
Received 26 March 2020; accepted 14 April 2020. Date of publication 27 April 2020; date of current version 29 May 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.2989925

Incidents Information Sharing Platform for
Distributed Attack Detection

KONSTANTINA FOTIADOU 1, TERPSICHORI-HELEN VELIVASSAKI2, ARTEMIS VOULKIDIS1,
KONSTANTINOS RAILIS1, PANAGIOTIS TRAKADAS 3, AND THEODORE ZAHARIADIS 3

1Power Operations Ltd., Swindon SN3 5HQ, U.K.

2SingularLogic, Attica 145 64, Greece

3National and Kapodistrian University of Athens, Athens 157 72, Greece

CORRESPONDING AUTHOR: K. FOTIADOU (e-mail: fotiadou@power-ops.com)

This work was supported by the H2020 Framework Program of the European Commission (DEFENDER Project)
under Contract 740898 and (PHOENIX Project) under Contract 832989.

ABSTRACT Intrusion detection plays a critical role in cyber-security domain since malicious attacks
cause irreparable damages to cyber-systems. In this work, we propose the I2SP prototype, which is a
novel Information Sharing Platform, able to gather, pre-process, model, and distribute network-traffic
information. Within the I2SP prototype we build several challenging deep feature learning models for
network-traffic intrusion detection. The learnt representations will be utilized for classifying each new
network measurement into its corresponding threat level. We evaluate our prototype’s performance by
conducting case studies using cyber-security data extracted from the Malware Information Sharing Platform
(MISP)-API. To the best of our knowledge, we are the first that combine the MISP-API in order to construct
an information sharing mechanism that supports multiple novel deep feature learning architectures for
intrusion detection. Experimental results justify that the proposed deep feature learning techniques are
able to predict accurately MISP threat-levels.

INDEX TERMS Malware information sharing platform, network intrusion detection, anomaly detection,
deep feature learning, convolutional neural networks, long-short memory neural networks, stacked-sparse
autoencoders.

I. INTRODUCTION

NOWADAYS, the demand for designing efficient, end-
to-end Network Intrusion Detection Systems (NIDS)

for Cyber Physical Systems (CPS) has grown tremendously.
Typically, CPS are composed of a combination of physi-
cal components and modern sensors. Modern sensors are
responsible for monitoring the physical environment and
provide high-quality multivariate time-series measurements,
while physical components are related with the structure
of each application. CPS have been widely utilized in elec-
tric power Critical Energy Infrastructures (CEIs), automobile
systems, and oil and natural gas distributions, among oth-
ers. In practice they present high similarity with Internet of
Things (IoT) systems, since they put extra attention on the
connection of the individual components with the networks.
Towards this direction, CPS are considered as the main target
for cyber-attacks. Consequently, it is highly important not

only to closely monitor the behaviours of these systems for
intrusion events, but also to design efficient, large-scale and
flexible mechanisms, able to detect abnormal behaviours.
An anomaly in CPS can be considered any pattern in

certain time period that depicts significantly different or
suspicious behaviour from the previous normal phase. The
main task of network-traffic anomaly detection is to identify
whether a new event can be considered as normal or sus-
picious, and provide further details regarding the structure
of the detected threat type. Traditionally, statistical-based
approaches [1] and probabilistic frameworks [2] tackle the
problem of network anomaly detection. Nevertheless, these
techniques are proved to work well only with binary clas-
sification tasks. Another limitation of probabilistic-based
approaches lie into the prior knowledge of input signals
distributions, since these techniques suggest that the nor-
mal input measurements adhere to a standard distribution.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020 593

HTTPS://ORCID.ORG/0000-0003-4080-1622
HTTPS://ORCID.ORG/0000-0002-5146-5954
HTTPS://ORCID.ORG/0000-0002-2408-4582

FOTIADOU et al.: INCIDENTS INFORMATION SHARING PLATFORM FOR DISTRIBUTED ATTACK DETECTION

Consequently, for the testing phase, the probability distribu-
tions of the new measurements are compared with a provided
empirical threshold in order to determine whether the new
signal examples are considered as normal or anomalous.
However, in real-world scenarios, these techniques are not
able to model the rapidly changing structure of multivariate
datasets that are generated by modern CPSs. Consequently,
novel and large-scale machine learning formulations should
be developed in order to exploit the enormous amounts of
training data that were synthesized by these systems.
Moving towards to this direction, we provide the prototype

version of the proposed Information Sharing Platform (I2SP),
utilizing network incidents extracted from the Malware
Information Sharing Platform (MISP)-API [3]. MISP is a
trusted system that distributes important indicators of com-
promise (IoC) of targeted attacks, and threat information,
such as financial indicators or vulnerabilities that are used
in fraud cases. The main goal of MISP is to define a stan-
dard framework of preventive counter-measures that are used
against targeted attacks, existing malware and other threats.
The I2SP prototype exploits the MISP architecture, and thus
extracts significant information regarding coordinated activ-
ities for the minimization of cascading effects. Additionally,
within the I2SP, we develop an innovative network-traffic
intrusion detection system able to detect complex attack pat-
terns or new threats, and then share the information regarding
the cyber security incidents to the responsible authorities.
The key contributions of this paper can be summarized as:

• the development of a novel Incidents Sharing Centre
(I2SP), that combines attributes from variant network
measurements and provides the complete overview of
the security status of the system, exploiting the MISP
architecture;

• the design of several challenging Deep Feature Learning
architectures for semi-supervised anomaly detection.

A key benefit of the proposed method is its flexibility,
since the anomaly detection platform may support variant
Machine Learning (ML) techniques. Additionally, we are
the first to propose multiple innovative deep-feature learning
architectures towards the problem of MISP network-traffic
measurements modelling, with upper goal the threat-level
identification, and distribution of this information through the
proposed I2SP platform. Additionally, the proposed scheme
can be easily extended in dealing with multiple sources
of cyber-physical data. Figure 1 illustrates the proposed
system’s block diagram, while the following Sections provide
the complete analysis.
The rest of the paper is organized as follows: Section II

provides an overview of the related state-of-the-art regard-
ing the network information sharing mechanisms and the
network traffic anomaly detection. Section III presents the
proposed Incidents Information Sharing Platform (I2SP) pro-
totype, while Section IV demonstrates the variant deep
feature learning techniques that were implemented towards
the network intrusion detection problem. Section V provides

the data sources, along with the experimental results of the
comparable Deep Feature learning architectures. Extensions
of this work are discussed in Section VI.

II. RELATED WORK
A. NETWORK INFORMATION SHARING MECHANISMS
Computer Emergency Response Teams (CERTs) are a vital
part of the cyber security community, since they collect
information of new threat types, issue early warnings and
provide assistance in requests made by the users. These orga-
nizations are able to collect huge amounts of data from
multiple distributors using threat libraries. Consequently,
threat intelligence tools should be utilized in order to han-
dle the information, and perform decision making. In the
following paragraphs we highlight several representative
information sharing tools [4].
In [5] the Collaborative Research into Threats (CRITs)

platform is demonstrated. CRIT is a data repository, provid-
ing analysts with the necessary tools in order to operate
collaborative research into malware and threats. Another
threat intelligence tool is the Soltra Edge [6] that supports
a highly extensible community defence model. Moreover,
the Collective Intelligence Framework (CIF) [7], helps to
aggregate, store, post-process, share and produce threat
intelligence datasets. Likewise, Threatelligence [8] is a
cyber-threat intelligence feed collector, using Elastic-Search,
Kibana and Python. It fetches data from various custom or
public sources into Elastic-Search while simultaneously adds
geospatial information. Additionally, AlliaCERT tool [9] col-
lects security-related information from multiple sources and
provides mechanisms to query, correlate, and share it.
Finally, the Malware Information Sharing Platform

(MISP) [3], is an open source software solution mainly
developed by the Belgian Defense CERT and the NATO
Computer Incident Response Capability (NCIRC), aiming
at gathering information about malware and attacks, storing
data in a standardized format, and distributing cyber security
indicators and malware analysis with trusted parties.

B. NETWORK TRAFFIC ANOMALY DETECTION
Anomalies can be defined as patterns that appear infrequently
and do not conform to the already defined, normal behaviour.
Abnormal can be considered for instance the network traf-
fic that does not comply with the normal class. However,
anomaly detection systems should be able to provide flexi-
bility in discriminating whether the new network connections
contain suspicious content or not. Over the last years, sig-
nificant research has been conducted in the framework of
network-traffic anomaly detection. From a high-level per-
spective, anomaly detection techniques may be separated
into three main categories:

• supervised: where label information regarding the threat
type is available [10]

• unsupervised: where no labelling data appear on the
dataset [11], [12]

594 VOLUME 1, 2020

FIGURE 1. The I2SP Architecture.

• semi-supervised: where partial knowledge regarding the
anomaly type is available [13], [14], [15]

Towards the supervised direction, the key objective is to
construct proper training datasets that include all the anoma-
lous examples along with their corresponding labels. Since
this procedure can be considered as a standard classification
approach, the main advantage is its flexibility in identify-
ing if a new pattern is suspicious or not, based on already
existing attack patterns. Therefore, classification techniques
require a training period where the normal profile activ-
ity is constructed, and a testing period where every new
network measurement can be determined as anomalous or
normal. In the scenario where we are dealing with more
threat types, proper labelling should be also implemented
for each available class, and thus we are dealing with a
multi-class supervised classification problem. Early classifi-
cation approaches rely on the widely utilized framework of
Support Vector Machines (SVMs) [16], [17]. Typically, SVM
is considered as a supervised learning technique that requires
labelled data to create the classification rule. However, a
major limitation of the supervised frameworks lie in the
insufficiency of labelled training data, since these tech-
niques rely on extensive prior knowledge regarding the
characteristics of the network attacks, i.e., the attack pattern.
Regarding the unsupervised direction, clustering-based

techniques are proved to be a convenient solution [18], [19].
However, the major drawback of clustering approaches lie
in the fact that they are not able to guarantee that the
identified classes correspond to the desired ones, even in
the case where a large amount of data is available for
different threat type scenarios. Recently, generative mod-
els have also proved to be an intelligent choice towards
the unsupervised network anomaly detection problem [20],
[21], [22] Concerning the semi-supervised anomaly detec-
tion scenario, state-of-the-art approaches [14] aim to provide
accurate estimates of the probability distribution of the nor-
mal and abnormal classes, extracted from a sufficiently large
amount of collected network measurements. The main differ-
ence with the supervised methods is that there exists partial
or no information regarding the properties of the distortion
(i.e., anomalous region).

Finally, over the last years, multiple deep learning formu-
lations for network intrusion detection have been proposed
in literature. For instance, the authors in [23], [24] propose
Long-Short Term Memory (LSTM) network architectures
that confront the problem of network traffic intrusion detec-
tion. Moreover, in [25], [26], [27] several Convolutional
Neural Network (CNNs) anomaly detection techniques were
proposed. Additionally, several deep learning formulation for
network anomaly detection employ the intelligent scheme of
Stacked Autoencoders (SAE) [28], [29], [30]. Despite the
fact that deep learning architectures are demanding, since
a great amount of data and internal iterations are required,
these methods usually outperform traditional supervised and
unsupervised intrusion detection approaches.

III. THE I2SP PROTOTYPE
This section demonstrates the proposed Information Sharing
Platform (I2SP) prototype. The upper goal of this architec-
ture is to provide continuous monitoring, improve current
cyber-threat detection capabilities, and notify and report
to higher level the corresponding Computer Emergency
Response Teams (CERTs). A key component in providing
the prototype version of the I2SP is the proper selection
of the data-measurements to analyse and distribute. Out
of the multiple Network Information Sharing Mechanisms
that were highlighted in the Related Work Section, we
selected the Malware Information Sharing Platform (MISP)
framework, due to its comprehensive and extensive structure.

A. MALWARE INFORMATION SHARING PLATFORM
(MISP)
MISP is an open-source threat information sharing platform,
where users from various communities are able to share all
kind of cyber-threats, indicators of compromise, and financial
indicators among others. Due to its peer-to-peer structure,
multiple instances exchange information with each other,
while its synchronization protocol is relied on three main
criteria: efficiency, accuracy and scalability. The users are
able to determine the granularity of the information they want
to distribute in MISP, for instance with respect to the orga-
nization level, the community-level, or within their sharing
groups.

VOLUME 1, 2020 595

FOTIADOU et al.: INCIDENTS INFORMATION SHARING PLATFORM FOR DISTRIBUTED ATTACK DETECTION

FIGURE 2. The Malware Information Sharing Platform (MISP) Interface.

TABLE 1. MISP API’s threat levels.

A shared piece of information in MISP is called an event.
An event is composed of a list of attributes, including desti-
nation IP addresses and file hashes. An attribute is identified
with the tuple: (i) category, (ii) type, (iii) value. Additionally,
an event is linked with textual information, where it is avail-
able, such as date, threat level, description, organization and
galaxies about threat actors, among others. In this study, we
exploit the intelligent MISP architecture in order to create
and upload events, store them properly, extract them, per-
form the proposed analysis, and finally distribute the desired
outcomes to the responsible authorities.
Figure 2 provides a characteristic snapshot of MISP

interface. Within the MISP interface we are able to add any
supported information we wish, such as the main attributes
(i.e., event ID, date, corresponding organization), economi-
cal and financial risks, and threat level. Additionally, Table 1
provides the threat level information that is available within
the MISP interface.
Since our ML analysis towards the intrusion detection will

rely on the threat level identification, threat levels will be
included only at the models’ training phase.

B. PROPOSED MECHANISM
The system presented in this paper is designed to upload,
monitor and analyse network-traffic measurements utiliz-
ing the MISP-API. Specifically, for each new instance that
is uploaded on MISP interface, we use Apache Spark
Streaming [31] as the tool for real-time processing of the
network traffic. Packets from the input data are stored
into Apache Kafka [32] topics and are ingested into Spark
Streaming using the Kafka consumer API for Spark (Spark-
Kafka), synthesizing discretized streams. Spark Streaming
provides its own high-level abstraction for continuous data-
streams, the so-called DStream, that processes data into
mini-batches relied on a configured streaming interval
[31], [33].
At the next stage, after we parse the input raw network

measurements, we perform the proposed data-preprocessing

and analysis. Data-preprocessing is a significant step towards
the upcoming modelling stage. In this step, we perform
internal data checks, such as the problems of missing val-
ues and inappropriate characters. Additionally, since we
are dealing with multivariate time-series, we separate the
numeric from the categorical variables in order to encode
them properly. Specifically, for the categorical variables
(e.g., threat level, etc.), we use the state-of-the-art one-hot-
encoding [34] technique, while the numeric variables (i.e.,
columns) are normalized with respect to the sum of the
unit-norm (l1-norm) [35].

From the data pre-processing step, we proceed to the
analysis framework including the development of vari-
ant deep-feature learning models for intrusion detection.
Specifically, in the data-acquisition stage from the MISP-
API, we have also considered the threat-level information.
However, multiple MISP instances appear either without
threat-level, or with a corrupted version. In these scenar-
ios, the proposed algorithmic formulations aim to extract
the missing or corrupted threat level information, in order
to distribute it, in a later stage, to the responsible authori-
ties. The analysis stage may be separated into two phases:
(i) the offline, referring to the model training, and (ii) the
online, referring to the decision making. Regarding the
offline - training stage, we store the learnt models on a Redis
server [36], in order to be able to use them and distribute
them for the final stage of decision making.
In the following section, we explain the variant deep learn-

ing formulations that were exploited in this study for the
problem of threat-level detection of MISP instances.

IV. DEEP FEATURE LEARNING FOR NETWORK
ANOMALY DETECTION
In this study, we propose challenging deep feature learning
architectures towards the problem of anomaly detection of
the MISP database. The first model that we developed is a
traditional multi-perceptron model [37] composed of several
stacked hidden layers, the second one is a Stacked Sparse
Autoencoders [38] architecture, the third one adheres to a
Convolutional Neural Network (CNN) scheme [39], while
the final model follows a CNN-LSTM (Long-Short Term
Memory) procedure [25], [40]

A. MULTI-LAYER PERCEPTRON MODEL
Multi-layer perceptron neural networks (MLP-NNs) [41] are
the most widely recognized feed-forward neural networks
due to their ease of implementation, and smaller training set
requirements. The neurons of each subsequent layer (except
the input) are generated by the previous layers via an acti-
vation function, while the whole network is trained utilizing
an unsupervised back-propagation approach [42]. Figure 3
illustrates the main MLP structure that was employed in
this work. The input layer contains the encoded information
that was extracted from the MISP-API. The hidden lay-
ers contain the learnt representation of the input features,

596 VOLUME 1, 2020

FIGURE 3. Typical structure of a n-layer Multi-Layer Perceptron network: The input layer contains the dimensionality of the input feature space, the hidden layers are
composed of a pre-defined number of hidden units (neurons) that are connected with the input and the hidden layers via the weight matrices, and are activated using standard
mathematical formulations, like the sigmoid, the tanh, or the ReLU functions. Finally, the output layer (i.e., classification layer) corresponds to the learnt feature vectors, and is
the outcome of the minimization among the hidden and input network’s layers. The final layer assigns the corresponding probabilities to each threat-level (TL) class.

while they process and transmit this information to the out-
put layer, which is responsible for the classification into
the corresponding threat-level. The output layer, was acti-
vated using the Softmax [43] function, and thus it assigns
the corresponding probabilities to each class.

B. STACKED SPARSE AUTOENCODERS FOR NETWORK
ANOMALY DETECTION
A classical autoencoder is a deterministic feed-forward arti-
ficial neural network comprised of an input and an output
layer of the same size with a hidden layer in between,
which is trained with back propagation in a fully unsu-
pervised manner, aiming to learn a faithful approximation
of the input [38]. Specifically, the formulation encodes the
information between input and output data through a non-
linear function σ : R

N → R
M , such that each input vector

s ∈ R
N , is mapped to a new feature space via M hidden

units.
Formally, a single layer network consists of the input layer

units s ∈ R
N , the hidden layer unit h ∈ R

M , and the output
units ŝ ∈ R

N , which for the case of SAE are set to be equal
to the input units. The objective is to learn a set of weights
W ∈ R

M×N , along with associated encoding bias b ∈ R
M ,

in order to generate compact and descriptive features as:

h = σ(Ws + b1), (1)

able to accurately reconstruct the input patch s. The function
σ is usually selected to be the logistic sigmoid function,
defined as: σ(z) = 1

1+e−z . Decoding of h is performed using
the separate weight matrix V ∈ R

N×M , that connects the
hidden layer with the output units as:

ŝ = σ(Vh + b2), (2)

where b2 stands for the decoding bias. Following standard
approaches, we consider tied weights such that: W = V.

While an autoencoder is closely related to the Principal
Component Analysis (PCA), by performing an internal
dimensionality reduction, an over-complete nonlinear map-
ping of the input vector can be made by applying a sparsity
constraint to the target activation function. Consequently, in
order to learn representative features, the error of the loss
function:

L(S, Ŝ) = 1

2

N∑

j=1

||ŝj − sj||22 (3)

should be minimized, adhering to a sparsity constraint [44].
In the aforementioned formulation, S and Ŝ correspond to
the input and the output data, respectively [45].
Stacked sparse autoencoders (SSAE), is considered the

deep learning architecture of multiple shallow sparse autoen-
coders that are built by stacking additional unsupervised
feature layers, and can be trained using greedy methods for
each additional layer. Applying a SSAE architecture into the
network intrusion problem can be considered by itself as a
novel problem for the network security community.
Figure 4 stands as an example, illustrating the basic block

diagram for the Stacked Sparse Autoencoders network intru-
sion detection scheme. The input layer contains the MISP
features, while the output layer provides approximately the
representation of the input layer. The intermediate layers that
are learnt via the networks connections, are directly fed into
a softmax layer, which is responsible for the classification
to the proper threat-level.

C. CONVOLUTIONAL NEURAL NETWORKS FOR
INTRUSION DETECTION
While in fully-connected deep neural networks, the activa-
tion of each hidden unit is computed by multiplying the
entire input by the correspondent weights for each neuron

VOLUME 1, 2020 597

FOTIADOU et al.: INCIDENTS INFORMATION SHARING PLATFORM FOR DISTRIBUTED ATTACK DETECTION

FIGURE 4. Proposed classification scheme utilizing the Stacked Sparse Autoencoders architecture (S-SAE). The input MISP measurements are passed through the S-SAE
network, where the learnt features (i.e., hidden layers) are directly fed to the classifier. The output vector y contains the classes for each testing example.

in that layer, in CNNs, the activation of each hidden unit is
computed for a small input area [46]. CNNs are composed
of convolutional layers which alternate with subsampling
(pooling) layers, resulting in a hierarchy of increasingly
abstract features, optionally followed by fully connected
layers to carry out the final labeling into categories. At
the convolution layer, the previous layer’s feature maps are
first convolved with learnable kernels and then are passed
through the activation function to form the output feature
map. Specifically, let n × n be a square region extracted
from a training input two-dimensional array X ∈ R

N×M ,
and w be a filter of kernel size m × m. The output of the
convolutional layer h ∈ R

(n−m+1)×(n−m+1) is formulated as:
hlij = f (

∑m−1
k=0

∑m−1
l=0 wabx

l−1
(i+k) + blij), where b is the addi-

tive bias term, and f (·) stands for the neuron’s activation
unit. The activation function f (·) is a formal way to model
a neuron’s output as a function of its input. Typical choices
for the activation function are the logistic sigmoid function,
the hyperbolic tangent function: f (x) = tanh(x), and the
Rectified Linear Unit (ReLU), given by: f(x)=max(0,x). The
majority of state-of-the-art approaches employ the ReLU as
the activation function for the CNNs [47].
The output of the convolutional layer is directly utilized

as input to a sub-sampling (i.e., pooling) layer that produces
down-sampled versions of the input maps. There are several
types of pooling; two common types are the max- and the
average-pooling. Pooling operators partition the input table
into a set of non-overlapping or overlapping samples and
output the maximum or average value for each such sub-
region. By pooling, the model can reduce its computational
complexity for upper layers, and can provide a form of
translation invariance. The last layer of a CNN, namely the
fully connected layer, is a logistic regression layer [48],
where each unit of the output represents a class membership
probability, as:

P(Y = i|x) = softmax(Wx+ b) = eWix+bi
∑

j e
Wjx+bj

(4)

The network parameters, along with the multiplicative
and additive biases, are learnt via a back-propagation pro-
cedure [42]. The final prediction of the classification model
is implemented by finding the maximum value of:

ypred = argmax
i

P(Y = i|x,W,b) (5)

Figure 5 illustrates the threat level detection block diagram
using the CNN architecture. The initial time-series data are
fed into the 1-D convolutional architecture, where appro-
priate features are learnt, while the output softmax layer is
responsible for the classification procedure.

D. CNN-LONG SHORT-TERM MEMORY (LSTM)
NETWORKS FOR ANOMALY DETECTION
1) LONG SHORT-TERM MEMORY (LSTM)

Long Short-Term Memory (LSTM) [23] is a variation
of Recurrent Neural Networks (RNNs) [49], that utilizes
memory blocks to replace the traditional neurons in the hid-
den layer. Regarding the architecture, a typical LSTM block
is composed of a memory cell (Ct), an input gate (it), an
output gate (ot), and a forget gate (ft). At time instance t,
xt denotes the input and ht the hidden state, while Ĉt is the
candidate state of the memory cell, which determines how
much the input is received in the cell state. The calculations
for each gate, input candidate, hidden state, and cell state
are presented as follows:

it = σ(Wi ∗ xt + Ui ∗ ht−1 + bi) (6)

Ĉt = tan(Wc ∗ xt + Uc ∗ ht−1 + bc) (7)

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf) (8)

Ct = it ∗ Ĉt + ft ∗ Ct−1 (9)

ot = σ(Wo ∗ xt + Uo ∗ ht−1 + bo) (10)

ht = ot ∗ tan(Ct), (11)

where σ and tan stand for the sigmoid and tanh activation
functions, respectively, while Wi,Wf ,Wc,Wo,Ui,Uf ,Uc

and Uo represent the weight matrices.

598 VOLUME 1, 2020

FIGURE 5. CNN Architecture for Threat Level Classification: In this scenario we employ a CNN deep feature approach towards the problem of threat level prediction of MISP
instances. The extracted features from MISP API are considered as time-series data from which we learn significant features using the proposed deep CNN structure constructed
from a sequence of convolutional and pool layers. The final layer is responsible for the classification into the threat levels, and it is activated using the softmax function.

2) CNN-LSTM NETWORKS

The CNN-LSTM approach for predicting the threat level for
every new MISP instance consists of a series connection of
CNN and LSTM networks. The proposed CNN-LSTM archi-
tecture is able to extract complex features from the MISP
connections, and thus can store complex and irregular trends.
The upper layer of the proposed CNN-LSTM architecture
consists of a sequence of CNNs. The CNN architecture is
composed of: (i) an input CNN layer that receives multiple
variables that represent the MISP framework, including
event IDs, distribution, information, attributes, economic
risk, implementation time, and probability that a possible
attack reaches the root of the attack tree, among others,
(ii) an output layer that extracts the features to the LSTM
network, and (iii) several hidden layers. The hidden layers
are typically consisted of convolution layers, ReLU activa-
tion layers, and pooling layers. The convolution layer applies
the convolution operation to the incoming multivariate time
series sequence and passes the results to the next layer.
The main advantage of the specific scheme relies on the
flexibility of the convolutional operators in reducing the
number of parameters and make the CNN-LSTM network
architecture deeper. CNN-LSTM networks using LSTM
cells provide superior performance through time information
modelling of signals and provide high-performance detection
of MISP events’ threat levels. The last layer of CNN-LSTM
architecture, i.e., the classification layer, is a fully con-
nected layer, that provides the final decision regarding the
threat level within a certain period of time for every new
MISP instance.
Figure 6 demonstrates the threat level detection block

diagram using the CNN-LSTM scheme. The initial time-
series data are fed into the 1-D convolutional architecture,
which is followed by a recurrent LSTM network. The learnt

features are directly provided to the final, softmax layer
in order to assign the probabilities to the corresponding
classes.

V. EXPERIMENTAL SETUP
A. DATASET DESCRIPTION
The classification task involves predicting the threat level
using MISP API’s instances. In Table 2 we provide the
complete set of features that we utilize in our analysis. To
evaluate the performance of the comparable machine learning
formulations, experiments were implemented on approxi-
mately 40, 000 examples, extracted from the MISP-API. The
dataset was divided in a manner such that 80% was used
for training (i.e., 32, 000 examples) and the rest 20% was
used for testing (i.e., 8, 000 examples).

B. IMPLEMENTATION AND EVALUATION METRICS
The performance of the aforementioned deep feature learn-
ing classification approaches is first evaluated in terms of
the accuracy, and the reconstruction error of the model’s
loss function. Accuracy, is determined in the light of true
positive Tp (i.e., genuine measurements correctly classified),
true negative Tn (i.e., fake measurements correctly classi-
fied), false negative Fn (i.e., fake measurements incorrectly
classified) and false positive Fp (i.e., genuine measurements
incorrectly classified) [50]. It is defined as the ratio between
the true outcomes towards the total number of outcomes,
formulated as:

Accuracy = Tp + Tn
Tp + Tn + Fp + Fn

(12)

Regarding the loss function, since we confront a multi-class
classification problem, the categorical cross-entropy function

VOLUME 1, 2020 599

FOTIADOU et al.: INCIDENTS INFORMATION SHARING PLATFORM FOR DISTRIBUTED ATTACK DETECTION

FIGURE 6. CNN-LSTM Architecture for Threat Level Classification: In this scenario we employ a CNN followed by an LSTM architecture, in order to provide even more higher
and robust accuracy towards the problem of threat level prediction of MISP events. The learnt features from the convolutional layers are directly fed into a recurrent architecture
(i.e., LSTM model). Respectively, in this scenario the output/softmax full-connected layer is responsible for the assignment into the proper threat-level.

TABLE 2. MISP features.

is exploited and defined as:

CE = − log

(
esp

∑C
j e

sj

)
, (13)

where ti and si are the ground truth and model’s output
scores for each class i ∈ C.

Additionally, we have selected the Area Under the
Receiver Operating Characteristic (ROC) Curve (ROC-AUC)
score as an evaluation metric to determine the degree of sep-
arability among the different categories, since it measures

the classification performance of each model/per each class.
ROC curve illustrates the ratio between the True Positive
Rate (TPR), i.e., TPR = Tn

Tn+Fp , and the False Positive Rate

(FPT), i.e., FPR = Fp
Fp+Tn . Using the specific metric, we

evaluate how the model works while distinguishing between
the variant threat levels (TL). ROC-AUC scores that are
close to 1.0 indicate highly robust models, that can perfectly
determine the variant different classes.
Finally, in order to further validate the quality of our

developed models we exploit the Precision = Tp
Tp+Fp ,

Recall = Tp
Tp+Fn , and F1-score = 2Tp

2Tp+Fp+Fn metrics. High
score on Precision metric indicates a lower False Positive
Rate. On the other hand, high score on the Recall metric
demonstrates low ratio of False Negatives, and thus pre-
vents from false detection. Finally, F1-score provides the
harmonic mean of Precision and Recall, by capturing these
two measures on a single metric.

C. EXPERIMENTAL RESULTS
In this paragraph we demonstrate the evaluation results
obtained using the proposed Machine Learning (ML)
formulations. Regarding the Multi-Layer Perceptron (MLP)
model, we considered as input layer the features extracted
from the MISP-API, and thus we have constructed a deep
feature learning architecture composed of 5 hidden layers.
The number of hidden nodes was set to: (128, 64, 64, 32, 16)
respectively for each hidden layer. The output layer (i.e.,
classification layer) was activated using the Softmax activa-
tion function, assigning the corresponding probabilities to the
output classes (i.e., the classification levels) that we investi-
gate. The number of batch-size was set to 64, after a cross

600 VOLUME 1, 2020

FIGURE 7. (From Left to Right): In this figure we illustrate the training/validation loss and classification accuracy of the proposed Multi-Layer Perceptron (MLP) neural network
applied on the four-class threat level dataset. We observe that after a fixed number of iterations (approximately 60) the proposed model reaches and preserves its highest
classification accuracy. Correspondingly, the loss function is constantly reduced into the whole iterations frame.

TABLE 3. Confusion matrix of multi-layer perceptron model.

validation process, while the number of internal epochs in
order to achieve convergence in terms of the reduction of the
loss function error, and in terms of achieving a high ratio in
accuracy, was set to 100. In Figure 7 we illustrate the MLP
model’s accuracy and loss function with respect the number
of epochs. The total accuracy for the training and validation
phases was 95.54% and 95.32% respectively, while the total
error of the loss function was 0.1198 and 0.1328 for the train-
ing and testing phases, respectively. Additionally, Table 3
illustrates the confusion matrix of the MLP approach towards
the four-threat level (TL) classification scenario. In terms of
the Precision metric, the proposed MLP scheme achieves:
84% for the TL-1: Sophisticated APT-Malware or 0-day
attack, 95% for the TL-2: APT-Malware, 86% for the TL-3:
Mass-malware, and 100% for the TL-4: Undefined attack
type. All results are summarized, illustrated and compared
with the other developed schemes in Table 7. As we may
notice, the proposed MLP scheme provides high performance
detection rate between the actual and the predicted
states.
In contrast with the multi-perceptron model, where the

output nodes are the network’s connection classification out-
come, in the Stacked Sparse Autoencoders scenario, the
output is approximately the same as the input (i.e., containing
the same network measurements, affected by a dramatically
small loss function). Consequently, in the SSAE case, we
consider as input the 21 feature space containing MISP’s
network-traffic measurements, and thus we learn the internal
representations (i.e., features). The learnt internal representa-
tions are directly fed into the final classification layer, which

in our case is a softmax layer. Specifically, we have con-
structed a SSAE architecture equiped with 5 hidden layers,
containing (64, 32, 16, 32, 32) hidden nodes respectively in
each layer, and with a 64 batch size. Additionally, the num-
ber of epochs in order to achieve a fair convergence rate
was fixed into 100.
Figure 8 depicts the loss function and classification accu-

racy of the proposed SSAE scheme, when applied on the
four-category threat-level classification scenario. After 100
epochs, the training loss is fixed into 0.0963, while the val-
idation loss into 0.0877. Likewise, the training accuracy
after 100 epochs is 96.35%, and the validation accuracy
96.49%. As we may observe, the SSAE model built with the
aforementioned network architecture achieves high classifi-
cation accuracy. Referring to the loss function we may notice
the high convergence rate of the proposed SSAE scheme.
Moreover, Table 4 illustrates the Confusion Matrix of the
SSAE scheme with respect to each category (i.e., Threat
Level), where we may depict the detection ratio among the
actual and predicted classes. Finally, in terms of Precision
metric, the proposed SSAE scheme achieves: 91% for the
TL-1: Sophisticated APT-Malware or 0-day attack, 97% for
the TL-2: APT-Malware, 85% for the TL-3: Mass-malware,
and 100% for the TL-4: Undefined attack type. All results are
compared with the other developed architectures in Table 7.
From the aforementioned metrics we are able to validate the
high prediction quality of the proposed SSAE scheme when
applied on MISP network measurements dataset.
Additionally, we have further investigated the performance

of an 1D-Convolutional Neural Networks (CNNs)

VOLUME 1, 2020 601

FOTIADOU et al.: INCIDENTS INFORMATION SHARING PLATFORM FOR DISTRIBUTED ATTACK DETECTION

FIGURE 8. (From Left to Right): In this figure we illustrate the training/validation loss and classification accuracy of the proposed SSAE scheme applied on the four-class MISP
dataset. We observe that the loss function is continuously reduced within the 100-epochs interval.

TABLE 4. Confusion matrix of stacked AE architecture.

FIGURE 9. (From Left to Right): In this experiment we illustrate the training/validation loss and classification accuracy of the proposed CNN Model. As we may notice, in terms
of the classification accuracy, the proposed technique achieves high performance in both validation and training phases. Additionally, the loss function is constantly reduced in
both training and validation stages.

architecture for the threat-level detection of MISP
network-traffic measurements. Specifically, we trained our
CNNs using approximately 32, 000 examples, and thus we
further validated the CNN model using 8, 000 examples.
The exploited CNN architecture is composed of 5 CNN
hidden layers, each one followed by a Max-pooling and a
Dropout layer, for eliminating gradient’s fluctuations. The
Dropout layer’s parameter was set into 0.2 in all layers,
while the pool size was fixed in 1. Moreover, the number
of hidden nodes was set to (64, 64, 32, 32, 64), and the

filter size into 3. For the CNN layers, we choose the RELU
activation function, while the classification layer utilizes the
Softmax function.
Figure 9 presents the loss function and classification accu-

racy of the proposed CNN scheme, when applied on the
four-threat level classification scenario. After 100 epochs,
the training loss is fixed into 0.0538, while the validation
loss into 0.0497. Despite the loss function presents moderate
fluctuations, we observe that it is continuously reducing with-
ing the 100 iterations interval, validating the convergence of

602 VOLUME 1, 2020

TABLE 5. Confusion matrix of CNN architecture.

FIGURE 10. (From Left to Right): In this figure we highlight the high-quality classification performance achieved by the proposed CNN-LSTM architecture, in terms of the
training/validation accuracy and loss. As we may observe, the classification accuracy stabilizes into its highest value after only few epochs, while simultaneously the loss
function is constantly reduced in both training and validation stages.

TABLE 6. Confusion matrix of CNN-LSTM architecture.

the proposed scheme. On the other hand, the classification
accuracy in the training set converges significantly fast, after
almost 40 epochs, while the validations accuracy presents
small variations but with simultaneously preserving its high
value. The training accuracy after 100 epochs is 98.12%,
and the validation accuracy 97.53%. As we may observe,
the CNN model built with the aforementioned network archi-
tecture achieves high classification accuracy, validating the
high quality of the proposed scheme. Additionally, Table 5
provides the Confusion Matrix of the proposed CNN archi-
tecture with respect to each investigating category (i.e.,
threat level), where we illustrate the distribution between
the actual and predicted threat levels. In terms of Precision
metric, the proposed CNN architecture achieves: 96% for
the TL-1: Sophisticated APT-Malware or 0-day attack, 97%
for the TL-2: APT-Malware, 91% for the TL-3: Mass-
malware, and 100% for the TL-4: Undefined attack type. All
results are summarized, and compared with our other con-
structed architectures in Table 7. Consequently, the proposed
CNN-based scheme also achieves high quality threat-level
predictions.
Finally, we exploited a CNN-LSTM architecture towards

the problem of threat-level identification for network-
traffic intrusion detection. For this purpose, we considered

four 1-D CNN layers, followed by Max-pooling and
Dropout layers, with (64, 64, 32, 32) hidden nodes. The
sub-sequent LSTM architecture is composed of 5 hidden
layers and (64, 64, 32, 32, 16)-hidden nodes. The filter size
for the CNN structure was set into 3, while the dropout
value was fixed into 0.2. The activation function in all
layers, except the output (i.e., Softmax-classification) is
the RELU.
Figure 10 illustrates the classification accuracy and loss-

function with respect to the number of iterations. In this
simulation, we have also fixed the number of epochs
into 100. The classification accuracy of both training and
validation sets converges into a stationary point after approx-
imately 20 iterations, validating the high-performance of the
proposed CNN-LSTM technique. Specifically, the classifi-
cation accuracy for the training set was fixed into 98.25%,
while for the validation set into 98.17%. Additionally, the
loss-functions of the training and validation datasets, after
approximately 40 iterations, stabilize into its lowest value,
of 0.028 for the training set, and 0.034 for the validation
set. Moreover, Table 6 illustrates the Confusion Matrix of
the proposed CNN-LSTM scheme, where we illustrate the
ground truth versus the predicted results per each cate-
gory (i.e., threat level). In all cases, the proposed scheme

VOLUME 1, 2020 603

FOTIADOU et al.: INCIDENTS INFORMATION SHARING PLATFORM FOR DISTRIBUTED ATTACK DETECTION

FIGURE 11. AUC-ROC Curves for the four comparable deep learning architectures. As we may observe all architectures depict high quality ROC curves, validating the
high-accuracy of the proposed classification/prediction approaches.

TABLE 7. Quantitative performance evaluation of the developed methods in terms of precision, recall and F-1 score metrics.

achieves high quality predictions. In further detail, in terms
of the Precision metric, the proposed CNN-LSTM scheme
achieves: 98% for the TL-1: Sophisticated API-malware
or 0-day attack, 96% for the TL-2: APT malware, 88% for
the TL-3: Mass-malware, and 100% for the TL-4: Undefined
attack type.
Comparing the four deep feature learning approaches (i.e.,

Multi-Perceptron Model, SSAE, CNN, and CNN-LSTM),
in terms of the classification accuracy on the validation
set, we may notice that the highest accuracy for the
four-class threat level scenario of MISP’s network-traffic
dataset, is achieved first by the CNN-LSTM scheme
(98.17%), followed by the CNN architecture (97.53%),
then by the SSAE model (96.49%), and finally by the
Multi-Layer Perceptron model (95.32%). Finally, Figure 11
illustrates the ROC-AUC curves/per category for the four

comparable techniques, while Table 7 highlights and sum-
marizes the Precision, Recall and F-1 scores of the proposed
architectures. Regarding the AUC-ROC curves, we observe
that all comparable deep feature learning approaches depict
high quality results. To be more precise, the best score
(i.e., 99.80% for TL-1, 99.53% for TL-2, 99.60% for TL-3,
and 99.49% for TL-4) was achieved using the CNN-LSTM
architecture, validating our claim that the specific scheme
outperforms the comparable deep learning approaches for
the problem of MISP network measurements threat level
detection.

VI. CONCLUSION
In this paper we presented an end-to-end novel Information
Sharing Prototype (I2SP), able to gather, process, and
distribute information regarding network-traffic events.

604 VOLUME 1, 2020

Specifically, we exploited the architecture of the MISP
interface for gathering network measurements, and thus we
proposed four challenging machine learning formulations
that learn internal representations from the multi-variate
time-series dataset. The ultimate of this study is to per-
form intrusion detection, by learning the threat level of each
upcoming measurement. All comparable techniques present
high-quality classification results in terms of the accuracy
and the error of the loss function.

REFERENCES
[1] C. Manikopoulos and S. Papavassiliou, “Network intrusion and fault

detection: A statistical anomaly approach,” IEEE Commun. Mag.,
vol. 40, no. 10, pp. 76–82, Oct. 2002.

[2] M. Burgess, “Probabilistic anomaly detection in distributed computer
networks,” Sci. Comput. Program., vol. 60, no. 1, pp. 1–26, 2006.

[3] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “MISP: The
design and implementation of a collaborative threat intelligence shar-
ing platform,” in Proc. ACM Workshop Inf. Sharing Collaborative
Security, 2016, pp. 49–56.

[4] W. Tounsi and H. Rais, “A survey on technical threat intelligence
in the age of sophisticated cyber attacks,” Comput. Security, vol. 72,
pp. 212–233, Jan. 2018.

[5] CSIRT Gadgets. (2016). CIF V3. [Online]. Available:
https://csirtgadgets.com

[6] M. Bernier and A. Magar. (2015). Soltra Edge Open Cyber
Intelligence Platform. [Online]. Available: http://cradpdf.drdc-
rddc.gc.ca/PDFS/unc196/p802346_A1b.pdf

[7] S. Barnum, Standardizing Cyber Threat Intelligence Information With
the Structured Threat Information Expression (STIX), Miter Corporat.,
McLean, VA, USA, 2012.

[8] Threatintelligence. Accessed: Mar. 24, 2020. [Online]. Available:
https://www.threatintelligence.com/

[9] Alliacert. Accessed: Mar. 24, 2020. [Online]. Available:
https://www.alliacert.com

[10] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward super-
vised anomaly detection,” J. Artif. Intell. Res., vol. 46, pp. 235–262,
Jan. 2014.

[11] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262,
pp. 134–147, Nov. 2017.

[12] V. Filimonov et al., “Unsupervised anomaly detection for arbitrary
time series,” U.S. Patent 9 652 354, May 16, 2017.

[13] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANOMALY:
Semi-supervised anomaly detection via adversarial training,” in Proc.
Asian Conf. Comput. Vis., 2018, pp. 622–637.

[14] L. Ruff et al., “Deep semi-supervised anomaly detection,” 2019.
[Online]. Available: arXiv:1906.02694.

[15] H. Song, Z. Jiang, A. Men, and B. Yang, “A hybrid semi-supervised
anomaly detection model for high-dimensional data,” Comput. Intell.
Neurosci., vol. 2017, p. 9, Nov. 2017. [Online]. Available: https://
doi.org/10.1155/2017/8501683

[16] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class
SVM with deep learning,” Pattern Recognit., vol. 58, pp. 121–134,
Oct. 2016.

[17] W. Han, J. Xue, and H. Yan, “Detecting anomalous traffic in the con-
trolled network based on cross entropy and support vector machine,”
IET Inf. Security, vol. 13, no. 2, pp. 109–116, 2019.

[18] A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Network anomaly
detection by cascading k-means clustering and C4.5 decision tree
algorithm,” Procedia Eng., vol. 30, pp. 174–182, Mar. 2012.

[19] C. Aytekin, X. Ni, F. Cricri, and E. Aksu, “Clustering and unsu-
pervised anomaly detection with L2 normalized deep auto-encoder
representations,” in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN),
2018, pp. 1–6.

[20] H. Zenati et al., “Efficient GAN-based anomaly detection,” 2018.
[Online]. Available: arXiv:1802.06222.

[21] Y. Intrator, G. Katz, and A. Shabtai. (2018). MDGAN:
Boosting Anomaly Detection Using—Multi-Discriminator Generative
Adversarial Networks. [Online]. Available: https://arxiv.org/abs/
1810.05221.

[22] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “MAD-GAN:
Multivariate anomaly detection for time series data with generative
adversarial networks,” in Proc. Int. Conf. Artif. Neural Netw., 2019,
pp. 703–716.

[23] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” Presses uni-
versitaires de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2015,
p. 89.

[24] L. Bontemps, J. McDermott, and N.-A. Le-Khac, “Collective
anomaly detection based on long short-term memory recurrent neu-
ral networks,” in Proc. Int. Conf. Future Data Security Eng., 2016,
pp. 141–152.

[25] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, “An
empirical study on network anomaly detection using convolutional
neural networks,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.
(ICDCS), 2018, pp. 1595–1598.

[26] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection:
A survey,” 2019. [Online]. Available: arXiv:1901.03407.

[27] A. Chawla, B. Lee, S. Fallon, and P. Jacob, “Host based intrusion
detection system with combined CNN/RNN model,” in Proc. Joint
Eur. Conf. Mach. Learn. Knowl. Disc. Databases. 2018, pp. 149–158.

[28] Y. Meidan et al., “N-BaIot—Network-based detection of IoT botnet
attacks using deep autoencoders,” IEEE Pervasive Comput., vol. 17,
no. 3, pp. 12–22, Jul.–Sep. 2018.

[29] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly detection using autoencoders in high performance com-
puting systems,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 9428–9433.

[30] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and
M. C. Chan, “GEE: A gradient-based explainable variational autoen-
coder for network anomaly detection,” 2019. [Online]. Available:
arXiv:1903.06661.

[31] M. Zaharia et al., “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[32] G. Wang et al., “Building a replicated logging system with Apache
Kafka,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1654–1655, 2015.

[33] X. Meng et al., “MLLIB: Machine learning in Apache spark,” J.
Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241, 2016.

[34] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of cat-
egorical variable encoding techniques for neural network classifiers,”
Int. J. Comput. Appl., vol. 175, no. 4, pp. 7–9, 2017.

[35] M. Schmidt. (2005). Least Squares Optimization with L1-Norm
Regularization. Accessed: Mar. 24, 2020. [Online]. Available: http://
citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.186.3602

[36] Redis Server. Accessed: Mar. 24, 2020. [Online]. Available: https://
oss.redislabs.com/redisai/

[37] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks:
A tutorial,” Computer, vol. 29, no. 3, pp. 31–44, 1996.

[38] A. Ng. Sparse Autoencoder. Accessed: Mar. 24, 2020. [Online].
Available: https://web.stanford.edu/class/cs294a/sparseAutoencoder_
2011new.pdf

[39] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1440–1448.

[40] F. A Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10,
pp. 2451–2471, 2000.

[41] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and
classification,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 683–697,
Sep. 1992.

[42] S.-I. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling
using fuzzy neural networks with the back-propagation algorithm,”
IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 801–806, Sep. 1992.

[43] Z. Tüske, M. A. Tahir, R. Schlüter, and H. Ney, “Integrating Gaussian
mixtures into deep neural networks: Softmax layer with hidden
variables,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), 2015, pp. 4285–4289.

[44] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320–3325,
Dec. 2003.

[45] A. G. de G Matthews, J. Hensman, R. Turner, and Z. Ghahramani,
“On sparse variational methods and the Kullback–Leibler divergence
between stochastic processes,” in Proc. Artif. Intell. Stat., 2016,
pp. 231–239.

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[47] H. Ide and T. Kurita, “Improvement of learning for CNN with ReLU
activation by sparse regularization,” in Proc. IEEE Int. Joint Conf.
Neural Netw. (IJCNN), 2017, pp. 2684–2691.

[48] Z. Zhang, “Model building strategy for logistic regression: Purposeful
selection,” Ann. Transl. Med., vol. 4, no. 6, p. 111, 2016.

[49] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” 2014. [Online]. Available: arXiv:1409.2329.

[50] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accu-
racy, F-score and ROC: A family of discriminant measures for
performance evaluation,” in Proc. Aust. Joint Conf. Artif. Intell., 2006,
pp. 1015–1021.

VOLUME 1, 2020 605

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

