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Abstract—Neural networks are widely used as a model for
classification in a large variety of tasks. Typically, a learnable
transformation (i.e. the classifier) is placed at the end of such
models returning a value for each class used for classification.
This transformation plays an important role in determining how
the generated features change during the learning process. In
this work, we argue that this transformation not only can be
fixed (i.e. set as non-trainable) with no loss of accuracy and
with a reduction in memory usage, but it can also be used
to learn stationary and maximally separated embeddings. We
show that the stationarity of the embedding and its maximal
separated representation can be theoretically justified by setting
the weights of the fixed classifier to values taken from the
coordinate vertices of the three regular polytopes available in
Rd, namely: the d-Simplex, the d-Cube and the d-Orthoplex.
These regular polytopes have the maximal amount of symmetry
that can be exploited to generate stationary features angularly
centered around their corresponding fixed weights. Our approach
improves and broadens the concept of a fixed classifier, recently
proposed in [1], to a larger class of fixed classifier models. Experi-
mental results confirm the theoretical analysis, the generalization
capability, the faster convergence and the improved performance
of the proposed method. Code will be publicly available.

Index Terms—Deep Neural Networks, Fixed classifiers, Inter-
nal feature representation.

I. INTRODUCTION

DEEP Convolutional Neural Networks (DCNNs) have
achieved state-of-the-art performance on a variety of

tasks [2], [3] and have revolutionized Computer Vision in both
classification [4], [5] and representation [6], [7]. In DCNNs,
both representation and classification are typically jointly
learned in a single network. The classification layer placed
at the end of such models transforms the d-dimension of the
network internal feature representation to the K-dimension of
the output class probabilities. Despite the large number of
trainable parameters that this layer adds to the model (i.e.
d×K), it has been verified that its removal only causes a slight
increase in error [8]. Moreover, the most recent architectures
tend to avoid the use of fully connected layers [9] [10] [11].
It is also well known that DCNNs can be trained to perform
metric learning without the explicit use of a classification layer
[12] [13] [14]. In particular, it has been shown that excluding
from learning the parameters of the classification layer causes
little or no decline in performance while allowing a reduction
in the number of trainable parameters [1]. Fixed classifiers also
have an important role in the theoretical convergence analysis
of training models with batch-norm [15]. Very recently it has
been shown that DCNNs with a fixed classifier and batch-
norm in each layer establish a principle of equivalence between
different learning rate schedules [16].

MICC, Media Integration and Communication Center, University of Flo-
rence, Dipartimento di Ingegneria dell’Informazione Firenze, Italy.

DCNN

𝐟

𝐰𝑖

DCNN

𝐟

𝐰𝑖

DCNN

𝐟

𝐰𝑖

ℝ𝑑 ℝ𝑑 ℝ𝑑

Fig. 1. Regular Polytope Networks (RePoNet). The fixed classifiers derived
from the three regular polytopes available in Rd with d ≥ 5 are shown.
From left: the d-Simplex, the d-Cube and the d-Orthoplex fixed classifier.
The trainable parameters wi of the classifier are replaced with fixed values
taken from the coordinate vertices of a regular polytope (shown in red).

All these works seem to suggest that the final fully con-
nected layer used for classification is somewhat redundant and
does not have a primary role in learning and generalization.
In this paper we show that a special set of fixed classifica-
tion layers has a key role in modeling the internal feature
representation of DCNNs, while ensuring little or no loss in
classification accuracy and a significant reduction in memory
usage.

In DCNNs the internal feature representation for an input
sample is the feature vector f generated by the penultimate
layer, while the last layer (i.e. the classifier) outputs score
values according to the inner product as:

zi = w>i · f (1)

for each class i, where wi is the weight vector of the classifier
for the class i. To evaluate the loss, the scores are further
normalized into probabilities via the softmax function [17].
Since the values of zi can be also expressed as zi = w>i · f =
||wi|| ||f || cos(θ), where θ is the angle between wi and f , the
score for the correct label with respect to the other labels is
obtained by optimizing the length of the vectors ||wi||, ||f ||
and the angle θ they are forming. This simple formulation of
the final classifier provides the intuitive explanation of how
feature vector directions and weight vector directions align
simultaneously with each other at training time so that their
average angle is made as small as possible. If the parameters
wi of the classifier in Eq. 1 are fixed (i.e. set as non-
trainable), only the feature vector directions can align toward
the classifier weight vector directions and not the opposite.
Therefore, weights can be regarded as fixed angular references
to which features align.
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Fig. 2. Feature learning on the MNIST dataset in a 2D embedding space. Fig. (a) and Fig. (c) show the 2D features learned by RePoNet and by a standard
trainable classifier respectively. Fig. (b) and Fig. (d) show the training evolution of the classifier weights (dashed) and their corresponding class feature means
(solid) respectively. Both are expressed according to their angles. Although the two methods achieve the same classification accuracy, features in the proposed
method are both stationary and maximally separated.

According to this, we obtain a precise result on the spatio-
temporal statistical properties of the generated features during
the learning phase. Supported by the empirical evidence in [1]
we show that not only the final classifier of a DCNN can be set
as non-trainable with no loss of accuracy and with a significant
reduction in memory usage, but that an appropriate set of
values assigned to its weights allows learning a maximally
separated and strictly stationary embedding while training.
That is, the features generated by the Stochastic Gradient
Descent (SGD) optimization have constant mean and are angu-
larly centered around their corresponding fixed class weights.
Constant known mean implies that features cannot have non-
constant trends while learning. Maximally separated features
and their stationarity are obtained by setting the classifier
weights according to values following a highly symmetrical
configuration in the embedding space.

DCNN models with trainable classifiers are typically con-
vergent and therefore, after a sufficient learning time has
elapsed, some form of stationarity in the learned features can
still be achieved. However, until that time, it is not possible
to know where the features will be projected by the learned
model in the embedding space. An advantage of the approach
proposed in this paper is that it allows to define (and therefore
to know in advance) where the features will be projected
before starting the learning process.

Our result can be understood by looking at the basic
functionality of the final classifier in a DCNN. The main role
of a trainable classifier is to dynamically adjust the decision
boundaries to learn class feature representations. When the
classifier is set as non-trainable this dynamic adjustment capa-
bility is no longer available and it is automatically demanded
to all the previous layers. Specifically, the work [1] reports
empirical evidence that the expressive power of DCNN models
is large enough to account for the missing dynamic adjustment
capability of the classifier. We provide more systematic empir-
ical evidence confirming and broadening the general validity
of DCNNs with fixed classifiers (Sec. V-A).

We show that our approach can be theoretically justified and
easily implemented by setting the classifier weights to values
taken from the coordinate vertices of a regular polytope in the
embedding space. Regular polytopes are the generalization in
any number of dimensions of regular polygons and regular
polyhedra (i.e. Platonic Solids). Although there are infinite

regular polygons in R2 and 5 regular polyhedra in R3, there
are only three regular polytopes in Rd with d ≥ 5, namely the
d-Simplex, the d-Cube and the d-Orthoplex. Having different
symmetry, geometry and topology, each regular polytope will
reflect its properties into the classifier and the embedding space
which it defines. Fig. 1 illustrates the three basic architectures
defined by the proposed approach termed Regular Polytope
Networks (RePoNet). Fig. 2 provides a first glance at our
main result in a 2D embedding space. Specifically, the main
evidence from Fig. 2(a) and 2(b) is that the features learned
by RePoNet remain aligned with their corresponding fixed
weights and maximally exploit the available representation
space directly from the beginning of the training phase.

We apply our method to multiple vision datasets showing
that it is possible to generate stationary and maximally sepa-
rated features without affecting the generalization performance
of DCNN models and with a significant reduction in GPU
memory usage at training time. A preliminary exploration of
this work was presented in [18], [19].

II. RELATED WORK

Fixed Classifier. Empirical evidence shows that convolu-
tional neural networks with a fixed classification layer (i.e.
not subject to learning) initialized by random numbers does
not worsen the performance on the CIFAR-10 dataset [20]. A
recent paper [1] explores in more detail the idea of excluding
from learning the parameters wi in Eq.1. The work shows that
a fixed classifier causes little or no reduction in classification
performance for common datasets while allowing a significant
reduction in trainable parameters, especially when the number
of classes is large. Setting the last layer as not trainable also
reduces the computational complexity for training as well as
the communication cost in distributed learning. The paper
in question sets the classifier with the coordinate vertices of
orthogonal vectors taken from the columns of the Hadamard1

matrix and does not investigate on the internal feature repre-
sentation. A major limitation of this method is that, when the
number of classes is higher than the dimension of the feature
space, it is not possible to have mutually orthogonal columns.
As a consequence some of the classes are constrained to lie in
a common subspace which causes a reduction in classification

1The Hadamard matrix is a square matrix whose entries are either +1 or
−1 and whose rows are mutually orthogonal.
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performance. In our solution, we improve and generalize this
work by finding a novel set of unique directions overcoming
the limitations of the Hadamard matrix.

The work [21] trains a neural network according to the
triplet loss with a set of fixed vertices on a hyper-sphere (i.e.
a sphere lattice). The work aims at learning a function that
maps real-valued vectors to a uniform distribution over a d-
dimensional sphere.

As shown in [16], fixed classifiers are also related to
BatchNorm [15] and learning rate schedules. BatchNorm
parametrizes the weights of a layer to “normalize” its ac-
tivations (i.e. the features), but typically it is not applied
to normalize the outputs of the classifier (i.e. logits). They
show that, with BatchNorm layers and a fixed classifier layer,
training with L2 regularization is equivalent to training with
an exponentially increasing learning rate.

Softmax Angular Optimization. As originally described
in [22], under softmax loss2 the class prediction is largely
determined by the angular similarity since softmax loss can be
factorized, as shown in Eq. 1, into an amplitude component
and an angular component. Several papers have followed this
intuition and proposed to train DCNNs by direct angle opti-
mization [23], [24], [25], [26]. The angle encodes the required
discriminative information for class recognition. The wider the
angles the better the classes are separated from each other
and, accordingly, their representation is more discriminative.
The common idea of these works is to constrain the features
and/or the classifier to be unit normalized. The works [27],
[28] and [26] normalize both features and the classifier weights
thus obtaining an exact optimization of the angle in Eq. 1.
With weight normalization only, label prediction is largely
determined by the angular similarity [22] [24]. This is not only
because Eq. 1 can be e factorized into amplitude and angular
component, but also because decision boundaries between
adjacent classes are determined by their angular bisectors.

Differently from weight normalization, feature normaliza-
tion cannot directly perform angle optimization but encourages
intra-class compactness of learned features [23]. Specifically,
[23] also proposes adding a multiplicative scale parameter after
feature normalization based on the property that increasing
the norm of samples can decrease the softmax loss [26], [29].
Although with a different goal than learning discriminative
features, the work [1], in addition to fixing the classifier,
normalizes both the weights and the features and applies the
multiplicative scale parameter.

In agreement with [30], [1], [23] and [26] we found that
applying the feature normalization and the multiplicative scale
parameter makes optimization hard with general datasets,
having a significant dependence on image quality. According
to this, we follow the work [24] that normalizes the classifier
weights. Normalizing classifier weights typically also includes
setting the classifier biases to zero. As discussed in [26] and
in [29] this encourages well-separated features to have bigger
magnitudes. This avoids features collapsing into the origin,

2The combination of cross-entropy loss and the softmax function at the last
fully connected layer.

making angles between the weights and features a reliable
metric for classification.

As conjectured in [26], if all classes are well-separated,
weight normalization will roughly correspond to computing
the mean of features in each class. The maximal and fixed
separation proposed in this paper further strengthens the con-
jecture, producing features more centered around their fixed
weights as the training process progresses.

Another close related work to ours is [31] in which sepa-
rability of learned features is improved by injecting a single
dynamic virtual negative class into the original softmax. A
virtual class is a class that is active in the classifier but has
no data available from which to learn. Injecting the virtual
class enlarges the inter-class margin and compresses intra-class
distribution by strengthening the decision boundary constraint.
In our case, we can profitably exploit virtual classes when the
number of classes of the fixed classifier does not match the
number of vertices of a regular polytope.

While all the above works impose large angular distances
between the classes, they provide solutions to enforce such
constraint in a local manner without considering global inter-
class separability and intra-class compactness. For this pur-
pose, very recently the works [32], [33] and [34] add a
regularization loss to specifically force the classifier weights
to be far from each other in a global manner. These works
draw inspiration from a well-known problem in physics – the
Thomson problem [35], where given K charges confined to
the surface of a sphere, one seeks to find an arrangement
of the charges which minimizes the total electrostatic energy.
Electrostatic force repels charges each other inversely propor-
tional to their mutual distance. In [32], [33] and [34] global
equiangular features are obtained by adding to the standard
categorical cross-entropy loss a further loss inspired by the
Thomson problem.

In our research, we follow a similar principle for global
separability. We consider that minimal energies are often
concomitant with special geometric configurations of charges
that recall the geometry of Platonic Solids in high dimensional
spaces [36]. We have reported a few preliminary and qualita-
tive results of using Regular Polytope Networks for compact
feature learning in [18], where we have demonstrated that the
angular parameter of the margin loss of [7] can be analytically
determined to maximize feature compactness.

III. MAIN CONTRIBUTIONS:

Our technical contributions can be summarized as follows:
1) We generalize the concept of fixed classifiers and show

they can generate stationary and maximally separated
features at training time with no loss of performance
and in many cases with slightly improved performance.

2) We performed extensive evaluations across a range of
datasets and modern CNN architectures reaching state-
of-the-art performance. We observed faster speed of
convergence and a significant reduction in model pa-
rameters.

3) We further provide a formal characterization of the class
decision boundaries according to the dual relationship
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between regular polytopes and statistically verify the
validity of our method on random permutations of the
labels.

IV. REGULAR POLYTOPES AND MAXIMALLY SEPARATED
STATIONARY EMBEDDINGS

We are basically concerned with the following question:
How should the non-trainable weights of the classifier be
distributed in the embedding space such that they generate
stationary and maximally separated features?

Let X = {(xi, yi)}Ni=1 be the training set containing
N samples, where xi is the raw input to the DCNN and
yi ∈ {1, 2, · · · ,K} is the label of the class that supervises
the output of the DCNN. Then, the cross entropy loss can be
written as:

L = − 1

N

N∑
i=1

log

(
exp(w>yi

fi + byi)∑K
j=1 exp(w

>
j fi + bj)

)
, (2)

where W = {wj}Kj=1 are the classifier weight vectors for
the K classes. Following the discussion in [24] we normalize
the weights and zero the biases (ŵj =

wj

||wj || , bj = 0)
to directly optimize angles, enabling the network to learn
angularly distributed features. Angles therefore encode the
required discriminative information for class recognition and
the wider they are, the better the classes are represented. As
a consequence, the representation in this case is maximally
separated when features are distributed at equal angles maxi-
mizing the available space.

If we further consider the feature vector parametrized by its
unit vector as fi = κi f̂i where κi = ||fi|| and f̂i =

fi
||fi|| , then

Eq.2 can be rewritten as:

L = − 1

N

N∑
i=1

log

(
exp(κiŵ

>
yi
f̂i)∑K

j=1 exp(κiŵ
>
j f̂i)

)
(3)

The equation above can be interpreted as if N realizations
from a set of K von Mises-Fisher distributions with different
concentration parameters κi are passed through the softmax
function. The probability density function of the von Mises-
Fisher distribution for the random d-dimensional unit vector
f̂ is given by: P (f̂ ; ŵ, κ) ∝ exp

(
κŵ>f̂

)
where κ ≥ 0.

Under this parameterization ŵ is the mean direction on the
hypersphere and κ is the concentration parameter. The greater
the value of κ the higher the concentration of the distribution
around the mean direction ŵ. The distribution is unimodal for
κ > 0 and is uniform on the sphere for κ = 0.

As with this formulation each weight vector is the mean
direction of its associated features on the hypersphere, equian-
gular features maximizing the available space can be obtained
by arranging accordingly their corresponding weight vectors
around the origin. This problem is equivalent to distributing
points uniformly on the sphere and is a well-known geometric
problem, called Tammes problem [37] which is a generaliza-
tion of the physic problem firstly addressed by Thomson [35].
In 2D the problem is that of placing K points on a circle so
that they are as far as possible from each other. In this case
the optimal solution is that of placing the points at the vertices
of a regular K-sided polygon. The 3D analogous of regular

TABLE I
NUMBER OF REGULAR POLYTOPES AS DIMENSION d INCREASES.

Dimension d 1 2 3 4 ≥ 5

Number of Regular Polytopes 1 ∞ 5 6 3

polygons are Platonic Solids. However, the five Platonic solids
are not always the unique solutions of the Thomson problem.
In fact, only the tetrahedron, octahedron and the icosahedron
are the unique solutions for K = 4, 6 and 12 respectively. For
K = 8: the cube is not optimal in the sense of the Thomson
problem. This means that the energy stabilizes at a minimum in
configurations that are not symmetric from a geometric point
of view. The unique solution in this case is provided by the
vertices of an irregular polytope [38].

The non geometric symmetry between the locations causes
the global charge to be different from zero. Therefore in
general, when the number of charges is arbitrary, their position
on the sphere cannot reach a configuration for which the global
charge vanishes to zero. A similar argument holds in higher
dimensions for the so called generalized Thomson problem
[36]. According to this, we argue that, the geometric limit
to obtain a zero global charge in the generalized Thomson
problem is equivalent to the impossibility to learn maximally
separated features for an arbitrary number of classes.

However, since classification is not constrained in a specific
dimension as in the case of charges, our approach addresses
this issue by selecting the appropriate dimension of the
embedding space so as to have access to symmetrical fixed
classifiers directly from regular polytopes. In dimensions five
and higher, there are only three ways to do that (See Tab. I) and
they involve the symmetry properties of the three well known
regular polytopes available in any high dimensional spaces
[39]. These three special classes exist in every dimension and
are: the d-Simplex, the d-Cube and the d-Orthoplex. In the
next paragraphs the three fixed classifiers derived from them
are presented.

The d-Simplex Fixed Classifier. In geometry, a simplex
is a generalization of the notion of a triangle or tetrahedron
to arbitrary dimensions. Specifically, a d-Simplex is a d-
dimensional polytope which is the convex hull of its d + 1
vertices. A regular d-Simplex may be constructed from a
regular (d − 1)-Simplex by connecting a new vertex to all
original vertices by the common edge length. According to
this, the weights for this classifier can be computed as:

WS =
{
e1, e2, . . . , ed−1, α

d−1∑
i=1

ei

}
where α = 1−

√
d+1
d and ei with i ∈ {1, 2, . . . , d − 1}

denotes the standard basis in Rd−1. The final weights will
be shifted about the centroid and normalized. The d-Simplex
fixed classifier defined in an embedding space of dimension d
can accommodate a number of classes equal to its number of
vertices:

K = d+ 1. (4)
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This classifier has the largest number of classes that can be
embedded in Rd such that their corresponding class features
are equidistant from each other. It can be shown (see appendix)
that the angle subtended between any pair of weights is equal
to:

θwi,wj = arccos

(
− 1

d

)
∀i, j ∈ {1, 2, . . . ,K} : i 6= j. (5)

The d-Orthoplex Fixed Classifier. This classifier is derived
from the d-Ortohoplex (or Cross-Polytope) regular polytope
that is defined by the convex hull of points, two on each
Cartesian axis of an Euclidean space, that are equidistant from
the origin. The weights for this classifier can therefore be
defined as:

WO = {±e1,±e2, . . . ,±ed}.
Since it has 2d vertices, the derived fixed classifier can
accommodate in its embedding space of dimension d a number
of distinct classes equal to:

K = 2d. (6)

Each vertex is adjacent to other d − 1 vertices and the angle
between adjacent vertices is

θwi,wj =
π

2
∀ i, j ∈ {1, 2, . . . ,K} : j ∈ C(i) (7)

Where each j ∈ C(i) is an adjacent vertex and C is the set of
adjacent vertices defined as C(i) = {j : (i, j) ∈ E}. E is the
set of edges of the graph G = (WO, E). The d-Orthoplex is
the dual polytope of the d-Cube and vice versa (i.e. the normals
of the d-Orthoplex faces correspond to the the directions of
the vertices of the d-Cube).

The d-Cube Fixed Classifier. The d-Cube (or Hypercube)
is the regular polytope formed by taking two congruent parallel
hypercubes of dimension (d−1) and joining pairs of vertices,
so that the distance between them is 1. A d-Cube of dimension
0 is one point. The fixed classifier derived from the d-Cube is
constructed by creating a vertex for each binary number in a
string of d bits. Each vertex is a d-dimensional boolean vector
with binary coordinates −1 or 1. Weights are finally obtained
from the normalized vertices:

WC =

{
w ∈ Rd :

[
− 1√

d
,
1√
d

]d}
.

The d-Cube can accommodate a number of distinct classes
equal to:

K = 2d. (8)

The vertices are connected by an edge whenever the Hamming
distance of their binary numbers is one therefore forming a d-
connected graph. It can be shown (see appendix) that the angle
between a vertex with its adjacent (i.e. connected) vertices is:

θwi,wj
= arccos

(
d− 2

d

)
,∀ i, j ∈ {1, . . . ,K} : j ∈ C(i)

(9)
where C(i) is the set of vertices adjacent to vertex i.

Fig. 3 shows the angle between a weight and its adjacent
weights computed from Eqs. 5, 7 and 9 as the dimension of the

0 5 10 15 20 25 30 35
dimension

0

1
4π

1
2π

3
4π

π

θ

d-Cube

d-Simplex

d-Orthoplex

Fig. 3. The angular space defined by RePoNet classifiers. Curves represent
the angle between a weight and its adjacent weights as the dimension of the
embedding space increases. The angle between class features follows the same
trend.

embedding space increases. Having the largest angle between
the weights, the d-Simplex fixed classifier achieves the best
inter-class separability. However, as the embedding space
dimension increases, its angle tends towards π/2. Therefore,
the larger the dimension is, the more similar it becomes to
the d-Orthoplex classifier. The main difference between the
two classifiers is in their neighbor connectivity. The different
connectivity of the three regular polytope classifiers has a
direct influence on the evaluation of the loss. In the case of
the d-Simplex classifier, all the summed terms in the loss of
Eq. 3 have always comparable magnitudes in a mini batch.

The d-Cube classifier has the most compact feature embed-
ding and the angle between each weight and its d neighbors
decreases as the dimension increases. Due to this, it is the
hardest to optimize.

A. Implementation

Given a classification problem with K classes, the three Re-
PoNet fixed classifiers can be simply instantiated by defining
a non-trainable fully connected layer of dimension d, where d
is computed from Eqs. 4, 6 and 8 as summarized in Tab II.

TABLE II
FEATURE DIMENSION d AS A FUNCTION OF THE NUMBER OF CLASSES K .

RePoNet d-Simplex d-Cube d-Orthoplex

Layer dim. d = K − 1 d = dlog2(K)e d =
⌈
K
2

⌉
In order to accommodate different CNN architectures hav-

ing different convolutional activation output size (e.g., from
the 2048 size of the ResNet50 to the feature size of 10 of the
fixed d-Cube classifier with the 1000 classes of ImageNet), a
middle “junction” linear layer (without ReLu) is required.

B. Exceeding Vertices as Virtual Negative Classes

Except for the d-Simplex that allows to assign all its vertices
for a given number of classes K, for both the d-Cube and
the d-Orthoplex classifiers some of the vertices may be in
excess for a given number of classes. As implied by Eq. 6,
in the case of the d-Orthoplex one vertex remains unassigned
when the number of classes K is odd. In the case of the d-
Cube classifier, due to the exponential dependency in Eq. 8,



6

Fig. 4. Learning with unassigned classes in a 2D embedding space. The
features of the first four digits of the MNIST dataset are learned using a
10-sided regular polygon in which six of the classes are virtual. Unassigned
classes (colored lines inside the shaded region) force a large angular margin
region (shaded region) from which features are pushed out.

a large number of vertices may remain not assigned. For
example, assuming K = 100 the d-Cube fixed classifier has
128 vertices (see Tab. II) and 28 of them are not assigned
to any class. As shown in [31], unassigned classes act as
virtual negative classes forcing a margin around the unassigned
weights without affecting the correctness of softmax based
cross entropy optimization. Virtual negative classes do not
change substantially the objective function of Eq. 3 that can
be rewritten as:

L = − 1

N

N∑
i=1

log

(
exp(κiŵ

>
yi
f̂i)∑K

j=1 exp(κiŵ
>
j f̂i) +

∑KV

j=K+1 exp(κiŵ
>
j f̂i)

)
(10)

where KV is the number of virtual classes (i.e. the exceeding
polytope vertices). Fig. 4 illustrates an example similar to
Fig. 2(a) in which a 10-sided polygon fixed classifier is learned
to classify the first four digits of the MNIST dataset (0, 1, 2 and
3). The remaining six “empty slots” of the classifier are not
assigned to any class data and therefore the classifier acts as
a virtual negative classifier forcing a large margin (the shaded
region) around the virtual class weights (colored lines). This
result generalizes the proposed method to any arbitrary number
of classes.

C. Fixed Classifier Decision Boundaries

In binary-classification, the posterior probabilities obtained
by softmax in Eq.3 are:

p1 =
exp(κŵ>1 f̂)

exp(κŵ>1 f̂) + exp(κŵ>2 f̂)
(11)

p2 =
exp(κŵ>2 f̂)

exp(κŵ>1 f̂) + exp(κŵ>2 f̂)
(12)

where f is the learned feature vector and w1 w2 are the
fixed classifier weights. The predicted label will be assigned
to the class 1 if p1 > p2 and to the class 2 if p1 < p2. By
comparing the two probabilities p1 and p2, κŵ

>
1 f̂ + κŵ>2 f̂

Bisector

Normal of the 
polygon side

Fig. 5. The intuition behind the decision boundaries in RePoNet (10-sided
polygon). The bisector directions (dotted lines), represent the class decision
boundaries. They have the same direction of the normal of the corresponding
polygon side (only one shown for clarity). The decision boundaries form a
regular polygon that is related with the classifier 10-sided polygon according
to duality. For clarity, only one class region is highlighted (shaded region).

determines the classification result. The decision boundary is
therefore κŵ>1 f̂ + κŵ>2 f̂ = 0. Due to weight normalization
the posterior probabilities result in p1 = κ||f̂ ||cos(θ1) and
p2 = κ||f̂ ||cos(θ2) and since p1 and p2 share the same feature
f̂ the equation cos(θ1)−cos(θ2) = 0 is verified at the angular
bisector between w1 and w2. Although the above analysis is
built on binary-class case, it can be generalized to the multi-
class case [24].

In RePoNet angular bisectors define class decision bound-
aries that follow a symmetry similar to that of the regular
polytope defining the classifier. Specifically, the class decision
boundaries and the weights of the classifier are related by
the duality relationship that holds between regular polytopes.
More practically:

• the set of decision boundaries of the d-Simplex classifier
is shaped as a d-Simplex;

• the set of the decision boundaries of the d-Cube classifier
is shaped as a d-Orthoplex;

• the set of the decision boundaries of the d-Orthoplex
classifier is shaped as a d-Cube.

Class decision boundaries are still defined as a regular poly-
tope and the features located within such boundaries are
therefore maximally separated. The basic intuition behind this
result can be better appreciated in 2D exploiting the well
known result that all the regular polygons are self-dual [39].
That is, the normal of each side of a regular polygon is parallel
to the direction from the origin towards the vertex of its dual
polygon. Fig. 5 shows the example introduced in Fig. 4 in
which decision boundaries are highlighted with dotted lines
according to the dual regular polygon. Fig. 6 illustrates the
duality relationship between the weights of the three fixed
classifiers proposed and their decision boundaries in the 3D
embedding space.
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Fig. 6. The RePoNet fixed classifiers decision boundaries in a 3D embedding
space: (a): d-Orthoplex classifier; (b): d-Cube classifier; (c): d-Simplex
classifier. On the left: the regular polytope classifier (light blue); its dual
polytope (grey); a classifier weight w (red) and its edge decision boundaries
v1,v2, . . . (black). On the right: the same entities on the unit sphere. The
yellow region indicates where class features are located (only one class weight
and the corresponding edge decision boundaries are shown for clarity). The
characterization extends to arbitrary dimensions.

V. EXPERIMENTAL RESULTS

We evaluate the correctness (Sec. V-A) and the no loss
of performance of our approach with respect to standard
baselines using trainable and fixed classifiers across a range of
datasets and architectures (Sec. V-B). All the experiments are
conducted with the well known MNIST, FashionMNIST [40],
EMNIST [41], CIFAR-10, CIFAR-100 [42] and ImageNet
(ILSVRC2012) [43] datasets. We chose several common CNN
architectures (i.e. LeNet, VGG, ResNet, DenseNet), as well
as more recent ones (i.e. SeResNeXt50 [44], SkResNeXt50
[45] and EfficientNet [46]) that have shown to improve
performance while maintaining or, in some cases, reducing
computational complexity and model size.
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Fig. 7. Class permutation verification. Average accuracy curves and confi-
dence interval computed from the MNIST, CIFAR-10 and CIFAR-100 datasets
(from top to bottom, respectively) under different random permutations of the
ground truth labels position.

A. Hard Permutations Verification

Since fixed classifiers cannot rely on an adjustable set of
subspaces for class feature representation, we verified if some
permutations are harder than others for our proposed method.
The presence of such hard permutations would preclude the
general applicability of our method. The standard trainable
classifier does not suffer from this problem, when features
cannot be well separated trainable classifiers can rearrange the
feature subspace directions so that the previous convolutional
layers can better disentangle the non-linear interactions be-
tween complex data patterns. Instead, fixed classifiers demand
this capability to all the previous layers.

According to this, we generate random permutations of the
ground truth label positions3 and a new model is learned for
each permuted dataset. Fig. 7 shows the mean and the 95%
confidence interval computed from the accuracy curves of the
learned models. To provide further insight into this analysis,
20 out of 500 accuracy curves computed for each dataset
are also shown. Specifically, the evaluation is performed on
three different datasets with an increasing level of complexity
(i.e MNIST, CIFAR-10 and CIFAR-100). All the models are
trained for 200 epochs to make sure that the models trained
with CIFAR-100 achieve convergence.

In order to address the most severe possible outcomes
that may happen, for this experiment we used the d-Cube
fixed classifier. Being the hardest to optimize, this experiment
can be regarded as a worst case analysis scenario for our
method. As shown in the same figure, the performance is
substantially insensitive to both permutations and datasets. The
average reduction in performance at the end of the training
process is negligible and the confidence intervals reflect the
complexity of the datasets. Although the space of permutations
cannot be exhaustively evaluated even for a small number of
classes, we have achieved proper convergence for the whole
set of 1500 learned models. The experiment took 5 days on a
Nvidia DGX-1.

3This is equivalent to randomly permuting the classifier weight vectors set
W = {wj}Kj=1.
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Fig. 8. The distribution of features learned using a 10-sided regular polygon.
(a): A special permutation of classes is shown in which the MNIST even and
odd digits are placed in the positive and negative half-space of the abscissa
respectively. (b): The features learned using the CIFAR-10 dataset.

On the basis of this evidence, we can conclude that fixing
the classifier (therefore not having access to a set of adjustable
subspaces for class feature representation) does not affect the
expressive power of neural networks. This experiment also
provides a novel and more systematic empirical evidence of
the general applicability and correctness of fixed classifiers
with respect to [1] where only one permutation was tested.

We finally report qualitative results of a learned permuted
dataset. Fig. 8(a) shows features learned in a k-sided polygon
(2d embedding space) on the MNIST dataset. In particular
the model is learned with a special permutation of the labels
(manually selected) that places even and odd digits features
respectively on the positive and negative half space of the
abscissa. Fig. 8(b) shows the features of on CIFAR-10 learned
with a similar 10-sided-polygon. It can be noticed that features
are distributed following the same polygonal pattern shown in
Fig. 8(a).

B. Generalization and Performance Evaluation

Having verified that the order position of the class labels
does not adversely affect the proposed method, in this section
we evaluate the classification performance of RePoNet on
the following datasets: MNIST, EMNIST, FashionMNIST,
CIFAR-10, CIFAR-100 and ImageNet. The RePoNet method
is compared with CNN baselines with learned classifiers
and the fixed classifier method reported in [1], that has
been implemented for different architectures and different
dimensions of the embedding space. Except for the final fixed
classifier all the compared methods have exactly the same
architecture and training settings as the one that RePoNet uses.

1) MNIST and CIFAR: We trained the so called LeNet++
architecture [47] on all the MNIST family datasets. The net-
work is a modification of the LeNet [48] to a deeper and wider
network including parametric rectifier linear units (pReLU)
[49]. For the evaluation on the CIFAR-10 and CIFAR-100
datasets, we further trained VGG [50] with depth 13 and 19,
ResNet50 [11], SeNet [51] and DenseNet169 [52]. Popular
network architectures for ImageNet require modifications to
adapt to the CIFAR 32x32 input size. According to this, our

experiments follow the publicly available implementations4.
We compared all the variants of our approach for each archi-
tecture including trainable classifiers with different dimensions
of the feature space. The mini batch size is 256 for both the
MNIST family datasets and the CIFAR-10/100 datasets. For
the CIFAR datasets, we compared both a “vanilla” learning
setup with no hyperparameters tuning based on the Adam
optimizer (learning rate 0.0005) for the VGG architectures
and a learning setup based on SGD with a specific learning
rate schedule (starting from 0.1 and decreasing by a factor
of 10 after 150 and 250 epochs) for ResNet50, SEnet18 and
DenseNet169 architectures. As hyperparameters tuning is an
integral part of Deep Learning we provided two opposite
learning setup.

Test-set accuracy for this experiment is reported in Tab. III,
IV and V for MNISTs, CIFAR-10 and CIFAR-100, respec-
tively. In addition to the well-known MNIST and FashionM-
nist, we included EMNIST dataset having 47 classes including
lower/upper case letters and digits. This allows to quantify
with a specific dataset and architecture, as in CIFAR-10 and
CIFAR-100, the classification accuracy with a higher number
of classes. Each entry in the tables report the test-set accuracy.
The subscript indicates the specific feature space dimension d
used. The results reveal and confirm that the RePoNet method
achieves comparable classification accuracy of other trainable
classifier models. This evidence is in agreement on all the
combinations of datasets, architectures, number of classes and
feature space dimensions considered. All the RePoNet variants
exhibit similar behavior even in hard combinations such as
the CIFAR-100 dataset in a low dimensional feature space.
For example, the RePoNet d-Cube fixed classifier implemented
with the VGG19 architecture achieves an accuracy of 65.32%
in a d = 7 dimensional feature space. A fully trainable
classifier in a feature space of dimension d = 512 (i.e. two
orders of magnitude larger), achieves a moderate improvement
of about 3% (68.47%). On the other hand, with a significantly
lower feature dimension of d = 50, RePoNet d-Orthoplex
improves the accuracy to 69.76%. All the RePoNet variants
exhibit similar behavior also in the case of more sophisticated
architectures trained with SGD scheduled learning rates to
match state-of-the-art performance. RePoNet classifiers are
both agnostic to architectures and training setup and are able
to improve accuracy similar to trainable classifiers.

Results also show that the Hadamard fixed classifier [1]
does not succeed to learn when the number of classes is larger
than the number of unique weight directions in the embedding
space (i.e. d < K). As expected, this effect is present for
simple datasets as the MNIST digits dataset, however as
reported in [1] Section 4.2 (Possible Caveats) as the number
of classes K increases the effect is less pronounced.

When d≈K or d>K, classification performance is similar.
However, as shown in Fig. 9(a) RePoNet converges faster than
[1], and with the same speed as the trainable baselines. Our
conjecture is that with our symmetrical fixed classifiers, each
term in the loss function tends to have the same magnitude

4https://github.com/bearpaw/pytorch-classification and https://github.com/
kuangliu/pytorch-cifar

https://github.com/bearpaw/pytorch-classification
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
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TABLE III
REPORTED ACCURACY (%) OF THE REPONET METHOD ON MNIST, EMNIST, FASHIONMNIST DATASETS ON DIFFERENT COMBINATIONS OF

ARCHITECTURES AND RELATIVE LEARNED CLASSIFIER BASELINES.

MNIST
(K = 10)

EMNIST
(K = 47)

FASHIONMNIST
(K = 10)

ARCHITECTURE LENET++

RePoNet K-sided-polygon 99.24d=2 72.81d=2 92.48d=2

Hadamard fixed classifier [1] 21.14d=2 4.12d=2 19.89d=2

Learned Classifier 99.21d=2 73.08d=2 92.79d=2

RePoNet d-Cube 99.58d=4 88.12d=6 94.01d=4

Hadamard fixed classifier [1] 41.99d=4 15.12d=6 37.16d=4

Learned Classifier 99.41d=4 86.96d=6 93.94d=4

RePoNet d-Orthoplex 99.66d=5 88.19d=24 94.84d=5

Hadamard fixed classifier [1] 79.34d=5 60.34d=24 74.22d=5

Learned Classifier 99.07d=5 87.66d=24 94.21d=5

RePoNet d-Simplex 99.71d=9 88.89d=46 94.29d=9

Hadamard fixed classifier [1] 99.12d=9 88.48d=46 94.30d=9

Learned classifier 99.41d=9 88.33d=46 94.41d=9

Hadamard fixed classifier [1] 99.54d=512 88.35d=512 94.14d=512

Learned classifier 99.29d=512 88.87d=512 94.28d=512

TABLE IV
REPORTED ACCURACY (%) OF THE REPONET METHOD ON THE CIFAR-10 DATASET ON DIFFERENT COMBINATIONS OF ARCHITECTURES AND RELATIVE

BASELINES.

CIFAR-10 (K = 10)

ARCHITECTURE VGG13 VGG19 RESNET50 SENET18 DENSENET169

Training hyperparameters ADAM ADAM SGD SGD SGD

RePoNet K-sided-polygon 90.79d=2 91.54d=2 92.78d=2 92.63d=2 92.74d=2

Hadamard fixed classifier [1] 19.45d=2 19.19d=2 19.69d=2 19.77d=2 19.76d=2

Learned classifier 90.41d=2 91.17d=2 93.15d=2 93.25d=2 92.89d=2

RePoNet d-Cube 92.26d=4 92.58d=4 94.86d=4 94.96d=4 93.94d=4

Hadamard fixed classifier [1] 37.19d=4 36.95d=4 37.89d=4 38.05d=4 38.12d=4

Learned classifier 92.14d=4 92.21d=4 95.03d=4 94.95d=4 94.97d=4

RePoNet d-Orthoplex 92.51d=5 92.47d=5 95.25d=5 95.05d=5 95.16d=5

Hadamard fixed classifier [1] 73.77d=5 72.46d=5 75.99d=5 75.95d=5 75.73d=5

Learned classifier 92.28d=5 92.21d=5 95.18d=5 95.08d=5 95.41d=5

RePoNet d-Simplex 92.71d=9 92.59d=9 95.66d=9 95.36d=9 95.32d=9

Hadamard fixed classifier [1] 92.03d=9 92.37d=9 95.53d=9 95.25d=9 94.92d=9

Learned classifier 91.89d=9 92.60d=9 95.08d=9 95.20d=9 95.32d=9

Hadamard fixed classifier [1] 90.11d=512 88.32d=512 95.36d=512 95.49d=512 95.68d=512

Learned classifier 92.34d=512 92.42d=512 95.53d=512 95.26d=512 95.68d=512

centered around the mean of the distribution (i.e. the von
Mises-Fisher distribution is similar to the Normal distribution)
and therefore the average computed in the loss is a good
estimator. Instead, in the Hadamard classifier the terms may
have different magnitudes and “important” errors in the loss
may not be taken into account correctly by simple averaging.

2) ImageNet: Finally, we evaluated our method on the
1000 object category classification problem defined by the Im-
ageNet dataset. This dataset consists of a 1.2M image training
set and a 100k image test set. We compared all the variants
of our approach on different combinations of architectures
and their relative trainable classifiers. The comparison also

includes the Hadamard classifier.
Experiments have been conducted in two different config-

urations of the training hyperparameters. First, we performed
experiments using the Adam optimizer and simple augmenta-
tion based on random cropping and horizontal flipping on well-
established networks such as ResNet50 [11] and DenseNet169
[52]. The learning rate is automatically adjusted when a
plateau in model performance is detected. We trained for 250
epochs with batch size 64 with an initial learning rate of
0.0005. With this configuration, we aim to evaluate our method
without performing any specific hyperparameter optimization
or exploiting large computational resources. Second, we eval-



10

TABLE V
REPORTED ACCURACY (%) OF THE REPONET METHOD ON THE CIFAR-100 DATASET ON DIFFERENT COMBINATIONS OF ARCHITECTURES AND

RELATIVE BASELINES.

CIFAR-100 (K = 100)

ARCHITECTURE VGG13 VGG19 RESNET50 SENET18 DENSENET169

Training hyperparameters ADAM ADAM SGD SGD SGD

RePoNet K-sided-polygon 36.22d=2 37.65d=2 33.39d=2 35.26d=2 30.04d=2

Hadamard fixed classifier [1] 1.75d=2 1.75d=2 1.61d=2 1.80d=2 1.64d=2

Learned classifier 37.56d=2 35.83d=2 33.30d=2 40.57d=2 32.87d=2

RePoNet d-Cube 64.35d=7 65.32d=7 67.27d=7 69.38d=7 68.99d=7

Hadamard fixed classifier [1] 5.96d=7 5.52d=7 5.91d=7 6.27d=7 6.08d=7

Learned classifier 64.11d=7 65.29d=7 74.96d=7 75.29d=7 75.51d=7

RePoNet d-Orthoplex 68.78d=50 69.76d=50 78.23d=50 77.24d=50 79.41d=50

Hadamard fixed classifier [1] 43.88d=50 43.89d=50 50.33d=50 49.56d=50 50.65d=50

Learned classifier 68.13d=50 68.41d=50 78.22d=50 77.15d=50 78.83d=50

RePoNet d-Simplex 68.61d=99 68.69d=99 79.02d=99 78.20d=99 80.01d=99

Hadamard fixed classifier [1] 67.23d=99 67.18d=99 78.82d=99 77.21d=99 79.41d=99

Learned classifier 68.15d=99 68.87d=99 78.58d=99 77.42d=99 79.05d=99

Hadamard fixed classifier [1] 63.16d=512 64.46d=512 78.78d=512 77.94d=512 79.44d=512

Learned classifier 68.56d=512 68.47d=512 77.96d=512 77.63d=512 79.63d=512

uated our method with more sophisticated CNN architectures,
namely SKresNeXt, SEresNeXt, and EfficientNet with related
training hyperparameters. With this configuration, the aim
is to evaluate whether our method can reach state-of-the-art
performance. The SKresNeXt and SEresNeXt architectures
integrate the SE and SK blocks, [51] and [53] respectively,
with the ResNeXt architecture [54]. The benefit of these
variants is to maintain computational complexity and model
size similar to the SEnet and SKnet architectures while further
improving performance. The third architecture, EfficientNet
[46], achieves state-of-the-art performance using significantly
fewer parameters than other state-of-the-art models. As these
architectures typically require a large effort to tune the training
hyperparameters, we trained our method on top of these
models following the settings reported in the original papers.
Specifically, we train EfficentNet-B2 following [46]: RMSProp
optimizer with decay 0.9 and momentum 0.9; batch norm mo-
mentum 0.99; initial learning rate 0.256 that decays by 0.97 ev-
ery 2.4 epochs; weight decay 1e-5. Analogously, SKresNeXt50
and SEresNeXt50 are trained following the ResNeXt50 [54]:
SGD optimizer, weight decay 0.0001; momentum 0.9; initial
learning rate of 0.1, divided by 10 for three times using a
specific schedule reported in the paper. For all the three models
we used automated data augmentation techniques from [55]
(RandAugment) with distortion magnitude 7. SeResNeXt50
and SkResNeXt50 were trained for 250 epochs with 192 batch
size. EfficientNet-B2 was trained for 450 epochs with 120
batch size. Our evaluation is based on the pytorch-image-
models5 repository.

Tab. VI summarizes our results. As can be clearly no-
ticed, except for the d-Cube there is no substantial difference
between the performance of our fixed classifiers and the

5https://github.com/rwightman/pytorch-image-models

learned classifiers. This holds also in the case of the learned
classifiers in their original architecture implementation (shown
in the bottom line of the Table). The table also shows that
RePoNet accuracy is comparable with the Hadamard fixed
classifier [1]. As in the cases of CIFAR-10 and CIFAR-100,
also with ImageNet the accuracy of the d-Cube is lower
than the corresponding learned classifiers. We argue this is
mainly due to the difficulty of performing optimization in
the d = 10 dimensional space due to the fact that the angle
between each class weight vector and its d adjacent weight
vectors approaches to zero as the dimension increases (Fig. 3).
However, the d-Cube classifier shows the largest relative
improvement as the representational power of the architecture
increases (left to right). For example, the accuracy of the
d-Cube-EFFICIENTNET-B2 fixed classifier is 12.18 percentage
points larger than the d-Cube-RESNET50 (i.e. 75.62−63.44 =
12.18). This relative performance improvement is substantially
higher than that of the corresponding learned classifier (i.e.
77.42 − 68.82 = 8.6). This result is quantitatively consistent
with the underlying assumption of this paper and provides
further support on the fact that the adjustable capability of
the final classifier can be successfully demanded to previous
layers. The other two RePoNet variants substantially achieve
the same accuracy of the learned classifiers, irrespective
whether they have similar (d = {10, 500, 999}) or higher
feature space dimension (d = {2048, 1669, 1408}) as in
their original architecture implementations. They do not show
sensible relative performance improvement with increasing
representational power of the network. More importantly, both
the d-Simplex and the d-Orthoplex classifiers reach state-of-
the-art accuracy (around 80%) when combined with compet-
itive architectures. This confirms the validity and the absence
of a loss of generalization of our method.

https://github.com/rwightman/pytorch-image-models
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TABLE VI
REPORTED ACCURACY (%) OF THE REPONET METHOD ON THE IMAGENET DATASET ON DIFFERENT COMBINATIONS OF ARCHITECTURES AND RELATIVE

CLASSIFIER BASELINES.

ARCHITECTURE RESNET50 DENSENET169 SERESNEXT50 SKRESNEXT50 EFFICIENTNET-B2
Training hyperparameters ADAM ADAM SGD+RandAug SGD+RandAug RMSPROP+RandAug

RePoNet d-Cube 63.44d=10 63.63d=10 73.58d=10 74.80d=10 75.62d=10

Learned classifier 68.82d=10 68.03d=10 76.66d=10 77.49d=10 77.42d=10

RePoNet d-Orthoplex 73.71d=500 74.20d=500 79.95d=500 79.66d=500 80.07d=500

Learned classifier 73.67d=500 73.70d=500 77.60d=500 80.18d=500 79.27d=500

RePoNet d-Simplex 74.13d=999 74.03d=999 80.25d=999 80.17d=999 80.61d=999

Learned classifier 73.96d=999 73.37d=999 77.99d=999 80.08d=999 79.36d=999

Hadamard fixed classifier [1] 74.07d=2048 73.95d=1669 80.25d=2048 80.19d=2048 79.74d=1408

Learned classifier 74.11d=2048 74.01d=1669 79.95d=2048 80.09d=2048 80.57d=1408

Finally, Tab. VII shows the total number of parameters
for each network in comparison with their original learned
classifiers (i.e. bottom line in Tab. VI). The d-Orthoplex-
EFFICINETNET-B2 fixed classifier saves 7.74% of the network
parameters while achieving the same accuracy (around 80%).
It is worth to notice that the d-Cube-EFFICINETNET-B2 with
7.7M of parameters (15.31% savings) achieves similar accu-
racy of a vanilla ResNet50 baseline (i.e. around 75% accuracy)
having 25.5M of parameters.

C. Training Time

The time it takes to train a neural network model to address
a classification problem is typically considered as the product
of the training time per epoch and the number of epochs which
need to be performed to reach the desired level of accuracy
[56]. Although in our case the training time per epoch is
lower (the weights of the fixed classifier do not require back-
propagation), it has a negligible effect due to the number of
epochs required to reach a reasonable desired level of accuracy.
In Fig. 9 and Fig. 10 we report the classification accuracy over
the epochs for the two different configurations of the training
hyperparameters we evaluated.

Specifically, Fig. 9(a)(top) and Fig. 9(a)(bottom) show the
training error and the classification accuracy, respectively, over
the epochs. The curves are obtained on the CIFAR100 dataset,
using the VGG19 architecture and training is performed ac-
cording to the Adam stochastic optimization. Fig. 9(b) shows
the accuracy curves of the proposed three fixed classifiers

TABLE VII
THE NUMBER OF PARAMETERS OF EACH NETWORK AND THE

PERCENTAGE (%) OF SAVED PARAMETERS ON THE IMAGENET DATASET (d
INDICATES THE FEATURE DIMENSION).

SAVED PARAMS ( % )

ARCHITECTURE PARAM# d-CUBE d-ORTHOPLEX d-SIMPLEX

DenseNet169 14.15M 11.65d=10 5.89d=500 0.02d=999

ResNet50 25.56M 7.94d=10 4.01d=500 0.01d=999

SeResNeXt50 27.56M 7.36d=10 3.72d=500 0.01d=999

SkResNeXt50 27.50M 7.38d=10 3.73d=500 0.01d=999

EfficientNet-B2 9.11M 15.31d=10 7.74d=500 0.03d=999

and the best performing learned classifier (i.e. d = 999).
The curves are obtained on the ImageNet dataset with the
DenseNet169 architecture and learned according to the Adam
optimizer. As can be noticed, d-Simplex and d-Orthoplex
classifiers have lower or equal time to reach any desired level
of accuracy than the learned and Hadamard fixed classifiers.
The d-Cube classifier is the slowest and does not reach a
comparable final performance. This is due to the different
feature dimension (d = 10) and topology. However, when
compared with a learned classifier with same feature dimen-
sion (as discussed in the next paragraph) the training time is
similar.

Fig. 10(a) and Fig. 10(b) show the time to reach accuracy
using SGD+RandAug on SeResNeXt50 for the d-Simplex
and d-Orthoplex (in red) fixed classifiers and the learned
classifiers (in blue), respectively. As evidenced in the figure,
the learned classifiers require about 150 epochs to obtain
the accuracy that the d-Simplex and d-Orthoplex achieve in
50 and 90 epochs, respectively. Although this gain reduces
as training progresses towards the end, our method achieves
consistently better results. Fig. 10(c) shows that the d-Cube
classifier requires similar training time with slightly lower final
accuracy.

The general behavior of the curves shown in Fig. 9 and
Fig. 10 is consistent across combinations of datasets, architec-
tures, classifiers and training strategies. The training time to
reach the same accuracy is shorter or equal for our method and
the time reduction follows the complexity of the embeddings
defined by each regular polytope fixed classifier.

Overall, we have demonstrated that Regular Polytope Net-
works provide a novel, effective and easy approach to fixed
classifiers that achieves comparable state-of-the-art perfor-
mance with the standard trainable classifiers. They provide
faster speed of convergence and a significant reduction in
model parameters. To facilitate replication of our experiments,
the code will be made publicly available.

VI. DISCUSSION: POTENTIAL AND CHALLENGES

Our finding may have implications in those Deep Neural
Network learning contexts in which a classifier must be robust
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Fig. 9. Speed of convergence comparison (ADAM). (a): Training error curves
(top) and test accuracy curves (bottom) using the CIFAR-100 dataset with the
VGG19 architecture. (b): ImageNet learning speed using DenseNet169. As
evidenced from the figures, the proposed method has faster convergence.

against changes of the feature representation while learning.
This is the case of incremental learning settings, especially
when features are stored in memory banks while learning
[57], [58], [59]. Despite recent advances, methods inspired
by memory-augmented deep neural networks are still limited
when it comes to incremental learning. The method [60]
simplifies the original fully differentiable end-to-end idea.
Except for the nearest-neighbor query to the memory bank,
their approach is fully differentiable, can be trained end-to-end
and operates in a incremental manner (i.e. without the need
of resetting during training). However, the features stored in
the memory bank remain fixed (i.e. they are not undergoing
learning) and only the memory bank is learned. Our approach
may have a promising potential for learning both the feature
and the memory without considering their joint learning. The
intuition is that every time the internal feature representation
changes the memory bank must be relearned from scratch. Our
method can mitigate the need of feature relearning by keeping
the compatibility of features between learning steps thanks to
their stationarity. Concurrent to this work, [61] addresses a
similar problem in terms of feature “back-compatibility” and
exploits a pre-trained fixed classifier to avoid re-indexing a
memory bank containing the gallery features of a retrieval
system that has been updated.

This basic idea can be in principle applied to the many
computer vision tasks that have benefited from memory based
learning. Among them we mention [62], [63], [64] for cumu-
lative learning of face appearance models from video stream,
[65], [66], [67], [68], [69] for object detection, [70] for video
object segmentation and [71] for visual object tracking. The
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Fig. 10. Speed of convergence comparison (SGD+RANDAUG). Test accuracy
curves over the epochs on the ImageNet test set for the SeResNeXt50
architecture using the proposed fixed classifiers (red) and the standard trainable
baselines (blue). (a): The d-Simplex classifier, (b): the d-Orthoplex classifier
and (c): the d-Cube classifer. The time to reach the same accuracy is shorter
or equal for our method.

works [65], [66], [67], [68], [69] accumulate context from
pre-computed feature banks (with fixed pre-trained feature
extractors i.e. not undergoing learning). The feature banks
extend the time horizon of their network up to 60 second
in [68] or to one month in [65] and achieve strong results
on spatiotemporal localization. The works [62], [63], [64]
accumulate extracted face features in a memory bank to
preserve all the past knowledge without forgetting and at the
same time handle the non-stationarity of the data stream. At
a high level, all these approaches can be framed as a non-
parametric estimation method (like nearest neighbors) sitting
on top of a high-powered parametric function (Faster R-CNN
in the case of object detection [65], a face feature extractor
in [62] and [63], a SiamFC feature extractor [72] for object
tracking in [71]). These methods use a fixed representation that
is not incrementally learned as it would require re-encoding all
the images in the memory bank. Avoiding re-encoding images
can be advantageous in applications where images cannot be
stored for privacy reasons (i.e. face recognition, applications
in medical imaging, etc.). Clearly, also Multi-Object Tracking
[73], [74] can benefit from memory based learning.

VII. CONCLUSION

We have shown that a special set of fixed classifiers based on
regular polytopes generates stationary features by maximally
exploiting the available representation space. The proposed
method is simple to implement and theoretically correct.
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Experimental results confirm both the theoretical analysis and
the generalization capability of the approach across a range of
datasets, baselines and architectures. Our RePoNet solution
improves and generalizes the concept of a fixed classifier,
recently proposed in [1], to a larger class of fixed classifier
models exploiting the inherent symmetry of regular polytopes
in the feature space.

Our findings may have implications in all of those Deep
Neural Network learning contexts in which a classifier must
be robust against changes of the feature representation while
learning as in incremental and continual learning settings.

APPENDIX

Computing the Angle Between Adjacent Classifier Weights

The angle between a vertex and its adjacent vertices in
a regular polytope can be computed following the same
mathematical formulation used to compute its dihedral angle.
The dihedral angle of a regular d-Simplex is the acute angle
formed by a pair of intersecting faces. In the case d = 2
the dihedral angle is the angle at the vertex of an equilateral
triangle, while in the case d = 3 is the angle formed by the
faces of the regular tetrahedron.

Because the dual polytope of a regular d-Simplex is also a
regular d-Simplex, the angle θ between pairs of vertices can
be expressed as [75]:

θ = π − δ, (13)

where δ is the dihedral angle. Since the dihedral angle of a
regular d-Simplex is known to be [75][39]:

δ = arccos
(1
d

)
, (14)

substituting Eq. 14 into Eq. 13 we obtain:

θ = π − arccos
(1
d

)
which simplifies to:

θ = arccos
(
− 1

d

)
.

The Eq. above provides the value between any pair of vectors
in a d-Simplex.

The calculation for the the d-Cube follows a similar argu-
ment. The dihedral angle of a regular d-Orthoplex is known
to be arccos ((2− d)/d). Since the d-Cube is the dual of the
d-Orthoplex the angle defined by a vertex of a d-Cube and its
adjacent vertices is:

θ = arccos
(d− 2

d

)
. (15)
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Girshick, “Long-term feature banks for detailed video understanding,” in
IEEE Conference on Computer Vision and Pattern Recognition, CVPR



15

2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision
Foundation / IEEE, 2019, pp. 284–293.

[69] H. Wu, Y. Chen, N. Wang, and Z. Zhang, “Sequence level semantics
aggregation for video object detection,” in 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019. IEEE, 2019, pp. 9216–9224.

[70] S. W. Oh, J. Lee, N. Xu, and S. J. Kim, “Video object segmentation
using space-time memory networks,” in 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019. IEEE, 2019, pp. 9225–9234.

[71] T. Yang and A. B. Chan, “Learning dynamic memory networks for
object tracking,” in Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
IX, ser. Lecture Notes in Computer Science, V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds., vol. 11213. Springer, 2018, pp.
153–169.

[72] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr,
“Fully-convolutional siamese networks for object tracking,” in Computer
Vision - ECCV 2016 Workshops - Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part II, ser. Lecture Notes in
Computer Science, G. Hua and H. Jégou, Eds., vol. 9914, 2016, pp.
850–865.

[73] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri,
and F. Herrera, “Deep learning in video multi-object tracking: A survey,”
Neurocomputing, vol. 381, pp. 61 – 88, 2020.

[74] P. Salvagnini, F. Pernici, M. Cristani, G. Lisanti, I. Masi, A. Del Bimbo,
and V. Murino, “Information theoretic sensor management for multi-
target tracking with a single pan-tilt-zoom camera,” in IEEE Winter
Conference on Applications of Computer Vision. IEEE, 2014, pp. 893–
900.

[75] H. R. Parks and D. C. Wills, “An elementary calculation of the dihedral
angle of the regular n-simplex,” The American mathematical monthly,
vol. 109, no. 8, pp. 756–758, 2002.

Federico Pernici Federico Pernici received the lau-
rea degree in Information Engineering in 2002, the
post-laurea degree in Internet Engineering in 2003
and the Ph.D. in Information and Telecommunica-
tion Engineering in 2005 from the University of
Firenze, Italy. Since 2002 he has been a research
assistant at MICC Media Integration and Communi-
cation Center, assistant professor and adjunct pro-
fessor at the University of Firenze. His scientific
interests are computer vision and machine learning
with a focus on different aspects of visual tracking,

incremental learning and representation learning. Presently, he is Associate
Editor of Machine Vision and Applications journal.

Matteo Bruni Matteo Bruni received the M.S.
degree (cum laude) in Computer Engineering from
the University of Firenze, Italy, in 2016. Presently,
he is a Ph.D. student at the University of Firenze
at MICC, Media Integration and Communication
Center, University of Firenze. His research interests
include pattern recognition and computer vision with
specific focus on feature embedding, face recogni-
tion and incremental learning.

Claudio Baecchi Claudio Baecchi received his Mas-
ter’s Degree in computer engineering from Univer-
sity of Florence in 2013 and the Ph.D in 2017.
Currently he is working at the Visual Information
and Media Lab at Media Integration and Commu-
nication Centre, University of Florence. His current
researches in the computer vision field cover senti-
ment and polarity classification in web videos, face
and emotion recognition.

Alberto Del Bimbo Prof. Del Bimbo is Full Pro-
fessor at the University of Firenze, Italy and the
Director of MICC Media Integration and Communi-
cation Center. He is the author of over 350 scientific
publications in computer vision and multimedia and
principal investigator of technology transfer projects
with industry and governments. He was the Pro-
gram Chair of ICPR 2012, ICPR 2016 and ACM
Multimedia 2008, and the General Chair of IEEE
ICMCS 1999, ACM Multimedia 2010, ICMR 2011
and ECCV 2012. He is the General Chair of the

forthcoming ICPR 2020. He is the Editor in Chief of ACM TOMM Trans-
actions on Multimedia Computing Communications and Applications and
Associate Editor of Multimedia Tools and Applications and Pattern Analysis
and Applications journals. He was Associate Editor of IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE Transactions on Multimedia
and Pattern Recognition and also served as the Guest Editor of many Special
Issues in highly ranked journals. Prof. Del Bimbo is IAPR Fellow and
ACM Distinguished Scientist and is the recipient of the 2016 ACM SIGMM
Award for Outstanding Technical Contributions to Multimedia Computing
Communications and Applications.


	I Introduction
	II Related Work
	III Main Contributions:
	IV Regular Polytopes and Maximally Separated Stationary Embeddings
	IV-A Implementation
	IV-B Exceeding Vertices as Virtual Negative Classes
	IV-C Fixed Classifier Decision Boundaries

	V Experimental Results
	V-A Hard Permutations Verification
	V-B Generalization and Performance Evaluation
	V-B1 MNIST and CIFAR
	V-B2 ImageNet

	V-C Training Time

	VI Discussion: Potential and Challenges
	VII Conclusion
	Appendix
	References
	Biographies
	Federico Pernici
	Matteo Bruni
	Claudio Baecchi
	Alberto Del Bimbo


