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Abstract: Autonomous fault detection plays a major role in the Critical Energy Infrastructure (CEI)
domain, since sensor faults cause irreparable damage and lead to incorrect results on the condition
monitoring of Cyber-Physical (CP) systems. This paper focuses on the challenging application of
wind turbine (WT) monitoring. Specifically, we propose the two challenging architectures based on
learning deep features, namely—Long Short Term Memory-Stacked Autoencoders (LSTM-SAE),
and Convolutional Neural Network (CNN-SAE), for semi-supervised fault detection in wind
CPs. The internal learnt features will facilitate the classification task by assigning each upcoming
measurement into its corresponding faulty/normal operation status. To illustrate the quality of
our schemes, their performance is evaluated against real-world’s wind turbine data. From the
experimental section we are able to validate that both LSTM-SAE and CNN-SAE schemes provide
high classification scores, indicating the high detection rate of the fault level of the wind turbines.
Additionally, slight modification on our architectures are able to be applied on different fault/anomaly
detection categories on variant Cyber-Physical systems.

Keywords: SCADA Anomaly Detection; cyberphysical systems; semi-supervised anomaly detection;
sparse stacked autoencoders; deep feature learning

1. Introduction

Nowadays, the demand for designing autonomous condition assessment and fault detection
of cyber-physical systems and critical energy infrastructures has drawn tremendously. A major
cause regards the current and widely-diverse structure of CEIs that makes extremely difficult the
physical monitoring. On this direction, wind turbine (WT) systems are considered among the most
complex Cyber-Physical infrastructures causing huge (cascading) effects to other critical infrastructures,
such as Electrical Power and Energy Systems (EPES), communications, transportation, industry and
finance. Wind turbine infrastructures are composed of condition monitoring and operational data
(i.e., Supervisory Command and Data Acquisition-SCADA), including air-temperature, air-pressure,
voltage and power with multiple types of parameters and periodic characteristics. In comparison with
legacy SCADA systems, recent-developed infrastructures utilize less expensive and more scalable
Internet-based technologies to enable data monitoring in near real time conditions [1].

However the main limitations of the wind turbine industry still pertain. Specifically,
the maintenance cost and the urgent replacement of the malfunctioning components, makes autonomous
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fault detection highly important for the wind industry. The main types of damages that impair
the proper functionality of wind turbines, are caused by unfavourable weather conditions, affecting
several functional instruments [2]. An anomaly in a cyber-physical system, and specifically in wind
turbine measurements can be considered any pattern that presents different behaviour from the
normal state, for instance extremely high or even low bearing temperature or pressure values, among
others [3]. Nevertheless, from a high-level perspective, fault detection techniques can be divided
into: (i) model-based, that utilize specific dynamic formulations with main goal the synthesis of
representative residuals for the fault detection architectures [4–6], and (ii) data-driven, that follow
standard data mining techniques in order to identify any discrepancy among the model predictions
and the ground truth measurements [2,7–14].

In order to tackle the aforementioned limitations we design our proposed Deep Learning
(DL) schemes, namely: Long-Short Term Memory [15]-Stacked Autoencoders [16] (LSTM-SAE),
and the Convolutional [17,18]-Stacked Autoencoders (CNN-SAE) in order to address the problem
of semi-supervised wind turbine fault detection. In our models’ training phase, we utilize labelled
data, including the anomaly types, while in the validation phase we consider only unlabelled data
and we retrieve the corresponding categories via the proposed DL architectures. Consequently, by
exploiting the structure of the internal representations, we are able to extract significant features that
will facilitate the subsequent classification task [19]. In order to validate our claims, we utilize a real
wind turbine dataset [13,20], including five different monitoring states: that is, normal state, where the
turbine operates normally, and four different fault categories, varying from heating fault, excitation
fault, feeding fault, and main-turbine fault. The proposed architectures can be easily extended to detect
complex fault patterns or new anomaly types, that vary significantly from the current operating status,
while they can also be applied to detect abnormal patterns in other cyber-physical systems’ applications.
The main advantages that the proposed work contributes on the CEI sector are over-viewed as follows:

• The development of two challenging schemes for automatic feature learning in order to tackle the
semi-supervised wind turbine fault detection problem. The proposed schemes can be extended to
perform also unsupervised anomaly detection.

• The flexibility that is provided via the proposed formulations, since they can be applied to any
cyber-physical system after minor modifications.

• Finally, according to the related state-of-the-art, we claim to be the first that design and develop
the LSTM-SAE, and CNN-SAE architectures for the problem of wind turbine classification.

The remain of paper is structured as follows: The related state-of-the-art methodologies towards
the current trends in anomaly detection, and the wind turbine fault detection approaches are posed
in Section 2. Additionally, Section 3 demonstrates the proposed Stacked Sparse Autoencoders
architectures, adhering to the Long-Short Term Memory and the Convolutional Neural Networks
architectures, while Section 4 illustrates the validation on SCADA data of a real wind-turbine.
Concluding, Section 5 provides the future guidelines of this work.

2. Related Work

2.1. Anomaly Detection

Anomalies (i.e., faulty measurements) are considered the patterns that appear infrequently, and do
not comply with the existing, denoted as normal behaviour [21]. In our case, abnormal are the wind
turbine measurements that do not conform with the the already defined classes, by presenting missing
values on several attributes (e.g., Temperatures, Wind Speed), or by depicting extremely high or low
feature values within specific time intervals. Consequently, anomaly detection systems should provide
high sensitivity in discriminating whether the upcoming SCADA measurements can be considered
as normal or not [22]. Generally, anomaly/fault detection techniques may be discriminated into:
(i) supervised: in which the anomaly type is available [23], (ii) unsupervised: in which no labelling
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information is appeared on the input data [24,25], and (iii) semi-supervised: in which partial labelling is
available [26–28].

Regarding the supervised learning case, proper labelled training datasets are created, including
all possible anomalous/fault types with their correspondent assignment to the individual categories.
The main advantage of these classification approaches lie into their efficiency and flexibility in
recognizing immediately whether a new example is considered anomalous on normal, based on the
pre-existing attack types or patterns that are present in the input dataset. Consequently, classification
algorithms exploit a training phase in order to build models based on the pre-defined normal activity,
and a testing phase in which they determine any new example as normal or abnormal. Considering the
scenario of multiple fault categories, proper labelling should be also implemented for each available
class. This scenario is recognized as multi-class supervised classification [29–32].

In the unsupervised category, the majority of the literature approaches learn the internal
representations of the input multivariate time-series data, and then set empirical thresholds in order
to discriminate whether a new measurement can be considered as normal or abnormal [33–35].
Additionally, another state-of-the-art strategy is the consider clustering-based approaches that
efficiently separate the input feature space into its corresponding categories (i.e normal or abnormal),
and also provide empirical thresholds that determine the class in which each new measurement
belongs [36–41].

Finally, regarding the last scenario of semi-supervised anomaly detection, in the training
phase we consider labeled multivariate time series data, while in the validation phase, the system
predicts in which category the new measurements correspond based on the historical measurements.
The majority of semi-supervised anomaly detection techniques adhere to deep feature learning
formulations [27,42,43]. Motivated by these examples, in this study we exploit two characteristic
schemes for learning deep features hierarchies [44,45] for semi-supervised fault classification/detection
on multivariate wind turbine time-series data.

2.2. Wind Turbine Anomaly Detection

Recently, a great amount of research work has been implemented on the wind turbine anomaly
detection sector. In this paragraph we highlight the most significant techniques that exist on the
recent literature. Specifically, the authors of Reference [46] propose an anomaly detection technique
for offshore wind SCADA data by building an explicit model for the individual sensors that predicts
the expected value for each time interval using the measurements of a subset of all the other sensors
of the same time as well as of the most recent past measurements. In order to solve the specific
time-series problem, the authors exploit the Least Absolute Shrinkage and Selection Operator (LASSO)
optimization technique [10,47]. A state-of-the-art approach was also presented in Reference [48] where
the authors exploit a Support Vector Machine scheme for wind turbine fault detection, while they pose
an empirical threshold for determining the abnormal values of the wind signals. Similarly, the authors
in Reference [32] combine a residual-based formulation with the mathematical framework of Support
Vector Machines (SVM) for fault detection and isolation problem on wind turbines. This thresholding
residual-based approach identifies the abrupt changes in several features.

Another interesting approach was presented in Reference [49], where the authors propose a
Gaussian-based wind turbine condition monitoring technique. Specifically, they rely on probability
distributions, and they form a real-time power curve in order to identify operational anomalies.
Additionally, the authors of Reference [50] propose an anomaly detection approach using wavelet
transforms and neural networks for the state monitoring of wind turbines . Specifically, a non-linear
Autoregressive (AR) signal processing technique is adopted using artificial neural networks that
estimates temperature features of the gearbox instruments. As a metric, the authors exploit the
Mahalanobis distance, since it depicts efficiency in modelling deviations among the variant states,
while the wavelet transform removes the extra noisy signals. Moreover, the authors of Reference [2]
propose a deep auto-encoders model that learns the behaviour of wind turbine SCADA measurements.
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For this purpose, multiple restricted Boltzmann machines (RBMs) are utilized. In this way,
the relationships between the SCADA variables are extracted, while the components’ condition
is determined via the obtained reconstruction error. Another efficient approach is illustrated in
Reference [14] where the authors adhere to a combination of Random Forests with Gradient Boosting
(XGBoost), in order to perform autonomous wind turbine fault classification. Random Forests
classification approach ranks the extracted features according to their importance, while XGBoost
algorithm takes into consideration the top-ranked features and trains proper classifiers for the variant
fault types.

3. Proposed Methodology: Anomaly Detection in Wind Turbine Time Series Data

In this section we provide the main formulations that were designed towards the problem of
anomaly detection in wind turbine time-series data. The first architecture that we developed adheres
to a Long Short Term Memory- Stacked Autoencoders (LSTM-SAE) scheme, while the second one
follows a Convolutional Neural Network- Stacked Autoencoders (CNN-SAE) formulation.

3.1. Stacked Sparse Autoencoders

Traditionally, the deterministic feed-forward architecture of an autoencoder [16] is composed of
an input layer, several intermediate layers, and a single output layer that contains the same number of
hidden nodes with the input layer. This fully-unsupervised structure is trained via a state-of-the-art
back-propagation technique [51]. From a high level perspective, Stacked Sparse Autoencoders learn
an approximately identical representation of the input feature space. Consequently, the input feature
space is encoded via σ : RN → RM, declared as the activation function, which is usually selected to be
non-linear and maps each input vector s ∈ RN , to a new feature space composed of M hidden units,
in order to synthesize the equivalent output feature vector.

In the following, we describe the mathematical formulation of a single layer SAE
scheme. Let x ∈ RN be the input vector, h ∈ RM the hidden layer’s vector, and x̂ ∈ RN the output
vector. According to the Sparse Autoencoders framework, the output layer units are considered to be
equal with the input layer’s units. Consequently, the main goal is to define the appropriate weight
matrix W ∈ RM×N , and the corresponding bias term b ∈ RM in order to generate the hidden layer
that provides the internal representation of the system and is able to able to reconstruct efficiently the
input vector x as follows:

h = σ(Wx + b1). (1)

In this formulation we choose the logistic sigmoid function declared as: σ(x) = 1
1+e−x , for the

non-linear activation function. Additionally, we consider the inverse weight matrix Ŵ ∈ RN×M,
which is responsible for the decoding phase, and thus connects the hidden representation with the
output vector as follows:

x̂ = σ(Ŵh + b2). (2)

In the aforementioned equation b2 corresponds to the decoding bias parameter. According to the
mathematical background of the SAE, tied weights are considered among the weight matrices: W = Ŵ.
Additionally, in order to further guarantee the consistency among the input and output feature spaces,
sparsity constraints [52] are enforced upon the minimization of the non-linear error function. For this
purpose, we define J (X, X̂) to be loss function among the input, X, and the output, X̂, feature spaces:

J (X, X̂) =
1
2

N

∑
i=1
||x̂i − xi||22. (3)
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Finally, another key issue regards the restriction of the average activation of the loss function to a
small threshold, by imposing the widely used Kullback-Leibler (KL) divergence constraint [53] as:

J (X, X̂) + λ
K

∑
i=1

KL(p||pi), (4)

where the KL-term is formulated as:

KL = p log
p
pj

+ (1− p). (5)

λ stands for the sparsity balancing parameter, K is the total number of examples, and p corresponds
to the average activation of the each vector upon the input data. In this way, the network activates
the most representative hidden nodes, by learning the appropriate weights. An extension of the
aforementioned analysis is the so-called Stacked Sparse autoencoders (SSAE) scheme in which multiple
shallow SAE architectures are stacked. Consequently, the developed sequence of unsupervised feature
layers can be efficiently trained via any greedy-optimization algorithm.

3.2. Long Short Term Memory-SAE for Wind Turbine Fault Detection

Long Short-Term Memory (LSTM) [54] networks belong to the wide category of Recurrent Neural
Networks and instead of using neurons in the hidden layer, they use memory blocks. Specifically,
the traditional structure of a LSTM-block considers a memory cell (Ct), an input, output, and forget
gate denoted as: (it),(ot),( ft), respectively. For a given time-record t, we declare xt ∈ Rd as the input
vector, zt ∈ Rm the hidden representation, and ĉt ∈ Rm as the state vector, which is the candidate of
the memory cell. The equations bellow provide the basic formulations for each gate and state:

it = σ(Wixt + Uizt−1 + bi) (6)

ĉt = tan(Wcxt + Uc ∗ zt−1 + bc) (7)

ft = σ(W f xt + U f zt−1 + b f ) (8)

ct = diag(it)ĉt + diag( ft)ct−1 (9)

ot = σ(Woxt + Uozt−1 + bo) (10)

zt = diag(ot) tan(ct). (11)

Additionally, σ corresponds to the sigmoid, while tan to the tanh activation function, and diag
parameter stands for the diagonal matrices. The variables Wi, W f , Wc, Wo, Ui, U f , Uc and Uo represent
the weight matrices for the corresponding input, output, forget and candidate states.

Proposed LSTM-SAE Architecture

In our formulation, we consider {Xt}N
t=1 as the input sequence, where N stands for the total

number of signal examples. Regarding each observation Xt, we consider Xt = [xt1 , xt2 , · · · , xtN ],
xti ∈ Rk, number of samples. Consequently, each i-th vector xti of Xt, can be encoded via the proposed
LSTM-SAE architecture as:

zti = σ(Wxti + Uzti−1), (12)

where U ∈ Rm×m and W ∈ Rm×k are denoted as the RNN coefficient weight matrices, and z ∈ Rm

stands as the state vector. Additionally, for each Xt, the output is formulated as:

zti = σenc
φ (xti , zti−1) = σenc

φ (xti , cti−1), (13)
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where zti corresponds to the output vector of the i-th encoder unit, while we denote as φ the parameter
values we imposed on the encoder. When the whole sequence is directed to the RNN-encoder, we
impose a max-pooling operation, formulated as:

zi = maxj{zti}
ni
i=1, (14)

where j-index indicates the number of rows of zti . The decoder part of the LSTM-SAE architecture,
reconstructs the input as follows:

x̂ti = σ(ẑti ), (15)

where:

ẑti = σdec
ψ (zi, ẑ(t−1)i

) = σdec
ψ (zi, ẑ(t−1)i

, ˆcti−1), (16)

and ψ stands for the parameters of the RNN-decoder part. When the reconstructed input is retrieved,
the Mean Squared Error (MSE): ∑ni

i=1 ||xti − x̂ti ||22 is evaluated, and the LSTM encoder and decoder
parameters are updated.

The final layer, that is, the fully connected, is selected to be activated usint the softmax function
as:

P(Y = i|x) = so f tmax(Wx + b) =
eWix+bi

∑j eWjx+bj
. (17)

Finally we exploit a standard back-propagation algorithm in order to learn the model’s trainable
parameters. Specifically, in back propagation procedure, the model’s parameters are updated via the
alternating minimization of the cost function with respect to each parameter:

L =
|D|

∑
i=0

log(P(Y) = yi|xi, W, b). (18)

In the aforementioned formulation, we denote D as the training dataset. In order to extract the
final prediction, we calculate the maximum value of:

ypred = argmax
i

P(Y = i|x, W, b). (19)

In Figure 1 we depict the main diagram of our LSTM-SAE scheme for wind-turbine
fault classification.
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Figure 1. Long Short Term Memory-Stacked Autoencoders (LSTM-SAE) Architecture: This scenario
exploits a Stacked Sparse Autocoders scheme, with LSTM hidden layers that consider the recursive
structure of the investigated time-series. The final layer of the LSTM-SAE scheme is a fully-connected,
time distributed layer, while the Classification layer is a fully-connected one, activated with the Softmax
function, containing the corresponding classes for each example.

3.3. Convolutional Neural Networks-SAE for Wind Turbine Anomaly Detection

3.3.1. Convolutional Neural Networks (CNN) for 1D Signals

In contrast with the fully-connected deep-learning architectures, where the activation of each
hidden vector is evaluated by performing the multiplication of the whole input vector with certain
weights, Convolutional Neural Networks (CNNs) exploit an intelligent scheme that computes the
activation term of each hidden unit for only a small portion of the input data, that is, the most
representative ones. CNNs synthesize a hierarchy of increasingly abstract features, by merging several
convolutional and sub-sampling (i.e., pooling) layers. This hierarchy is usually followed by a sequence
of fully connected layers which are responsible for the final classification task. On the top of the
convolution layer, the input feature vector is convolved with a learnt kernel and is directly passed
through a non-linear activation function, in order to synthesize the output feature vector. From a
theoretical point of view, we consider a square-region (k× k) that denotes a certain region extracted
from our input data X ∈ RN×M. Additionally, we denote w ∈ Rm×m the filter operator. Consequently,
the output of the convolutional layer, forms a vector h ∈ R(k−m+1)×(k−m+1) that can be formulated
as follows:

hl
ij = σ(

m−1

∑
n=0

m−1

∑
l=0

wijxl−1
(i+n) + bl

ij). (20)

In the aforementioned equation b is the bias parameter, and σ(·) is the non-linear activation
function. The widely used choices for the non-linear activation function stand the hyperbolic tangent
function, the logistic sigmoid function, and the Rectified Linear Unit (ReLU): f (x) = max(0, x) [18,21].

Normally, each convolutional layer is followed by a pooling layer that produces a down-sampled
(i.e., lower dimensioned) version of the input vector. Among the multiple variant types of pooling
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operators, the most common are the average- and the max-pooling. Pooling operators partition the
input data into a set of non-overlapping or overlapping samples and output the maximum or average
value for each such sub-region. The greatest advantage of pooling operators concerns the reduction of
the model’s training computational complexity, since they provide translation invariance. Concluding,
the final layer of the CNN-architecture, which is a fully-connected or dense layer assigns each output
unit to certain probability value.

3.3.2. Proposed CNN-SAE Architecture

The proposed CNN-SAE scheme adheres to the state-of-the-art architecture of SAE that was posed
in Section 3.1, except the model’s shared weights W ∈ RM×N . Specifically, for a single layer network
with x ∈ RN input units, h ∈ RM hidden units, and x̂ ∈ RN output units, the latent representation is
synthesized as:

h = σ(W ∗ x + b1), (21)

where σ denotes the activation function, b stands for the bias term, and * stands for the 1D convolution
process. Since each filter specializes on features of the whole input vector, we use a single bias per
latent map [19]. Consequently, the reconstruction (i.e., output) layer can be formulated as:

x̂ = σ(V ∗ h + b2), (22)

where V ∈ RN×M stands for the separate weight matrix that connects the hidden with the output
layer, b2 stands for the decoding bias, and * is the 1D convolution product. Additionally, we apply a
standard back-propagation algorithm in order to compute the gradient of the model’s error function
with respect to the input parameter values. This procedure can be summarized as:

θ(J (X, X̂))
θW

= x ∗ δh + h ∗ δx̂, (23)

where δh denotes the delta of the hidden state, and δx̂ correspond to the delta of the reconstruction state.
In this formulation, we update the weights via a Stochastic Gradient Descent (SGD) algorithm [18].

Regarding the proposed CNN-SSAE architecture, after each 1D convolutional layer, a max-pooling
layer is utilised. In this way, the latent representation is sub-sampled using constant variables,
by considering the maximum value over certain non-overlapping signal areas. Specifically, in this
formulation a max-pooling layer with sparsity constraints is used, in order to eliminate all non-maximal
values in the non-overlapping regions. In this way, we avoid the phenomenon of having trivial
solutions. In the reconstruction phase, the used sparse representation decreases the average number of
utilised filters, and thus it contributes to the decoding of each sub-region. This procedure forces the
learnt filters to be more generic and representative [55]. Finally, the last layer, which is the classification
layer is chosen to be fully connected, and it is activated with the non-linear Softmax function. Figure 2
illustrates the CNN-SAE architecture’s block diagram.
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Figure 2. Convolutional Neural Network-Stacked Autoencoders (CNN-SAE) Architecture for Wind
Turbine Fault Dection: In this scenario, we exploit a Stacked Autoencoders scheme, using multiple
Convolutional and Max Pooling Layers. According to the basic scheme of the autoencoders, the output
layer of the CNN-SAE architecture, that is, reconstruction layer is approximately equal with the input
layer, while it classifies the learnt representations into the corresponding normal/fault categories.

4. Experimental Evaluation

4.1. Dataset Description

In this study we consider data extracted from the Wind Turbine Fault Detection (wt-fdd) API [20].
Specifically, data were acquired from a 3 MW direct-drive turbine located near the South coast of
Ireland, supplying power to a large manufacturing facility. The acquired measurements correspond
to an 11-month time period, varying from May 2014 until April 2015. The time-stamped operational
SCADA data are separated into 10 min intervals, representing the average of the sensor readings over
that time-frame. Out of the 61 dataset’s features, we use the 29 features, including measurements
of the Wind Energy Converter (WEC) that is related with the operating state of the turbine. Several
characteristic features are the wind speed, rotation, power and bearing temperatures among others.
Additionally, every time the operating state of the turbine is modified, a new time-stamped warning or
alarm message is synthesized. It is assumed that the wind turbine operates in a specific state until the
next status message is generated. However, multiple messages indicate abnormal of faulty operation
of the turbine. Each message is associated with two status categories: the “main status” and the
“sub-status”. A characteristic example of the fault categories is provided in Table 1.

Table 1. Wind Energy Converter Normal/Faulty Data.

Time Information Main Status Sub-Status Description-Code

13 July 2014 15:07:25 0 0 Normal State-The Turbine is in Operational Mode

14 July 2014 12:32:30 80 21 Excitation Fault-Overvoltage DC-link

17 August 2014 17:20:26 62 3 Feeding Fault-Load shedding

14 May 2014 14:41:31 9 3 Generator Heating Fault-Hygrostat Inverter

10 June 2014 00:03:10 60 2 Main Failure Fault : Start Delay

The WEC status data that we utilize in this study include the following categories of
abnormal/faulty measurements:

• Normal State-Turbine in Operation: The turbine in normal operation;



Energies 2020, 13, 2622 10 of 19

• Feeding Fault-Load shedding: Refer to the faults that are related with the power feeding cables of
the turbine;

• Excitation Fault-Overvoltage DC-link: Correspond to the malfunctions that are related with the
generator excitation system of the turbine;

• Generator Heating Fault-Hygrostat Inverter: Refer to the faults that are associated with the
generator’s overheating;

• Main Failure Fault-Start Delay: These faults can be either related with delays regarding the start
operation of the turbine, or with the under-voltage of specific components.

A characteristic example of the data distribution is illustrated in Figure 3, where we demonstrate
the evolution of the anemometer’s Wind Speed and the ambient Control Cabin Temperature under
three categories: the normal state, the feeding fault, and the generator’s heating fault.

(a) Wind Speed (b) Control Cabin Temperature

Figure 3. In this figure two characteristic measurements are illustrated: the Wind Speed and the Control
Cabin Temperature, under the normal operating state and under the two faulty states: the feeding fault
and the generator heating fault.

In all investigated scenarios, we used 147, 081 measurements for the training phase of our deep
feature learning architectures, and 98, 054 for the testing phase. The data were separated for training
and testing, using a 80–20% ratio, by considering random signal permutations.

4.2. Evaluation Metrics

The most significant indicator that quantitatively evaluates the performance of the proposed
architectures is the (Accuracy, AC) metric, formulated as:

AC =
TP + TN

TP + TN + FP + FN
. (24)

In the aforementioned equation (TP), indicates the true positives, which are the anomaly
measurements that are classified as anomalous, (TN) stand for the true negatives, and they correspond
to the normal records that are declared as normal, (FP) indicates the false positives, denoting the
normal measurements that are classified as anomalous, and finally (FN) correspond to the false
negatives, denoting the anomalous measurements that were characterized as normal.

In order to further validate the quality of our models, we select the Area Under the Receiver
Operating Characteristic (ROC) Curve (ROC-AUC) evaluation metric. The ROC-AUC score
determines the degree of discrimination between the variant categories, by measuring the classification
performance per different model categories [56]. The ROC score provides the ratio between the
True Positive Rate (TPR) and the False Positive Rate (FPT), where: TPR = TN

TN+FP
, and FPR = FP

FP+TN
.

The specific curve evaluates the models’ degree of separability among the variant anomalous or normal
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states. Additionally, the scores close to 100% illustrate robust models that can successfully determine
the correct classes. Moreover, we exploit the Precision, Recall, and F1−score metrics defined as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, and F1-score =
2TP

2TP + FP + FN
. (25)

High score on precision metric indicates a lower FPR, that is, less fault-free data that were
incorrectly marked as faulty, and less unnecessary checks on the turbine. On the other hand, high
Recall score indicates low ratio of false negative measurements, and thus less cases of non-event
detection. Concluding, F1-score captures both Precision and Recall metrics into one metric, and thus
provides their harmonic mean value. Finally, the selected loss function, for our multi-class wind-turbine
classification scenario, is the categorical cross-entropy:

CE =
n

∑
i

K

∑
k
−yk

truelog(yk
prediction), (26)

where ytrue stands for the ground truth, and yprediction for the predicted values, while K denotes the
total number of classes.

4.3. LSTM-SAE for Wind Turbine Anomaly Detection

This paragraph investigates the classification accuracy and performance of our LSTM-SAE
architecture when applied to the problem of semi-supervised anomaly detection of wt-fdd dataset’s
features. Specifically, we examine the performance of our LSTM-SAE scheme towards a multi-class (i.e.,
five-category) classification problem. For this purpose, we deployed the architecture that is provided
in Table 2, considering 4 LSTM layers composed of 50 hidden units, followed by a Time-Distributed
layer, and a Dense (i.e., fully-connected) layer. Regarding the output layer of the LSTM-SAE network
which is a Time-Distributed,is approximately equal to the input layer. The classification layer is a
Dense layer activated with the Softmax function and is responsible for assigning the corresponding
probabilities to each class and provide the classification outcomes. The output shape indicates that
each input 29-th value entry vector is directed into a 5-th dimension vector that corresponds to the
probabilities of each class. The maximum value of these probabilities indicates the corresponding class.
The number of the hyper-parameters where evaluated with a cross-validation approach, in which we
have selected the best possible parameters for each architecture. Finally, the total number of trainable
parameters for the LSTM-SAE network are 78, 229.

Table 2. Five-class Wind Status Classification LSTM-SAE Architecture.

Layer Output Shape Parameters

Input (1, 29) 0

LSTM (1, 50) 16.000

LSTM (1, 50) 20.200

Repeat Vector (1, 50) 0

LSTM (1, 50) 20.200

LSTM (1, 50) 20.200

Output (Time Distributed) (1, 29) 1.479

Classification (Dense) (1, 5) 150

In this formulation, we set the batch-size parameter into 64, after a cross validation procedure,
while the number of internal iterations was set to 100. Figure 4 illustrates the evolution of the loss
function of the LSTM-SAE architecture under different batch sizes. As we may observe, the lowest
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value of the Loss function for the validation set (i.e., 0.039) is achieved when we set the batch size
parameter into 64.

Figure 4. Loss Function vs. Batch Size: We observe that the lowest value of the Mean Squared Error
(MSE) Loss function on the validation set (0.039) is achieved when we set the batch size into 64.

Figure 5 illustrates the evolution of the Loss Function and classification accuracy in the training
and validation sets. As we may observe, the Loss converges into a stationary value only within
few epochs for both training and validation sets, achieving its lowest value of 0.038 and 0.039 for
training and validation respectively. Additionally,after a small number of epochs, the classification
accuracy in both the training and validation phases stabilizes into a stationary value, validating the
high performance of the proposed scheme. Regarding the training set, the proposed LSTM-SAE system
achieves 83.38% classification accuracy, while for the validation set the best classification accuracy
within the interval of 100 epochs is 83.05%.

(a) Classification Accuracy (b) Loss Functions

Figure 5. LSTM-SAE Architecture: Five-Status Classification Performance. In this figure, we illustrate
the evolution of the Loss function (i.e., MSE), and the Classification Accuracy on Training and Validation
sets. We observe, that after only few running iterations, the proposed LSTM-SAE architecture stabilizes
into its fixed values for both training and testing sets, and for both evaluation metrics.

Figure 6 provides the AUC-ROC curves for the classification among the different statuses of the
wind turbine. The observed performance for detecting among the different fault/normal categories
using the proposed LSTM-SAE architecture is: AUC-Feeding Fault: 94%, AUC-Excitation Fault:
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93%, AUC-Generator Heating Fault: 93%, AUC-Main Failure: 96%, and finally AUC-Normal: 97%.
Consequently, we observe that the proposed LSTM-SAE technique provides high quality estimation of
each separate category.

Figure 6. In this plot we provide the Receiver Operating Characteristic (ROC) Curves for the
5 category multiclass fault detection problem, exploiting the LSTM-SAE scheme. Specifically, for
the different categories our proposed deep feature learning/classification scheme achieves the
following performance: Area Under Curve (AUC)-Feeding Fault: 0.94, AUC-Excitation Fault: 0.93,
AUC-Generator Heating Fault: 0.93, AUC-Main Failure: 0.96, and finally AUC-Normal: 0.97. Since all
ROC Curves are over 90%, we are able to justify our assumption that the proposed LSTM-SAE scheme
provides highly accurate classification results.

Additionally, Table 3 illustrates the confusion matrix towards the five-fault category classification
scenario. We observe the the proposed LSTM-SAE architecture provides high performance of the
detection rate among the ground-truth and predicted categories. Additionally, the Precision metric for
our LSTM-SAE scheme achieves: 91% for the Normal State, 72% for the Feeding Fault, 65% for the
Generator Fault, 97% for the Excitation Fault, and finally 91% for the Main Failure fault.

Table 3. Multiclass LSTM-SAE Confusion Matrix.

Ground Truth vs. Prediction Normal State Feed. Fault Gen. Heat. Fault Exc. Fault Main Failure

Normal State 14,521 504 2407 280 1752

Feed. Fault 560 8185 10368 227 221

Gen.Heat.Fault 580 2484 16,480 155 32

Exc.Fault 192 182 591 18,699 0

Main Failure Fault 29 0 80 0 19,525

4.3.1. CNN-SAE for Wind Turbine Anomaly Detection

This paragraph investigates the performance of our second proposed scheme adhering to a
Stacked Autoencoders framework with Convolutional hidden layers (CNN-SAE). We examine the
performance of the proposed CNN-SAE scheme towards the multi-class wind turbine classification
problem. For this purpose, we consider a sequence of Convolutional, Max-Pooling and Upsampling
layers that build the encoder and the decoder, followed by a Dense layer using the Softmax activation
function, in order to perform the final discrimination (i.e., classification) into the corresponding
probabilities. The proposed CNN-SAE architecture is summarized in Table 4.
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Table 4. Five-class Wind Status Classification CNN-SAE Architecture

Layer Output Shape Parameters

Input (1, 29) 0

Conv1D (27, 64) 256

Max Pooling1D (13, 64) 0

Conv1D (11, 32) 6.176

Max Pooling1D (5, 32) 0

Conv1D (3, 32) 3.104

Upsampling1D (6, 32) 0

Conv1D (4, 64) 6.208

Upsampling1D (8, 64) 0

Flatten (512) 0

Dense (29, 1) 14.877

Classification (Dense) (5, 1) 150

Respectively, in this experimental setup the batch-size was fixed into 64, adhering to a
cross-validation process. The number of internal epochs for the algorithmic process to converge
was set to 100. The total number of trainable parameters is 30.771. Figure 7 demonstrates the evolution
of the loss function of the CNN-SAE architecture under different batch size parameters. As we may
notice, the lowest value of the Loss function for the validation set (i.e., 0.0126) is achieved when we set
the batch size parameter into 64.

Figure 7. CNN-SAE: Loss Function vs. Batch Size: The lowest MSE Loss function value on the
validation set (0.0126) is achieved when we set the batch size value into 64.

In Figure 8 we depict the converge behaviour of the Loss function (i.e., Mean Squared Error)
and the Classification Accuracy over the training and validation sets. Specifically, the proposed
CNN-LSTM deep feature learning architecture achieves a classification accuracy of 94.1% for the
training set, and 93.4% for the validation set, both within the interval of 100 running epochs, while
the loss function reaches the lowest value of 0.1004, and 0.126, for the training and the validation sets
respectively within the same epochs interval.
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(a) Classification Accuracy (b) Loss Functions

Figure 8. CNN-SAE Architecture: Five-Status Classification Performance.

Figure 9 provides the AUC-ROC curve for the classification among the different status of the wind
turbine. Specifically, Normal Status class achieves 97.9%, Feeding Fault has a ROC score of 94.3%,
Generator Heating Fault reaches a 94.20% ROC score, Excitation Fault achieves a ROC score of 99.9%,
and finally Main Failure class has 99.8% AUC-ROC score. All aforementioned values validate our
assumption that the proposed CNN-LSTM architecture provides accurately classification results to
the proper Normal/Faulty state. Consequently, the proposed approach is able to detect with high
sensitivity the correct state for each testing measurement.

Figure 9. AUC-ROC Curve of Multiclass CNN-SAE Architecture: In this figure we illustrate the
AUC-ROC Curves for the five fault detection of the wind turbine dataset. In further detail, the proposed
CNN-LSTM architecture achieves: 97.9% for the Normal State, 94.3% for the Feeding Fault, 94.20% for
the Generator Heating Fault, 99.9% for the Excitation Fault, and finally 99.8% for the Main Failure Fault.

Table 5 depicts the confusion matrix of the five fault state detection of the wind turbine dataset.
Our CNN-LSTM architecture demonstrates highly accurately results among the different classification
categories, by simultaneously predicting very few false positives measurements. Moreover, regarding
the Precision metrics of the CNN-LSTM architecture, for the Normal State our proposed scheme
achieves 90%, for the Feeding Fault State 91%, for the Generator Fault category 77%, for the Excitation
Fault 99%, and for the Main Failure Fault 99%. The complete evaluation metrics are summarized
in Table 6.
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Table 5. Multiclass CNN-SAE Confusion Matrix.

Ground Truth vs. Prediction Normal State Feed. Fault Gen. Heat. Fault Exc. Fault Main Failure

Normal State 18.057 296 801 43 202

Feed. Fault 278 9.968 9.251 77 5

Gen.Heat.Fault 390 2.770 16.525 74 1

Exc.Fault 0 266 0 19.401 0

Main Failure Fault 1258 0 0 0 18.391

Table 6. Quantitative evaluation of the developed methods.

Methods Stacked AE LSTM-SAE CNN-SAE

Metrics Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score

Normal Status 0.88 0.86 0.87 0.91 0.75 0.82 0.90 0.93 0.92

Feeding Fault 0.75 0.51 0.61 0.72 0.42 0.53 0.91 0.33 0.49

Generator Fault 0.57 0.84 0.70 0.65 0.90 0.66 0.77 0.84 0.71

Excitation Fault 0.98 0.99 0.98 0.97 0.95 0.96 0.99 0.99 0.99

Main Failure Fault 0.93 0.99 0.96 0.91 0.99 0.95 0.99 0.94 0.96

4.3.2. Comparison of the Developed Techniques

In the following paragraphs we compare our proposed Stacked Autoencoders architectures with
ultimate goal to determine the best possible scheme for the wind turbine fault detection problem.
As a baseline we consider the traditional form of a SAE architecture, and thus we compare the
performance of the dense-hidden layer SAE architecture, with our proposed sophisticated scenarios
of the LSTM-SAE and the CNN-SAE. Additionally, we validate our assumption, that our proposed
deep feature learning schemes provide improved performance over the simplistic dense SAE layer
scenario. Moreover, the proposed architectures solve the problem of semi-supervised wind turbine
fault detection, by learning representative features through the proposed deep learning architectures.
Consequently, fair comparison with recent literature approaches that are reported on the related work
section cannot be achieved, since these techniques rely either on binary classification tasks [2], or use
probability distributions and thresholding operators [14,32].

Table 6 provides the evaluation metrics of the Stacked Autoencoders technique with Dense Layers
and our proposed LSTM-SAE and CNN-SAE architectures. Regarding the SAE scheme, we chose a
deep learning scheme with 4 hidden layers, activated with the RELU function [57]. The final layer was
activated with the Softmax function and thus it assigns the corresponding probabilities to the different
states. To perform a fair comparison with the other approaches, we preserve the same parameters
with the proposed two architectures, while we fix the batch size parameter into 64, and the number of
internal epochs into 100.

We observe that our proposed architectures achieve highly accurate results, and in the majority of
cases over 90%. Regarding the Precision score, the LSTM-SAE architecture achieves its highest value of
91% for the Normal State, while the CNN-SAE scheme achieves the highest values of 91%, 77%, 99%,
and 99%, for the Feeding Fault, Generator Fault, Excitation Fault and Main Failure Fault States. In
terms of the Precision metric both LSTM-SAE and CNN-SAE architectures outperforms the simplistic
scenario of SAE architecture with Dense hidden layers. Consequently, both architectures present high
performance in predicting the faulty/normal class of the WT-dataset’s measurements.

5. Conclusions

This paper investigates the performance of two efficient architectures that learn deep and
representative features in order to tackle the wind turbine anomaly detection problem. Specifically,
Long Short Term Memory-Stacked Autoencoders, and Convolutional Neural Network-Stacked
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Autoencoders were trained on multivariate time-series data to classify between fault or normal states.
The proposed Stacked Autoencoders techniques present high-quality results regarding the classification
accuracy, the reduction of the loss function reconstruction error, and the evaluation metrics. One of
our main future targets is to extend these methodologies towards unsupervised anomaly detection,
and additionally towards the condition monitoring of other Critical Energy Infrastructures.
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