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Abstract— Autonomous vehicles are increasingly becoming ubiquitous in the 21st century; they find application in 

agriculture, industry, airplanes, cars, service robotics, and others; in order to display autonomous guidance, a vehicle needs 

to estimate its position and orientation relative to an arbitrary coordinate system; to do so, several sources of information 

can be used, including images, global positioning systems, inertial measurements or odometry, each according to the 

application; methods, such as Kalman Filter can be used to combine the several sources of information; however, the more 

accurate each source of information is, the better the estimation of vehicle position and orientation will be; therefore, the 

calibration of the parameters of the odometrical systems in autonomous terrestrial vehicles is a must; visual guidance is also 

an important technology used for vehicle guidance. In this paper, it is presented an off-line method for odometry calibration 

using a genetic algorithm and the fusion of odometry data with heading information from camera data; a particle filter is 

used to fuse the data from the optical encoder and the camera. This method was tested in an Automated Guided Vehicle 

(AGV) with tricycle topology, demonstrating high accuracy in position estimation and guidance through arbitrary paths. 

Keywords— Autonomous Guided Vehicle (AGV). 

I. INTRODUCTION 

Autonomous vehicles are a relatively new technology with hundreds of potential applications in many aspects of the human 

life [1]; they have the potential of becoming the everyday driver of the people, and also the automatic guided vehicles AGV 

of the new generation industrial plant, not requiring magnetic tracks under the floor to follow a predetermined path; they 

exhibit the capability of interpreting data from sensors to determine their current position with respect to a predefined 

coordinate frame, responding at any time to the question where am I? [2]; the pose of a vehicle is comprised of the x,y 

coordinates of its position plus the heading or yaw angle [x, y, Ɵ]. When two different sensors provide information from the 

same variable, it is necessary to decide at which extent one is more reliable than the other in order to provide a weighted 

estimate of the variable; such is the working of the Kalman Filter [3]. Sources of the same variable are, for instance, an 

inertial measurement unit (IMU) [4] providing yaw rate information -which integrated over time provides yaw angle- and 

optical encoder ticks which can be counted and the count converted into the yaw angle of the vehicle whose wheels they are 

attached to.  

A navigation strategy, or algorithm, is usually required to move the vehicle from one point to another; the navigation 

algorithm is fed with the current position and a next desired position, and its outputs convey the commands to motors in 

charge moving and steering the vehicle. Again, the accuracy of the movement of the vehicle depends on the accuracy of the 

pose estimation; this leads us to the conclusion that among the first work to be done is to accurately estimate the pose of 

vehicle in order to provide reliable autonomous guidance.  
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Odometry, refers to the measurement of the distance traveled by a wheel as it turns over the terrain; when it comes to 

vehicles, three and four wheeled vehicles use odometry in at least, two opposite wheels simultaneously. Usually, an optical 

encoder is used to measure, in ticks, the advance of the wheel; the encoder ticks can be easily converted to the distance 

traveled by the wheel using a simple formula that assumes the radius of the wheel to be constant; however, systematic and 

non-systematic factors contribute to provide errors in the measurement of the pose of the vehicle, including unequal wheel 

diameter, misalignment of wheels, limited encoder resolution, travel on uneven floors, wheel slippage, and others; therefore, 

it is necessary to calibrate the odometry minimizing the impact of the unwanted errors already mentioned.  

Visual odometry (VO) is the process of estimating the movement of a vehicle using images from a camera(s) attached to it; it 

is based on the incremental estimate of the position of the vehicle through examination of the changes in the images from 

onboard camera(s); like terrain odometry, VO needs to be calibrated; however, the advantage of VO with respect to terrain 

odometry is that it is not affected by wheel slippage or uneven terrain. In VO, the vehicle motion between the current and 

previous images is computed from monocular or stereo images [5]. The main components of a VO system are: image feature 

detection, feature matching, and motion estimation.  

Fusing data is the process of using noisy data from two or more sources related to one variable (one-dimensional) or more (n-

dimensional). Typical fusing data techniques are the Kalman Filter for linear and gaussian systems and its variants, Extended 

Kalman Filter and Unscented Kalman Filter, for non-linear system. Kalman Filters are a kind of stochastic observers [6]. 

Particle filters (PF) is another valuable technique for sensor fusion; PF are useful when dealing with non-linear systems.  

Visual odometry, Kalman filter and Particle filters (PF) are described elsewhere in the literature of the topic, therefore they 

will not be described here in more detail. 

II. SYSTEM DESCRIPTION 

In this research a tricycle topology vehicle was used. Here is described the architecture and operation principles of the 

approach presented in this paper for autonomous vehicle guidance; the proposed method is comprised of two stages: 

calibration (off-line) and operation. The calibration stage is depicted in figure 1. 

 

FIGURE 1: Off-line calibration 

Calibration stage. In this stage, two procedures are developed; the first is camera calibration; here, the extrinsic and intrinsic 

parameters are found using typical methods; the second procedure is odometry calibration; as mentioned earlier, the 

odometry is calibrated in an evolutionary manner using a genetic algorithm; details can be found in [7]; in brief, the steps for 

odometry calibration are:  

a) Data gathering: Consists of obtaining encoder pulses as the vehicle moves on predefined linear and curved paths; 

paths ranging from 1.5 to 3 meters are used and are very attractive when compared to more complex calibration 

paths presented in the literature [8]. Initial and final positions as well as encoder pulses are recorded.  

b) Evolutionary calibration: The data recorded is used in a genetic algorithm, whose parameters can be found in 

Table 1. The aim of using a genetic algorithm is to find the calibration constants [k1, k2] and separation between 

wheels b, which are part of the kinematic model that will be described here later.  

The parameters of the camera as well as the effective radius of the wheels are put together in a motion model, basically the 

kinematic model of the tricycle topology vehicle [9] and the camera model. It should be noticed that the modeling approach 

can be applied to other vehicle topologies.  

In the case of the camera model, it is required to compute only one parameter: the yaw angle; therefore, it is a partial visual 

odometry approach. This reduces the computational complexity of the image processing operation of the system. The 

algorithms related to the calibration state where developed using Matlab®. 
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TABLE 1 

GENETIC ALGORITHM PARAMETERS FOR ODOMETRY CALIBRATION.  

Parameter Value 

Population 50 individuals 

Mating Roulete 

Selection Elitist, 2 individuals 

Cross-point Scatter 

Mutation Gaussian 

Restrictions 
3.0e-4 < [k1, k2] < 4.5e-4 

0.35 > b > 0.39 (m) 

Goal To minimize pose error 

Stop criterion 150 generations 

 

The kinematic model of the tricycle topology is as follows:  

∆𝑠𝑙 =
2𝜋𝑟𝑙 .𝑝𝑙 𝑙

𝑅
= 𝑝𝑙𝑙 . 𝑘1          (1) 

∆𝑠𝑟 =
2𝜋𝑟𝑟 .𝑝𝑙𝑟

𝑅
= 𝑝𝑙𝑟 . 𝑘2          (2) 

∆𝜃 =  ∆𝑠𝑟 + ∆𝑠𝑙 . 𝑏          (3) 

∆𝑢𝑥,𝑦 =
∆𝑠𝑟+∆𝑠𝑙

2
           (4) 

𝜃1 = 𝜃0 +
∆𝜃

2
           (5) 

𝑥𝑘 = 𝑥𝑘−1 − ∆𝑢𝑥,𝑦 . 𝑠𝑖𝑛𝜃1          (6) 

𝑦𝑘 = 𝑦𝑘−1 − ∆𝑢𝑥,𝑦 . 𝑐𝑜𝑠𝜃1          (7) 

Where:  

𝑝𝑙𝑙 , Count of encoder pulses from the left, rear wheel.  

𝑝𝑙𝑟 , Count of encoder pulses from the right, rear wheel. 

k1, Odometric compensation constant of the left wheel.  

k2, Odometric compensation constant of the right wheel.  

R, Optical encoder resolution (pulses per revolution). 

2.1 Operation stage 

Figure 2 shows the operation stage; when tracking a specific path, the vehicle moves forward and produce encoder pulses 

from both rear wheels; at the same time, the camera captures images. From one current image and the previous, the digital 

image processing step computes  (the yaw angle). As can be seen, two versions of are at the disposal of the particle filter; 

each computation of the particle filter produce the estimated version [x‟, y‟‟], which is the best estimate (in an 

optimization sense) of the pose of the vehicle. 

 
FIGURE 2: Operation stage of the vehicle. 
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2.2 Implementation 

The system described in the previous section was implemented according to the following:  

Physical system: A three-wheeled vehicle, shown in Figure 3. Front wheel steering.  

Vehicle main-board: Jetson-nano, NVIDIA. With camera, artificial vision enabled.  

Software: Embedded linux. OpenCV.  

Control Systems: Microcontrollers and DSP based. Digital PID control.  

Motor: DC type, both motion and steering. 

 
FIGURE 3: Vehicle used showing the tricycle topology. 

III. RESULTS 

To test this approach to autonomous vehicle navigation, the odometry calibration was carried out using calibration 15 runs of 

trajectories similar to the one shown in Figure 4. The genetic algorithm produced k1=3.9447008587e-004, k2= 

3.9698427203e-004 and b= 0.3688034 as the calibrated parameters for the set of equations 8 through 7. The camera 

parameters are shown in the calibration matrix Q: 

𝑄 =  
436.5401 0 206.2603

0 436.0246 151.2045
0 0 2

         (8) 

To test the system a set of irregular shaped trajectories was designed and programmed to be followed by the vehicle; for 

comparison purposes, three scenarios were tested:  

a. Using uncalibrated odometry parameters,  

b. Using only calibrated odometry parameters, 

c. Using calibrated odometry and visual odometry with particle filter.  

The results of autonomous path tracking are shown in Table 2. Asterisks denote that the task could not be completed by the 

vehicle. The trials were executed in a controlled environment, with uneven floor but not abrupt changes. The error reported is 

the mean error value of 10 trials at each scenario. 

IV. DISCUSSION  

It is evident that the worst-case response was the one of no calibration at all. Here, the only trajectory completed by the 

vehicle was of 22 meters long, but with a large error, up to about 12%. This is due to the fact that uncalibrated data produce a 

rapidly growing accumulation of error. It was observed a variable deviation of the vehicle from the predefined trajectory, 

which implies that it is most likely the dominant error, was due to random or non-systematic errors.  

When using only terrain odometry calibrated parameters, a remarkable improvement was obtained, reducing the error 

dramatically with respect to the uncalibrated scenario; the computed calibration parameters using the genetic algorithm were 

capable of significantly reduce the error, although it is not clear at what extent the reduced error was of the type systematic or 

non-systematic. 
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FIGURE 4: Example of calibration trajectory 

TABLE 2 

RESULTS OBTAINED IN 4 TRAJECTORIES. 

Scenario Length (m) Absolute Error (%) 

Uncalibrated 

odometry 

22 12.242 

47 * 

100 * 

Odometry calibration only 

22 0.234 

47 0.333 

100 * 

Odometry calibration + VO + 

PF 

22 0.1025 

47 0.1236 

100 0.592 

 

Finally, the full approach introduced here clearly separates from the other two scenarios since the vehicle was capable of 

successfully complete a 100 meters long trajectory. When compared to the two previous scenarios it showed to be 

remarkable better. To ensure success of the PF, the calibration data was used to simulate it and varying levels of noise were 

introduced to both, the calibration data and a simulated version of the  yaw angle from the camera. Other approaches in 

literature reported similar results but using a more complex framework or tested on shorter trajectories. 

V. CONCLUSION 

This paper presents an approach to the problem of autonomous vehicle guidance; the use of optimization in a first stage of 

odometry calibration is one of major steps towards a real-world applicable system because it helped to reduce systematic and 

non-systematic errors, as seen in Table 2.  

Combining data from the odometry system and the camera with the particle filter, as shown in Figure 2, significantly 

supported the dramatic reduction in the percentage of error shown as compared to the simple use of odometry calibration. 

Although many sophisticated algorithms have been published in the past and recent years, including auto-calibration and 

pose, they are complex and computational expensive, a key difference with the approach presented here. It is not discarded as 

future work to include some continuous optimal calibration method during the operational stage of the vehicle.  

Finally, the goal of this project is to produce industrial grade AGV autonomous systems, so the efforts in such direction will 

continue from these research groups. 

Combining data from the odometry system and the camera with the particle filter, as shown in Figure 2, significantly 

supported the dramatic reduction in the percentage of error shown as compared to the simple use of odometry calibration. 

Although many sophisticated algorithms have been published in the past and recent years, including auto-calibration and 

pose, they are complex and computational expensive, a key difference with the approach presented here. It is not discarded as 

future work to include some continuous optimal calibration method during the operational stage of the vehicle.  

Finally, the goal of this project is to produce industrial grade AGV autonomous systems, so the efforts in such direction will 

continue from these research groups. 
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