predict 

alcohol drinking behavior (Gaume et al., 2008; Moyers et al., 2009), predicting antisocial 

behaviors (Dishion et al., 2004), and others in various education domains and beyond (Altermatt 

et al., 2002; Marion et al., 2003; Wuerker et al., 2001). These studies demonstrate some of the 

possibilities of transition metrics, which offer a perspective for examinations of behavior that is 

complementary to typical analyses of individual states. 

2.2. INSPECTING TRANSITION METRIC METHODOLOGIES 

There are many possible transition metrics, including those designed specifically for the purpose 

and correlation measures that can be utilized as well. Here we briefly discuss some of the most 

relevant research on transition metrics and offer more details of the metrics themselves in the 

Method section. 

One of the first metrics to be studied was MCM (Bakeman & Dabbs, 1976). Bakeman & 

Dabbs compared MCM to unconditional probabilities of two states occurring independently 

(rather than in sequence) as a means of providing context to the MCM values. Later, Sackett, 

Holm, Crowley, & Henkins (1979) provided a FORTRAN computer program to calculate the 
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MCM and unconditional probabilities, as well as a z-score that compared the two numbers, 

which is commonly referred to as lag sequential analysis (LSA). LSA was criticized in later 

publications for having somewhat unintuitive properties that might hinder interpretation 

(Bakeman et al., 1997). In particular, the magnitude of an LSA score is relative not only to the 

probability of the transition relative to random chance but also by the length of the sequence of 

data, which is often not an intended or expected effect. 

Previous work has compared Yule’s Q to various other transition metrics. Q is a monotonic 

transformation of the log odds ratio (see the Method section for details), which captures the odds 

of a transition occurring relative to random chance level. Bakeman, Mcarthur, & Quera (1996) 

noted Q (and thus monotonic functions of Q like log odds ratio) produced similar results in 

simulations of 100 transitions, where transition probabilities were systematically varied. Lloyd, 

Kennedy, & Yoder (2013) further analyzed Yule’s Q with random simulations, finding that the 

correlation between Q and base rate (which dictates chance level) was |r| < .09. This corroborates 

the work of Bakeman et al. (1996) in establishing that Q is not biased by states that occur more 

or less frequently than others. 

Our results also explore the effect of impossible loops, which has been explored for some 

metrics in previous work. D’Mello & Graesser (2012) noted that with frequent observations of 

emotional states, the probability of observing the same incident of one emotion multiple times 

is high, and thus loop probabilities are high. However, their objective was to measure the 

transitions between emotions, so they removed loops from the sequences before computing L, 

leaving only the transitions between states. As noted by researchers utilizing LSA and related 

approaches, however, it is necessary to modify calculations to account for situations where loops 

have been removed (Bakeman, 1983; Bakeman & Quera, 1995; Matayoshi & Karumbaiah, 

2020). Modified calculations are needed because, after removing loops, the probability of 

transitions to all other states is increased a non-trivial amount. As noted in recent work focusing 

on L, this effect can influence the significance and even the direction of findings (Karumbaiah 

et al., 2019), solidifying the need for careful application of transition metric methods. Our work 

contributes to this literature by measuring the effect of loop removal on previously unexplored 

transition metrics and by exploring the relationship between loop removal and sequence length. 

3. METHOD 

The methods in this study consist of simulating sequences of states and evaluating these 

sequences with various transition metrics as well as applying the metrics to sequences collected 

in a computer-based learning environment. We examine the results (i.e., values of the metrics) 

to reveal key differences and similarities between metrics. 

3.1. TRANSITION METRICS IN THIS STUDY 

We describe metrics in terms of the cells of a 2×2 contingency table (Table 1) computed for a 

particular transition to be measured in a sequence (e.g., X → Y), though the sequence may 

contain other states. Rows in the contingency table indicate counts of preceding states in all 

possible transitions, and columns indicate counts of states that follow. We refer to the counts in 

the cells of the table by A, B, C, and D in equations. In general, any measure of association 

between two variables in a contingency table can be used as a transition metric (e.g., Cohen’s 

κ, correlation measures like φ); we focus on metrics that have been used in previous learning 

analytics research, including MCM (Dong & Biswas, 2017; Galyardt & Goldin, 2015; Jeong & 

Biswas, 2008), L (Baker et al., 2007; Bosch & D’Mello, 2017), L* (Matayoshi & Karumbaiah, 
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2020), LSA (Chen et al., 2017; Yang et al., 2015), and Q (Molinari et al., 2013; Tompkins et al., 

2013), and provide functionality for other association metrics in the accompanying software. 

 

Table 1: Example 2x2 contingency table calculated from a hypothetical sequence of 201 

observations of three or more states (X, Y, and others) for the transition from state X to state Y. 

Note that the sum of cells is 200 rather than 201 because it is unknown what follows the last 

state in the sequence, and thus no transition can be calculated. 

n = 200 
Next state (offset sequence) 

State Y State is not Y 

Current state 

(original sequence) 

State X 74 (A) 44 (B) 

State is not X 52 (C) 20 (D) 

 

3.1.1. Markov-chain Model (MCM) Probability 

Perhaps the most straightforward way to measure the propensity for transitions from state X to 

state Y is to calculate the conditional probability of Y given X (Equation 1), where the probability 

of a state occurring depends only on the one previous event (i.e., it satisfies the Markov 

property). MCM as a transition metric is straightforward to define and compute but slightly more 

difficult to interpret because it is influenced by differences in base rate. For example, an X → Y 

transition may appear to be occurring with unusual frequency simply because Y is especially 

common or uncommon. 

 

𝑀𝐶𝑀 = 𝑃(𝑌|𝑋) =
𝐴

𝐴 + 𝐵
 (1) 

3.1.2. D’Mello’s L 

L addresses the interpretability issues of MCM by subtracting the expected rate of occurrence 

for a particular transition so that values of 0 indicate a transition is occurring as often as would 

be expected in randomly-ordered data (Equation 2). The metric value is also scaled so that the 

maximum value is 1 regardless of state base rates. L has no lower bound, however, so negative 

values can have large magnitude and are thus less straightforward to interpret than positive 

values. 

 

𝐿 =
𝑃(𝑌|𝑋) − 𝑃(𝑌)

1 − 𝑃(𝑌)
=

𝐴
𝐴 + 𝐵 −

𝐴 + 𝐶
𝐴 + 𝐵 + 𝐶 + 𝐷

1 −
𝐴 + 𝐶

𝐴 + 𝐵 + 𝐶 + 𝐷

 (2) 

3.1.3. L* 

The transition metrics we consider make the assumption that all transitions between states are 

possible. However, this is not always the case. Matayoshi & Karumbaiah (2020) explored the 

case where transitions are impossible because loops (transitions from one state to itself) have 

been removed – which might be done, for example, if loops were recorded in the original data 
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due to a high sampling rate (e.g., when observing the same emotional event twice in a short 

period of time). L* is a modified form of L that accounts for this specific case (Matayoshi & 

Karumbaiah, 2020). L* follows the same equation as Equation 2, except that probabilities are 

computed from only the transitions X → Y where X differs from Y. 

3.1.4. LSA 

The interpretation of LSA is relatively straightforward because it produces a z score (Equation 

7). Thus, for example, a result where |LSA| > 1.96 implies the transition being measured occurs 

significantly more or less often than expected by chance (two-tailed p < .05). However, the value 

of LSA is also influenced by sample size, since both effect size and significance are reflected in 

the value. Thus, the value of LSA is difficult to interpret as an effect size. 

LSA, like the other transition metrics we explore here, is often calculated with a lag of 1, 

which means that transitions are measured between consecutive states. However, there is also 

some research in which larger lags are examined, allowing researchers to measure longer-term 

associations between actions. Hence, we also examine a larger lag value of 5 (referred to as 

LSA-5) as an additional example. 

 

𝑂𝑋𝑌 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 → 𝑌 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝐴 (3) 

𝐹𝑋 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑋 = 𝐴 + 𝐵 (4) 

𝑇𝑌 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑌 = 𝐴 + 𝐶 (5) 

𝐸𝑋𝑌 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑋 → 𝑌 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =
𝐹𝑋𝑇𝑌

𝐴 + 𝐵 + 𝐶 + 𝐷
 (6) 

𝐿𝑆𝐴 = 𝑧 =
𝑂𝑋𝑌 − 𝐸𝑋𝑌

√𝐸𝑋𝑌 (1 −
𝐹𝑋

𝑁 ) (1 −
𝑇𝑌

𝑁 )

 
(7) 

3.1.5. Yule’s Q 

An odds ratio (OR) can be calculated as the odds of state Y following state X. Yule’s Q (Yule, 

1900) is a simple transformation of OR so that it ranges from -1 to 1, with 0 indicating random 

chance level (Equation 8) – unlike OR, which ranges from 0 to infinity with 1 indicating chance. 

Though its range and midpoint match those of common association measures like Cohen’s κ, 

the values of Q can deviate considerably in certain cases. If A = 0, the value of D can change 

arbitrarily without influencing the result (and vice versa if D = 0). Similarly, if B = 0, the value 

of C has no influence on the result, and vice versa if C = 0. For example, if X transitions to Y in 

a sequence, but Y never transitions to another state (e.g., XXYYY), then D = 0 and the fact that X 

transitions to Y once (A = 1) makes no difference when measuring Q for the X → Y transition. 

 

𝑄 =
𝑂𝑅 − 1

𝑂𝑅 + 1
=

𝐴𝐷 − 𝐵𝐶

𝐴𝐷 + 𝐵𝐶
 (8) 
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3.2. SIMULATIONS 

We generated simulated datasets to quantify the properties of transition metrics in precisely 

controlled conditions. In particular, we generated random datasets so that the expected result of 

calculating transition metrics for each dataset would be chance level (a null result). For each 

experiment, we generated 10,000 independent sequences. These datasets can be thought of as 

sequences of observations from 10,000 unique students in a study, for example, rather than 

10,000 trials from one student (since each sequence is completely independent). We computed 

all transition metrics for each sequence after it was generated so that metrics would be calculated 

with exactly the same input data. Finally, we averaged each transition metric value over the 

10,000 sequences to produce a final value for each metric. 

3.2.1. Experiment 1 Simulations 

Short sequences of states may produce misleading results for at least two reasons. First, 

transition metrics cannot be calculated in some short sequences, resulting in invalid values. This 

may occur, for example, when calculating Q: if D = 0 and B = 0, the denominator of Equation 

8 is 0, and thus Q cannot be calculated. The probability of invalid values occurring by chance is 

higher for shorter sequences, since there are fewer opportunities to observe infrequent state 

transitions. 

Second, shorter sequences may produce less accurate estimates of the strength of a transition 

and thus result in increased chances of finding outliers. For instance, a very short sequence of 

XYY may seem to indicate that X always transitions to Y (i.e., MCM for X → Y = 1.0). However, 

the true probability may be much lower but not apparent due to the short length of the sequence. 

This issue is exacerbated in the presence of state imbalances, where one or more states 

infrequently occur even in long sequences. However, in experiment 1 simulations, we focus on 

the best-case scenario – when states are balanced – and note that issues arise even in this 

scenario. 

Thus, it is important to determine how long a sequence of observed states must be to 

successfully measure the desired state transitions and avoid invalid values. We conducted 

simulations varying sequence length to quantify the relationships between sequence length and 

the number of invalid values encountered and between sequence length and the maximum 

transition metric value observed. 

We calculated the maximum metric value calculated from among the means across 10,000 

sequences. For example, with only two unique states, there are two possible transitions (X → Y 

and Y → X); we calculated the mean X → Y transition across all sequences, and likewise for Y 

→ X, then found the maximum of those two means. Thus, these maximum values did not simply 

represent outliers from among the 10,000 sequences; rather, they are stable across many 

sequences. 

These simulations required specifying the number of unique states from which to sample to 

create sequences. In practice, the number of unique states varies across domains. For example, 

researchers in one study examined transitions between seven different emotions (Baker et al., 

2007); another study considered transitions between ten different self-regulated learning 

behaviors (Witherspoon et al., 2008), and in another study, researchers considered transitions 

between six emotions and eight behaviors (14 total states; Bosch & D’Mello, 2017). A dataset 

with a large number of states (versus a small number) will have more possible transitions 

between states and a lower base rate of occurrence for some or all states. Consequently, we 

expect that longer sequences would be needed with more states to achieve low error, given that 
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there is less available evidence for each transition in a given sequence length. We contrasted 

both the simplest possible case (two states) and a slightly more complex case (four states) in 

experiment 1 simulations. These examples serve to illustrate the expected trend and the 

magnitude of potential errors due to short sequences, even with few states. We then also briefly 

describe how this trend continues with seven states, chosen as a realistic number to match one 

previous study (Ocumpaugh et al., 2017). These choices of sequence lengths and number of 

states do not fully cover the range of possibilities that could be encountered in research; 

however, they do illustrate trends that can be used to extrapolate expectations for research with 

the same order of magnitude of states and sequence lengths. 

3.2.2. Experiment 2 Simulations 

We ran a second set of simulations to explore the effect of impossible loops on transition metric 

values. In these simulations, we considered three possible states because it is the simplest non-

trivial case. The case of two possible states is trivial because, without loops, each state is left 

with only the possibility to transition to the other state and vice versa. For example, XYYXXXY 

becomes XYXY without loops, and X → Y transition probability will always equal 1.0 (as will Y 

→ X). 

State imbalance (differences in base rates of occurrence for different states) is also important 

to consider for cases where loops are removed, since removal can influence base rates. Thus, 

for these simulations, we considered sequences of three states with 50%, 25%, and 25% base 

rates of occurrence. We measured the values of transition metrics along with their standard 

deviations (across all 10,000 random sequences) to determine how metrics differed with and 

without loops. These sequences were each 100 states long, which we chose to avoid issues that 

can arise with short sequences (see experiment 1 results). 

3.3. COMPUTER-BASED LEARNING ENVIRONMENT DATA (EXPERIMENT 3) 

Randomly-generated sequences provide the opportunity to examine transition metrics in a 

situation where the null hypothesis is known to be true. That is, transition metrics should 

produce null results. Conversely, data collected in real-world learning situations are generated 

by students (or teachers) who are, presumably, not performing actions or having experiences at 

random. We examine one real-world dataset from a computer-based learning environment to 

determine how experimental results may differ with such data. We expect transition metric 

values to converge as sequence length increases, but not necessarily toward a null value. 

The data we examined came from the Educational Process Mining (EPM) dataset (Vahdat et 

al., 2014). EPM data were collected from 99 students in a digital electronics course at the 

University of Genoa. Students learned in a computer-based learning environment called Deeds 

(Digital electronics education and design suite), which allowed students to design and simulate 

circuits, read learning materials, take notes, and do other learning-related activities. Deeds 

recorded (i) the sequence of exercise IDs students worked on, (ii) the sequence of learning 

activities within each exercise, and (iii) the number of actions within each activity, such as the 

number of mouse clicks and keystrokes. We examined sequences (i) and (ii) from these data, 

which serve as examples of key transition metric cases. The exercise sequence data included 

many loops (95.8% of transitions were loops) because each activity within an exercise was 

recorded as a separate step, and exercise IDs were repeated for each step. Hence, we removed 

loops from this sequence since loops dominate the sequence yet provide no insight into the order 

of exercises students did. The activity sequence data included relatively few loops, on the other 

hand (14.3% of transitions), and loops are meaningful transitions for the activity sequence 
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because they indicate that a student transitioned from one particular activity type in an exercise 

to the same activity type in a different exercise. 

We examined the effect of sequence length on transition metric values for these sequences 

by extracting subsequences from the beginning of each sequence, varying in length from 5 to 

50 steps. We also calculated transition metrics on the full sequences for each student, which 

ranged in length from 87 to 1087 actions (M = 442.9, SD = 162.9). These full-length sequences 

make it possible to determine whether trends observed in the initial 50 sequence steps converge 

for long sequences. 

4. RESULTS 

We present results to answer two general research questions: 1) how does sequence length 

impact transition metric values? and 2) how do impossible loops impact different transition 

metric values? 

4.1. EXPERIMENT 1A: INVALID METRIC VALUES VS. SEQUENCE LENGTH 

We first examined the occurrence of invalid results (i.e., “not a number” results) that were 

produced with random state sequences of varying lengths. Not all metrics produce invalid results 

for the same sequences. For example, the value of Q will be invalid if the denominator is zero 

in Equation 8, which occurs when either A or D is zero and either B or C is zero. Conversely, 

simple MCM probability will be invalid only when A and B are both zero. 

Figure 2 shows the trend in the proportion of invalid values for each metric versus sequence 

length. In general, shorter sequences were more susceptible to producing invalid values for these 

randomly-generated sequences. Additionally, invalid values were more common with a higher 

number of states (four, rather than two). LSA with lag 5 (i.e., LSA-5) followed the same pattern 

as LSA (lag 1, by default), shifted by 4 units on the x-axis. This was expected, given that 

sequences were random and were functionally shorter by 4 states when lag increased from 1 to 

5. As results show, shorter sequences resulted in more invalid values. 
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Figure 2: Proportion of invalid values for transition metrics as a function of sequence length for 

random sequences of two states (top left), four states (top right), and seven states (bottom). 

Overlapping lines are shown with varying styles to avoid occultation. Note differences in x- and 

y-axes given that more states resulted in substantially more invalid values. 

4.2. EXPERIMENT 1B: MAXIMUM METRIC VALUE VS. SEQUENCE LENGTH 

Of the transition metrics we consider in this paper, all have a chance level of 0 except MCM. 

That is, given random sequences, they should (on average) not result in values notably above or 

below 0. For example, Q = 0 indicates no association between two variables. MCM is different 

since it is a probability; the chance-level value of P(Y | X) is the probability of Y. If there are 

two equally probable states (X and Y) in a sequence, the expected value of MCM for X → Y 

transitions in random sequences is 1 / 2 = .5. With four equally probable states, the expected 

value of MCM for X → Y transitions is 1 / 4 = .25, and with seven it is 1 / 7 = .143. 

We computed the maximum value observed among all transitions in a simulation to 

determine whether there were systematic (averaged across all iterations) deviations from 0. 

Figure 3 shows these maximum values relative to sequence length. Results indicated that there 

were indeed cases where short sequences can produce seemingly significant results. This effect 

was more notable with fewer states in most cases except perhaps Q, which had more negative 

values for larger numbers of states. This occurs because Q subtracts transitions between state 

pairs that are not the two states of interest for a particular transition (BC in Equation 8). With 

more states, there are many such transitions, and Q is thus often negative, as seen in Figure 3 

right and bottom. 
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Figure 3: Maximum average transition value observed over all simulations for varying sequence 

lengths and two (top left) versus four (top right) versus seven (bottom) states, with 95% 

confidence intervals indicated by shading. All metrics converge toward 0 except MCM, which 

converges toward 0.5 for two states, 0.25 for four states, and 0.143 for seven states. LSA 

converges extremely slowly because longer sequences increase the magnitude of LSA results, 

including spurious results. 

4.3. EXPERIMENT 2: METRIC VALUES IN SEQUENCES WITHOUT LOOPS 

Sequences where loops are impossible (either because of the nature of the data collection 

environment or because of data preprocessing steps) have different probabilities of transition 

from one state to another than would otherwise be expected. We investigated both of these 

aspects with additional simulations where we calculated transition metrics with and without 

loops (by removing loops – i.e., repeated states in the sequence – wherever they occurred) on 

the same set of randomly-generated state sequences of length 100. We did not consider lags 

other than 1 for LSA, given that experiment 1 results showed that larger lags essentially 

shortened the sequences but did not otherwise differ from lag 1 results. 

Figure 4 shows the effect of having sequences where loops are not possible. The initial base 

rate of each state was directly tied to probability of transition to that state (e.g., probability of 

transition from any state to X was approximately .250 since the base rate of X was 25%). With 

no loops (Figure 4 right), the base rates of states themselves were influenced because fewer 
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loops occurred by random chance for less common states, and thus fewer instances of the 

uncommon states were removed compared to the more common state. 

It is evident from Figure 4 that metrics change without loops and that transition probabilities 

no longer match base rates of the destination states. Furthermore, transition probabilities do not 

match the new base rates of destination states even after ignoring the initial state (e.g., ignoring 

X in an X → Z transition and calculating the Z base rate as Z / [Z + Y] = 40% / 70% = .571). For 

other transition metrics with clearly defined chance levels, related phenomena occur; some 

transitions were apparently well above chance-level (0, for L, LSA, and Q), despite the fact that 

sequences were generated randomly. Each metric consists of calculating some expectation for 

how often transitions should occur, and when loops are impossible, the expected value is no 

longer correct (it is 0 for the loop and thus slightly higher for all other transitions). L* was 

unaffected, however, which is as expected since it corrects for this specific problem (Matayoshi 

& Karumbaiah, 2020).  

 

 

Figure 4: Transition metric values before (left) and after (right) removing loops (transitions from 

a state to the same state) in random sequences of length 100, with three possible states (X, Y, 

and Z). Percentages inside circles indicate base rates of each state. Numbers in parentheses are 

standard deviations for each metric. 

4.4. EXPERIMENT 3: ACTIVITY SEQUENCES IN COMPUTER-BASED LEARNING 

In experiment 3, we explored the effects of sequence length on transition metric values with 

data collected in the wild from students using a computer-based learning environment. This 

experiment shows the importance of sequence length outside of simple simulations. However, 

because of the non-random nature of activity sequences in real learning contexts, we do not 

expect transition metrics to converge to a specific null value (i.e., the mean base rate for MCM 

or 0 for all others). We might expect mean values across all possible transitions to approach the 

null value for a metric, but this behavior is not guaranteed; for example, the range of L is (–∞, 

1] and thus can have negative outliers that draw the mean far from zero. We also examined the 
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transitions with the minimum value and the maximum value, in addition to the mean across 

transitions, to provide additional perspectives on how metrics might behave differently in these 

data. Note that these minimums and maximums were the lowest and highest mean values of a 

transition obtained after averaging each transition over all students. Hence, they represent 

transitions that were consistently low or high across students: for example, the maximum-value 

transition is the maximum mean across students, rather than the mean of the maximum within 

each student, which might be a different transition for each student. 

Trends in the results for sequences of activities students performed (e.g., use a text editor, 

use an electronics simulator) indicated that the minimum-value transition tended to converge 

toward the lowest possible value as sequence length increased, the maximum-value transition 

trended toward the highest possible value, and some means converged toward approximately a 

null value. For example, the minimum-value transition converged toward 0 for MCM and toward 

-1 for Q as sequence length increased (Figure 5 top left), which are the minimum possible values 

for those metrics. This indicates that there was at least one transition that almost never happened, 

and this was evident from sequences even shorter than 10 for those metrics. Conversely, LSA – 

which has no minimum possible and is a z-score that depends on sequence length – trended 

continually lower, while L (which also has no minimum possible but is not relative to sequence 

length) converged toward a negative value. These trends extend in the full-length values in 

Figure 5 (lower right), where it is apparent that, on average, the minimum and maximum LSA 

values continued to diverge while minimum MCM reached its lowest possible value (0), as did 

Q (-1), and maximum L, MCM, and Q were all near (though not quite at) the maximum possible 

value of 1. These trends were also apparent in very short sequences, like the minimum-value 

transition. Conversely, mean metric values for all transition metrics were close to the chance-

level value of 0 for L and LSA. Similarly, mean MCM was close to its chance level of .125 

(because students engaged in 8.02 unique activity types, on average). These results indicate that, 

on average, the transitions above and below chance level tended to cancel out, though that trend 

required relatively long sequences to consistently observe, especially for MCM. 

LSA with a larger lag (i.e., LSA-5) results differed in notable ways for the EPM dataset, unlike 

for the randomly-generated sequences. Like LSA (lag 1), the maximum- and minimum-value 

transitions for LSA-5 (Figure 5) trended increasingly positive and negative, respectively, as 

sequence length increased. However, LSA-5 maximum and minimum values were both smaller 

than LSA, including in the full-length sequences. This suggests that there were clear above- and 

below-chance transitions for lags 1 and 5 but that the trends were clearer for lag 1. Intuitively, 

this pattern might be expected: the activity directly preceding the current activity is likely more 

related to the current activity than the fifth most recent activity is. 

Results from the sequence of exercises that students worked on, with loops removed, showed 

primarily that students tended not to revisit previous exercises, and worked in a predictable order 

(Figure 6). Maximum and minimum transitions converged quickly toward the highest and 

lowest possible values for metrics with clearly defined limits, indicating that there were some 

transitions that almost always happened and some that almost never did. However, the mean 

metric values (Figure 6 lower left) show that the mean was slow to converge as sequence length 

increased, and thus there were some transitions that happened infrequently – but more often than 

never. More notably, the jagged nature of the mean transition metric values suggests that even 

longer sequences up to 50 states were insufficient to provide a stable estimate of transitions with 

loops removed. This is unsurprising given that many of the transitions consisted of loops (see 

section 3.3). Even the full-length sequences in Figure 6 (lower right) may not have all 

converged, as evidenced by the fact that the magnitude of minimum LSA was smaller than 1.96, 

which corresponds to the typical p = .05 threshold given that LSA is a z-score. Consequently, 
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this result illustrates the importance of considering the effect of loop removal on sequence 

length, since even long sequences may become too short to produce reliable results when loops 

are removed. 

 

 

 

 

Figure 5: Minimum (top left), maximum (top left), and mean (bottom left) transition metric 

values observed across all possible transitions between activities recorded in the EPM dataset. 

Full-length sequences (lower right) show how observed sequence length trends extend to 

sequences hundreds of steps long. 
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Figure 6: Minimum (top left), maximum (top right), and mean (bottom left) transition metric 

values for the sequence of exercises students worked on in the EPM dataset, with loops in the 

sequence removed. L, L*, and MCM all have maximum values of 1 and are thus occluded by Q 

in the top right subfigure. Full-length sequences (lower right) illustrate trends in the best-case 

scenario where sequences are as long as possible, i.e., they include the entire dataset. 

5. DISCUSSION 

We were interested in the properties of state transition metrics, especially as they relate to 

sequence length. To study transition metrics, we first generated random state sequences to 

simulate various scenarios that occur in research, including short sequences and sequences with 

impossible transitions. We found several situations where results appeared to be above chance 

levels, despite the fact that sequences were randomly generated. Analyses of real-world data 

also showed the importance of having long input sequences. These results offer some insight 

into scenarios that should be avoided when applying these metrics to study sequential data so 

that spurious conclusions can be avoided. 
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5.1. MINIMUM SEQUENCE LENGTH 

Sequence length impacted the number of invalid transition metric values observed in our results. 

These invalid values are undesirable for two reasons. First, they reduce the number of estimates 

of transition metric values that are available for analyses (i.e., reduced statistical power when 

testing whether transitions occur significantly more or less frequently than chance). Second, the 

presence of a notable proportion of invalid values for a specific sequence length suggests that 

the other sequences of the same length – which did yield valid values – were based on low-

power estimates of the parameters in the equations (e.g., the expected probability of a particular 

state occurring). 

We expected invalid values would be more common for shorter sequences, sequences with 

more possible states, and sequences with imbalanced base rates, because each of these scenarios 

increases the chances of encountering sequences with few (or even zero) transitions involving 

some states. Indeed, we found that shorter sequences yielded more invalid values in the random 

sequences we sampled, especially with more possible states. We suggest that researchers should 

consider the possibility of invalid values when deciding how long state sequences need to be 

during experiment design and analyses. Our simulation code is publicly available (Bosch & 

Paquette, 2020), which allows easy manipulation of the number of states and plotting invalid 

values across a range of sequence lengths. Behavioral researchers can thus generate sequences 

for the expected number of states in their work and observe the proportion of invalid values; for 

example, from the results of this paper, we might suggest sequence length should be at least 10 

for 2 possible states, at least 20 for 4 possible states, and at least 35 for 7 possible states (Figure 

2). In general, there are 𝑛 × (𝑛 + 1) transitions between n states, including loops. Hence, we 

would expect the minimum necessary sequence length to grow quadratically with the number 

of states, so that each transition has some evidence from which to calculate its propensity. 

Indeed, this appears to be the pattern observed in the results. However, uncommon states would 

also reduce the available evidence for transitions to or from that state, which should be taken 

into account as well. 

We also found that shorter sequences were more likely to result in spurious above-chance 

transition estimates. This issue was more pronounced with fewer states (two versus four) but 

was apparent for both cases (Figure 3). Overall, these results suggest that long sequences are 

needed to avoid spurious findings. Depending on metric and number of states, sequence length 

may need to be in excess of 50 to avoid spurious results over 0.1 (a “small effect” for some 

measures; Cohen, 1988). Our experiments with real-world data (Figure 6) highlight the fact that 

sequence length after loop removal may be substantially shorter, and thus even long sequences 

can produce noisy results once shortened due to loop removal. 

Sequences may also vary in length in most practical applications. For example, students 

might interact with a computer-based learning environment for differing amounts of time or 

perform different numbers of actions within such environments. Since transition metrics are 

calculated per student to avoid issues with statistical dependencies, it is important to examine 

sequence length for each student to determine whether each meets a reasonable minimum. 

Alternatively, the LSA metric might be preferable in situations where some students have short 

sequences, because LSA penalizes shorter sequences by its nature. 

5.2. IMPOSSIBLE LOOPS AND LOOP REMOVAL 

We expected that situations where loops (i.e., self-transitions, state persistence) are impossible 

would result in increased transition metric values for transitions to other states, since the 
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probability of transition to those other states would be higher. This was indeed the case for all 

metrics. Accounting for this effect is complicated by the influence of base rates; infrequent states 

are less affected by the fact that loops within those states are impossible. For situations where 

impossible loops are caused by loop removal, it is possible to correct for these base rate effects, 

at least for one metric (i.e., L* correcting for L). Our results show that all transition metrics we 

explored were affected by this issue, apart from the L* metric designed specifically to solve this 

issue. Moreover, results from the real-world computerized learning environment we 

investigated showed that results may be unstable even with seemingly long sequences of 

behaviors if loop removal results in dramatically shortened sequences. Hence, it is also crucial 

to consider the proportion of states in a sequence that are likely to be removed when doing loop 

removal. 

However, there are also situations in which transitions other than loops may be impossible. 

For example, students might use a computerized learning environment in which it is only 

possible to view a hint after attempting to solve a problem, but not directly after starting the 

problem. In this case, the show problem → hint transition is impossible, and thus the expected 

probability of transitions from other states to hint should be increased to maintain the sum of 

probabilities being 1. This is a broader case of the impossible loop situation, which merits further 

research in the future. For example, an alternative approach to transition analysis might be to 

treat each transition as a probability, like MCM, but to estimate these via Bayesian methods that 

could account for any impossible transitions (whether loops or not) by specifying prior 

distributions for each transition. 

5.3. CONCLUDING REMARKS 

We were motivated to examine the properties of state transition metrics, given their importance 

in analysis of student behaviors and emotions. To do so, we conducted simulations with random 

sequences of states, uncovering situations where such metrics produce misleading results (in 

short sequences or with impossible loops) and suggested ways to avoid or correct for these 

situations. Although our findings are intuitive (i.e., short sequences cause problems), the results 

still have potential to influence behavioral research by providing specific guidance regarding 

the length of sequences needed, and our open-source transition metric calculation and simulation 

software will make application of metrics more straightforward. Our software supports 

simulation for prospective analyses before data collection begins, calculation of transition 

metrics from collected data, and integration as a library into other software packages. 

Ultimately, we hope that these methods will be applied to develop a more accurate 

understanding of student behavior. 

REFERENCES 

ALTERMATT, E. R., POMERANTZ, E. M., RUBLE, D. N., FREY, K. S., & GREULICH, F. K. (2002). 

Predicting changes in children’s self-perceptions of academic competence: A naturalistic 

examination of evaluative discourse among classmates. Developmental Psychology, 38(6), 

903–917. https://doi.org/10.1037/0012-1649.38.6.903 

ANDRES, A., OCUMPAUGH, J., BAKER, R. S., SLATER, S., PAQUETTE, L., JIANG, Y., BOSCH, N., 

MUNSHI, A., MOORE, A. L., & BISWAS, G. (2019). Affect sequences and learning in Betty’s 

Brain. In C. Brooks, R. Ferguson, & H. U. Hoppe (Eds.), Proceedings of the 9th 

International Conference on Learning Analytics & Knowledge (LAK19) (pp. 383–390). 

ACM. https://doi.org/10.1145/3303772.3303807 

19 Journal of Educational Data Mining, Volume 13, No 1, 2021



BAKEMAN, R. (1983). Computing lag sequential statistics: The ELAG program. Behavior 

Research Methods & Instrumentation, 15(5), 530–535. 

https://doi.org/10.3758/BF03203700 

BAKEMAN, R., & DABBS, J. M. (1976). Social interaction observed: Some approaches to the 

analysis of behavior streams. Personality and Social Psychology Bulletin, 2(4), 335–345. 

https://doi.org/10.1177/014616727600200403 

BAKEMAN, R., MCARTHUR, D., & QUERA, V. (1996). Detecting group differences in sequential 

association using sampled permutations: Log odds, kappa, and phi compared. Behavior 

Research Methods, Instruments, & Computers, 28(3), 446–457. 

https://doi.org/10.3758/BF03200524 

BAKEMAN, R., MCARTHUR, D., QUERA, V., & ROBINSON, B. F. (1997). Detecting sequential 

patterns and determining their reliability with fallible observers. Psychological Methods, 

2(4), 357–370. 

BAKEMAN, R., & QUERA, V. (1995). Log-linear approaches to lag-sequential analysis when 

consecutive codes may and cannot repeat. Psychological Bulletin, 118(2), 272–284. 

https://doi.org/10.1037/0033-2909.118.2.272 

BAKER, R. S., D’MELLO, S. K., RODRIGO, MA. M. T., & GRAESSER, A. (2010). Better to be 

frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–

affective states during interactions with three different computer-based learning 

environments. International Journal of Human-Computer Studies, 68(4), 223–241. 

https://doi.org/10.1016/j.ijhcs.2009.12.003 

BAKER, R. S., RODRIGO, MA. M. T., & XOLOCOTZIN, U. E. (2007). The dynamics of affective 

transitions in simulation problem-solving environments. In A. C. R. Paiva, R. Prada, & R. 

W. Picard (Eds.), Affective Computing and Intelligent Interaction (pp. 666–677). Berlin, 

Heidelberg: Springer. 

BISWAS, G., SEGEDY, J. R., & BUNCHONGCHIT, K. (2016). From design to implementation to 

practice—A learning by teaching system: Betty’s Brain. International Journal of Artificial 

Intelligence in Education, 26(1), 350–364. https://doi.org/10.1007/s40593-015-0057-9 

BOSCH, N., & D’MELLO, S. K. (2017). The affective experience of novice computer 

programmers. International Journal of Artificial Intelligence in Education, 27(1), 181–

206. https://doi.org/10.1007/s40593-015-0069-5 

BOSCH, N., & PAQUETTE, L. (2020). Transition metrics simulation code (1.0.0) [Computer 

software]. https://doi.org/10.5281/zenodo.3711563 

CHEN, B., KNIGHT, S., & WISE, A. F. (2018). Critical issues in designing and implementing 

temporal analytics. Journal of Learning Analytics, 5(1), 1–9. 

https://doi.org/10.18608/jla.2018.53.1 

CHEN, B., RESENDES, M., CHAI, C. S., & HONG, H.-Y. (2017). Two tales of time: Uncovering 

the significance of sequential patterns among contribution types in knowledge-building 

discourse. Interactive Learning Environments, 25(2), 162–175. 

https://doi.org/10.1080/10494820.2016.1276081 

COHEN, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence 

Erlbaum. 

DISHION, T. J., NELSON, S. E., WINTER, C. E., & BULLOCK, B. M. (2004). Adolescent friendship 

as a dynamic system: Entropy and deviance in the etiology and course of male antisocial 

20 Journal of Educational Data Mining, Volume 13, No 1, 2021



behavior. Journal of Abnormal Child Psychology, 32(6), 651–663. 

https://doi.org/10.1023/B:JACP.0000047213.31812.21 

D’MELLO, S. K., & GRAESSER, A. (2012). Dynamics of affective states during complex 

learning. Learning and Instruction, 22(2), 145–157. 

https://doi.org/10.1016/j.learninstruc.2011.10.001 

DONG, Y., & BISWAS, G. (2017). An extended learner modeling method to assess students’ 

learning behaviors. In X. Hu, T. Barnes, A. Hershkovitz, & L. Paquette (Eds.), 

Proceedings of the 10th International Conference on Educational Data Mining (EDM 

2017), 302–305. 

FARAONE, S. V., & DORFMAN, D. D. (1987). Lag sequential analysis: Robust statistical 

methods. Psychological Bulletin, 101(2), 312–323. https://doi.org/10.1037/0033-

2909.101.2.312 

GALYARDT, A., & GOLDIN, I. (2015). Evaluating simplicial mixtures of Markov chains for 

modeling student metacognitive strategies. In R. E. Millsap, D. M. Bolt, L. A. van der Ark, 

& W.-C. Wang (Eds.), Quantitative Psychology Research (pp. 377–393). Springer. 

https://doi.org/10.1007/978-3-319-07503-7_24 

GAUME, J., GMEL, G., FAOUZI, M., & DAEPPEN, J.-B. (2008). Counsellor behaviours and 

patient language during brief motivational interventions: A sequential analysis of speech. 

Addiction, 103(11), 1793–1800. https://doi.org/10.1111/j.1360-0443.2008.02337.x 

GUIA, T. F. G., RODRIGO, MA. M. T., DAGAMI, M. M. C., SUGAY, J. O., MACAM, F. J. P., & 

MITROVIC, A. (2013). An exploratory study of factors indicative of affective states of 

students using SQL-Tutor. Research and Practice in Technology Enhanced Learning, 8(3), 

411–430. 

HAMAKER, E. L., CEULEMANS, E., GRASMAN, R. P. P. P., & TUERLINCKX, F. (2015). Modeling 

affect dynamics: State of the art and future challenges. Emotion Review, 7(4), 316–322. 

https://doi.org/10.1177/1754073915590619 

JEONG, H., & BISWAS, G. (2008). Mining student behavior models in learning-by-teaching 

environments. In R. S. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st 

International Conference on Educational Data Mining (pp. 127–136). International 

Educational Data Mining Society. 

KARUMBAIAH, S., BAKER, R. S., & OCUMPAUGH, J. (2019). The case of self-transitions in 

affective dynamics. In S. Isotani, E. Millán, A. Ogan, P. Hastings, B. McLaren, & R. 

Luckin (Eds.), Artificial Intelligence in Education (pp. 172–181). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-23204-7_15 

KNIGHT, S., WISE, A. F., & CHEN, B. (2017). Time for change: Why learning analytics needs 

temporal analysis. Journal of Learning Analytics, 4(3), 7–17. 

https://doi.org/10.18608/jla.2017.43.2 

LARSON, R., & CSIKSZENTMIHALYI, M. (1983). The experience sampling method. New 

Directions for Methodology of Social & Behavioral Science, 15, 41–56. 

LLOYD, B. P., KENNEDY, C. H., & YODER, P. J. (2013). Quantifying contingent relations from 

direct observation data: Transitional probability comparisons versus Yule’s Q. Journal of 

Applied Behavior Analysis, 46(2), 479–497. https://doi.org/10.1002/jaba.45 

21 Journal of Educational Data Mining, Volume 13, No 1, 2021



MARION, S. D., TOUCHETTE, P. E., & SANDMAN, C. A. (2003). Sequential analysis reveals a 

unique structure for self-injurious behavior. American Journal on Mental Retardation, 

108(5), 301–313. https://doi.org/10.1352/0895-8017(2003)108<301:SARAUS>2.0.CO;2 

MATAYOSHI, J., & KARUMBAIAH, S. (2020). Adjusting the L statistic when self-transitions are 

excluded in affect dynamics. Journal of Educational Data Mining, 12(4), 1–23. 

https://doi.org/10.5281/zenodo.4399681 

MCQUIGGAN, S. W., ROBISON, J. L., & LESTER, J. C. (2010). Affective transitions in narrative-

centered learning environments. Educational Technology & Society, 13(1), 40–53. 

MCQUIGGAN, S. W., ROBISON, J. L., & LESTER, J. C. (2008). Affective transitions in narrative-

centered learning environments. In B. P. Woolf, E. Aïmeur, R. Nkambou, & S. Lajoie 

(Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems 

(ITS 2008) (pp. 490–499). Springer. https://doi.org/10.1007/978-3-540-69132-7_52 

MOLINARI, L., MAMELI, C., & GNISCI, A. (2013). A sequential analysis of classroom discourse 

in Italian primary schools: The many faces of the IRF pattern. British Journal of 

Educational Psychology, 83(3), 414–430. https://doi.org/10.1111/j.2044-

8279.2012.02071.x 

MOYERS, T. B., MARTIN, T., HOUCK, J. M., CHRISTOPHER, P. J., & TONIGAN, J. S. (2009). From 

in-session behaviors to drinking outcomes: A causal chain for motivational interviewing. 

Journal of Consulting and Clinical Psychology, 77(6), 1113–1124. 

https://doi.org/10.1037/a0017189 

OCUMPAUGH, J., ANDRES, J. M., BAKER, R. S., DEFALCO, J., PAQUETTE, L., ROWE, J., MOTT, 

B., LESTER, J., GEORGOULAS, V., BRAWNER, K., & SOTTILARE, R. (2017). Affect dynamics 

in military trainees using vMedic: From engaged concentration to boredom to confusion. 

In E. André, R. Baker, X. Hu, Ma. M. T. Rodrigo, & B. du Boulay (Eds.), Artificial 

Intelligence in Education (pp. 238–249). Springer. https://doi.org/10.1007/978-3-319-

61425-0_20 

OCUMPAUGH, J., BAKER, R. S., & RODRIGO, MA. M. T. (2015). Baker Rodrigo Ocumpaugh 

Monitoring Protocol (BROMP) 2.0 technical and training manual. Technical Report. New 

York, NY: Teachers College, Columbia University. Manila, Philippines: Ateneo 

Laboratory for the Learning Sciences. 

RODRIGO, MA. M. T. (2011). Dynamics of student cognitive-affective transitions during a 

mathematics game. Simulation & Gaming, 42(1), 85–99. 

https://doi.org/10.1177/1046878110361513 

SACKETT, G. P., HOLM, R., CROWLEY, C., & HENKINS, A. (1979). A FORTRAN program for 

lag sequential analysis of contingency and cyclicity in behavioral interaction data. 

Behavior Research Methods & Instrumentation, 11(3), 366–378. 

https://doi.org/10.3758/BF03205679 

TOMPKINS, V., ZUCKER, T. A., JUSTICE, L. M., & BINICI, S. (2013). Inferential talk during 

teacher–child interactions in small-group play. Early Childhood Research Quarterly, 

28(2), 424–436. https://doi.org/10.1016/j.ecresq.2012.11.001 

VAHDAT, M., ONETO, L., GHIO, A., DONZELLINI, G., ANGUITA, D., FUNK, M., & RAUTERBERG, 

M. (2014). A learning analytics methodology to profile students behavior and explore 

interactions with a digital electronics simulator. In C. Rensing, S. de Freitas, T. Ley, & P. 

J. Muñoz-Merino (Eds.), Proceedings of the 9th European Conference on Technology 

22 Journal of Educational Data Mining, Volume 13, No 1, 2021



Enhanced Learning (EC-TEL) (pp. 596–597). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-11200-8_87 

WALSH, A., & OLLENBURGER, J. (2001). Essential statistics for the social and behavioral 

sciences: A conceptual approach. Prentice Hall. 

WITHERSPOON, A. M., AZEVEDO, R., & D’MELLO, S. K. (2008). The dynamics of self-

regulatory processes within self-and externally regulated learning episodes during complex 

science learning with hypermedia. In B. P. Woolf, E. Aïmeur, R. Nkambou, & S. Lajoie 

(Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems 

(ITS 2008) (pp. 260–269). Springer. https://doi.org/10.1007/978-3-540-69132-7_30 

WUERKER, A. K., HAAS, G. L., & BELLACK, A. S. (2001). Interpersonal control and expressed 

emotion in families of persons with schizophrenia: Change over time. Schizophrenia 

Bulletin, 27(4), 671–686. https://doi.org/10.1093/oxfordjournals.schbul.a006906 

YANG, T.-C., CHEN, S. Y., & HWANG, G.-J. (2015). The influences of a two-tier test strategy on 

student learning: A lag sequential analysis approach. Computers & Education, 82, 366–

377. https://doi.org/10.1016/j.compedu.2014.11.021 

YULE, G. U. (1900). On the association of attributes in statistics: With illustrations from the 

material of the childhood society. Philosophical Transactions of the Royal Society of 

London. Series A, Containing Papers of a Mathematical or Physical Character, 194(252–

261), 257–319. https://doi.org/10.1098/rsta.1900.0019 

 

23 Journal of Educational Data Mining, Volume 13, No 1, 2021


