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Abstract
We propose a programming language for music named
mimium, which combines temporal-discrete control and
signal processing in a single language. mimium has an in-
tuitive imperative syntax and can use stateful functions
as Unit Generator in the same way as ordinary function
definitions and applications. Furthermore, the runtime
performance is made equivalent to that of lower-level
languages by compiling the code through the LLVM
compiler infrastructure. By using the strategy of adding
a minimum number of features for sound to the design
and implementation of a general-purpose functional lan-
guage, mimium is expected to lower the learning cost
for users, simplify the implementation of compilers, and
increase the self-extensibility of the language. In this
paper, we present the basic language specification, se-
mantics for simple task scheduling, the semantics for
stateful functions, and the compilation process.

mimium has certain specifications that have not been
achieved in existing languages. Future works suggested
include extending the compiler functionality to combine
task scheduling with the functional paradigm and intro-
ducing multi-stage computation for parametric replica-
tion of stateful functions.

CCS Concepts: • Applied computing → Sound
and music computing; • Computer systems orga-
nization → Real-time languages ; • Theory of compu-
tation → Timed and hybrid models.

Keywords: programming language, computer music,
functional programming, signal processing

1 Introduction
1.1 Background

Programming environments for computer music, which
are software packages that enable the use of a digital
computer to create music programmatically [8], have been
continuously developed since the early days of computers,
such as Max[18], Puredata[19] and SuperCollider[11].

Among these programming environments, conventional
languages contain multiple layers internally for discrete
event control and signal processing by composing Unit
Generator(UGen): a fundamental component of signal
processing and description of UGen[8].

In conventional environments, there is a limitation in
terms of extensibility in the lower-level description of
signal processing. The user can describe signal process-
ing by combining many built-in UGens, such as filter or
oscillator, provided in the language. If the user wants to
define a new UGen that cannot be expressed by combin-
ing existing UGens (for example, a nonlinear oscillator),
they must use general-purpose languages such as C, to
describe the algorithm in such environments.
For this type of problems, languages focusing on de-

scribing UGens, such as Faust[17], Kronos[14], Soul[27],
Vult[21], and Gen˜(an embedded language on Max) were
developed. For example, Faust can be used to output
UGen binaries for Max, Puredata, and SuperCollider
via C++ code or can be used as an original UGen in
Max by compiling Faust code on memory using LLVM.
These languages do not have a scheduler for high-level
event control. In languages such as Faust, such discrete
values are defined as external values controlled outside
the program (for example, via GUI, MIDI, OSC).
The advantage of using multiple languages is that

it maintains a balance between efficiency (in terms of
coding by user) and generality of possible expressions.
In addition, it allows the user to choose the level of
complexity according to the task[8].
Multi-language paradigms, however, actually lead to

other problems. For example, sometimes, the user must
use slightly different operators for similar expressions,
which may reduce the efficiency of the programming
process for beginners. For instance, while describing the
addition of two inputs in Max and Puredata, the user
must choose the right one from two different objects
according to its data type between [+] for control and
[+ ∼] for audio. SuperCollider also requires the user
to select multiple methods for the same SinOsc object
that generates a sine wave, such as SinOsc.kr when the
required time-domain resolution is slow (e.g., LFO) and
SinOsc.ar when it is used as an audio signal, depending
on the processing load required.
In addition, practically, while a multi-language para-

digm can strike a balance between generality of expres-
sion and efficiency of programming, the learning cost
is high as users must learn separate languages for each do-
main. Considering that domain-specific-languages (DSLs)
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have high training costs [26], if the languages can be uni-
fied without losing generality and efficiency, the training
costs can be reduced.
Improving self-extensibility is one of the important

topics in the design of programming languages for sound
and music. Dannenberg argues that introducing ready-
made solutions to a language specification will ultimately
limit the expressiveness of the language itself. The lan-
guage should therefore increase its expressiveness, and
it is better to develop individual solutions as libraries
on the language[2].
In fact, ChucK[30], Extempore[25] and Kronos[14]

partially addressed the two aforementioned problems.
ChucK allows users to define their own UGen in

the ChucK language itself using a language extension
ChuGen[22]; however, as ChucK itself is a virtual machine-
based interpreter language implemented on C, its run-
time performance is inferior to that of UGen written
in C++ for the same processing method. Furthermore,
the data type of the input/output for UGen is distinct
from a general numeric type, and the user must use the
ChucK operator (=>) to represent connections between
UGens.

In the Lisp-based live-coding environment Extempore,
users can compile native binaries during runtime on a
dedicated language called xtlang through the compiler-
infrastructure LLVM[7], and the entire code including
signal processing equivalent to UGen can be written
within the Extempore environment while maintaining
high runtime performance. It is, however, necessary to
use two different languages: a dynamically typed lan-
guage(Scheme) for control processing and a statically
typed language(xtlang) for signal processing.

Kronos Meta-Sequencer[15], an extended specification
of Kronos that was developed to unify Score, Orches-
tra(Composition of UGens) and Instrument(Description
of UGen) languages through the preparation of syn-
tactic sugars that combine the design pattern of Tem-
poral Recursion[24] and IO Monads; however, Kronos
can also be seen as a two-layered design of a dynami-
cally typed meta-language that generates statically typed
program[16, p34].

1.2 Introducing mimium

Granted the above background, we introduce mimium
(minimal-musical-medium)1, a full-stack music pro-
gramming language, which can describe everything from
low-level signal processing to discrete event processing
in unified semantics.
Table 1 shows a comparison of the language speci-

fications of mimium and existing languages. mimium

1https://github.com/mimium-org/mimium

realizes discrete-time event description and signal pro-
cessing in unified semantics and achieves high execution
speed via JIT compilation equivalent to UGen written
in lower-level languages such as C++. The user does
not need to be aware of hardware management such as
memory allocation and release, which are determined
statically during compilation.

In the following section, we describe the detailed lan-
guage design and implementation of the running envi-
ronment of mimium.
First, we introduce the basic syntax, showing that

there awareness of hardware such as memory manage-
ment is not required, and that type inference allows users
to omit type annotations for variables. Next, we present
the general architecture of mimium’s running environ-
ment (compiler and runtime), showing that mimium
code can be immediately compiled into native binaries
through LLVM and executed without losing run time
performance, even for signal processing.

In addition, we describe two characteristic features of
mimium that allow describing continuous signal process-
ing and discrete control processing in unified semantics.
The first is the syntax for a deterministic task schedul-
ing at the sample level and the implementation of the
scheduler. The second is a description of the semantics
used to define the UGen for signal processing on the
language and its compilation process, comparing it to
the existing paradigm in terms of the data structure of
a pair of functions and internal state variables.

In the discussion section, we address two problems: (1)
although mimium can describe discrete control and sig-
nal processing in unified semantics, the way it describes
discrete processing is more likely to be imperative, and
the functional paradigms used for signal processing are
very different from one another, and (2) the current im-
plementation cannot express a parametric replication
of stateful functions for signal processing unlike Faust
and Kronos. We will also explain the possibility of using
multi-stage computation as a solution to the aforemen-
tioned problems.

2 Design of mimium
2.1 Basic syntax and semantics

The basic syntax of mimium is based on the Rust
language[6], which can be written like a general impera-
tive programming language.

The main reason for this is that the syntax of the Rust
is similar to conventional languages, and the relatively
short reserved words are suitable for fields that perform
quick prototyping like music. It also has the side effect
of being close to the existing syntax of the language,
which makes it easy to reuse the syntax highlighting
from existing languages.

https://github.com/mimium-org/mimium
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Table 1. Comparison of specifications between computer music languages.

Pd/SC ChucK Extempore Faust & Vult Kronos mimium

Event Scheduler and Semantics for it ○ ○ ○ - ○ ○
Sample-Accurate Scheduling - ○ ○ - ○ ○
Fundamental UGen Definition - ○ ○ ○ ○ ○
JIT Compilation of DSP Code - - ○ ○ ○ ○
Functional Representation of Internal State - - - ○ ○ ○

1 // double slash for comments.

2 // assignment to the variable is also a

declaration of new variable

3 mynumber = 1000

4 // Currently , all variables are mutable

5 mynumber = 2000

6

7 //type specification is optional

8 myvariable:float = 10

9 type FilterCoeffs = (float ,float ,float ,float ,

float) //type alias definition

10

11 mystring = "somefile.wav" // string literal

values are used for file loading and

debugging purposes.

12

13 //array type value constructor

14 myarr = [1,2,3,4,5,6,7,8,9,10]

15 // access to the array. arr_content should be 1

16 arr_content = myarr [0]

17 myarr [4] = 20 // assignment to array. myarr

becomes [1,2,3,4,20,6,7,8,9,10].

18

19 mytup = (1,2,3) // tuple type constructor

20 one ,two ,three = mytup // unpacking tuple.

21

22 // basic function definition.

23 fn add(x,y){

24 return x+y

25 }

26

27 add = |x,y|{ x+y }// equivalent definition of

function with inline version.

28

29 //block ,brace -wrapped multiple statements is an

expression globally.

30 z = { x = 1

31 y = 2

32 return x+y } //z should be 3.

33

34 // conditional and recursive function

35 fn fact(input){

36 if(input >0){

37 return 1

38 }else{

39 return input * fact(input -1)

40 }

41 }

42 // if -else statement can be used as expression

like below

43 fact = |input|{ if(input >0) 1 else input * fact

(input -1) }

Listing 1. Basic syantax of mimium.

Listing 1 shows the list of the basic syntax. A formal
definition of the language is written in Appendix A.
Declaring a variable is done automatically by assigning
some value to a variable with a new name withiin a scope
of function. When declaring a variable, value type can
be explicitly specified by providing the type name after a
colon. When the type name is omitted, it can be inferred
from context. Data types include void (an empty-value
type), numeric (no distinction between integer/decimal
type and internally a 64-bit float by default), and string
as primitive types as well as aggregate types such as
function, tuple, and array types. User-defined type aliases
can also be declared.
The basic syntax includes function definitions, func-

tion calls, and conditional using if-else statements. mim-
ium also incorporates the functional paradigm, allowing
if statements to be used as expressions that can return
values directly. This is achieved by having a syntax
that allows multiple statements (assignment syntax or
function execution) enclosed in a {} to be used as an ex-
pression that provides the value of the return expression
of the last line (return can also be omitted). Similarly,
function definitions are defined as syntax sugars for the
assignment syntax of anonymous functions.
mimium is a statically-typed language, which means

that the types of all variables and functions are deter-
mined during compilation. Type inference is based on
Hindley-Milner inference systems (currently monomor-
phic).
In addition, for faster DSP processing, memory al-

location and deallocation are determined statically at
compile-time, and the runtime has no garbage collection.

2.2 Basic DSP in mimium

In mimium, when the user defines a function named dsp,
it becomes an entry point to exchange audio input and
output with an audio driver. The example is in Listing
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2. In this case, the type of the dsp function must be
a function type that takes a tuple of any number of
floats and also returns a tuple of any number of floats.
Each element of the tuple corresponds to input & output
channels of the audio driver. The example of Listing 2
is a code that receives two channels of input from the
audio driver, mixes them, and returns duplicated signals
for the left and right channels.

1 fn dsp(input :(float ,float))->(float ,float){

2 left ,right = input

3 out = (left+right)/2

4 return (out ,out)

5 }

Listing 2. Example of dsp function which merges stereo
inputs and returns the same signal to each output
channels.

The built-in functions in mimium include basic arith-
metic operations, mathematical functions such as trigono-
metric and exponential functions defined in libc’s math.h,
built-in stateful functions such as delay and mem (one-
sample delay), loadwav function for loading wav files
using libsndfile[9], and print function for debugging. The
filters and oscillators can all be defined as libraries by
combining these functions.

2.3 Architecture

Figure 1 shows the architecture of a compiler and runtime
of mimium.
The structure of the compiler is similar to that of a

general functional language, based on the implementa-
tion in mincaml [28] and implemented on C++.
Text data of source codes is first parsed into an ab-

stract syntax tree, and after removing the syntax sugar,
the AST becomes transformed into a lambda calculus-
based tree structure. Then, type inference and type
checking are performed to determine all variable types.
The AST is converted with the type information into
a single-static-assignment form imperative intermediate
representation where all variables are assigned only once.
Considering that nested function definitions are still al-
lowed at this stage, a closure conversion is performed to
remove free variables from the function definition.
State variable detection for mimium’s unique speci-

fication of stateful function (described in Section 3.2)
is performed between the closure transformation and
the lower-level code (LLVM IR) generation. The trans-
former outputs the state variables used by the function
as data in a tree structure (State Tree in the figure) with
the node of the called stateful function names and the
type of the state variables of the function, taking the
dsp function as the entry point of the signal processing.
Finally, the LLVM IR is generated based on the closure
transformed IR and the State Tree.

The runtime consists of three parts: the execution
engine, which receives the LLVM IR and compiles it into
a native binary in memory; the audio driver, which han-
dles input/output communication with the audio device;
and the scheduler, which keeps information about the
function and the logical time of the specified execution
time. The audio driver currently uses RtAudio[23], a
cross-platform library for C++ that abstracts audio de-
vices through the operating system’s API. The execution
engine passes the dsp function, which is the entry point
for signal processing, to the audio driver. The audio
driver, in turn, commands the scheduler to advance the
logical time. The scheduler is responsible for executing
tasks as well as responding to requests from the exe-
cution engine to register tasks and obtain the internal
time.

Only two functions of the LLVM IR compiled in mim-
ium depend on the runtime system. One for registering
tasks and another for getting the internal time. Almost2

all other code is compiled on memory and executed;
therefore, it can have the same execution speed as pro-
cessing written in low-level languages such as C.

3 Characteristic semantics in mimium
3.1 Scheduling with @ operator

1 ntrigger = 1

2 fn setN(val:float){

3 ntrigger = val

4 }

5 fn playN(duration:float)->void{

6 setN (1)

7 setN (0)@(now+duration)

8 }

9 fn Nloop(period:float)->void{

10 playN (50)

11 nextperiod = if(random () >0) period /2 else

period

12 Nloop(period)@(now+nextperiod)

13 }

14 Nloop (12000)

Listing 3. Example of Temporal Recursion

To describe events that occur discretely in the tempo-
ral direction in mimium, we used a design pattern called
temporal recursion, which was introduced in Impromptu[24](a
prior work of Extempore) and used in several languages
such as Overtone[1] and Kronos Meta-Sequener[15]. The
design pattern describes repetitive event processing as a
function that calls itself recursively with a time delay.
A concrete example is shown in Listing 3. When a

numeric value is given after the @ operator following the
function call, the function is not executed immediately.

2Actually, some built-in functions, such as print, call pre-compiled
C libraries to simplify the implementation.
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Compiler
Source Code

Abstract Syntax Tree

Type Environment

Intermediate Representation

State Tree

LLVM IR

Parser

Syntax Sugar Removal

Type Inference

Conversion to SSA

Closure Conversion

Analyse Stateful Functions

Code Generation

Runtime

Scheduler

LLVM

Execution


Engine

Audio

Driver


(RtAudio)

Internal Time

Task Queue

[{100,&fn1},


{200,&fn2},...]

addTask()

now

tickTime()

dsp()

runTask()

Figure 1. Architecture of mimium compiler and runtime.

Instead, it is registered to a task queue with a priority
keyed by time, and the execution context returns to
the next statement. The runtime checks the task queue
before processing each sample demanded on the audio
driver clock, and if the key of the first task has reached
the current time, it executes them first before processing
the audio signal. The time is the absolute time as the
runtime started executing each sample. The user can
describe relative time using the keyword now to obtain
the current logical time from the runtime as same way
as prior works.

1 (define ntrigger 1)

2 (define setN

3 (lambda (val)

4 (!set ntrigger 1)))

5 (define playN

6 (lambda (duration)

7 (setN 1)

8 (callback (+ now duration) ’setN

0)))

9 (define Nloop

10 (lambda (period)

11 (playN 50)

12 (callback (+ (now) (if (random > 0)

(/ period 2) period)) ’Nloop period)))

13 (Nloop 12000)

Listing 4. Equivalent code to Listing 3 in Extempore

The function can be executed at regular intervals by
calling itself recursively with a time specification within
a function. In the case of Listing 3, the variable ntrigger



Un
pu
bl
is
he
d
wo
rk
in
g

dr
af
t.

No
t
fo
r
di
st
ri
bu
ti
on
.

Tomoya and Kazuhiro

is rewritten every time the function Nloop is called. List-
ing 4 is an equivalent code in Extempore to Listing 3.
Extempore uses a special function called callback for
temporal recursion, while mimium introduces a special
operator @ to improve readability.

mimium uses synchronous scheduling based on logical
time, similar to ChucK for the simplicity of implemen-
tation. The logical time based scheduling will result in
inaccurate for processes that involve IO exchanges such
as sending/receiving MIDI and OSC even once; however,
if the process is closed only in the language, accurate
processing can be guaranteed on a sample-by-sample
basis; the implementation is simple, and the execution
cost is relatively low.

In contrast, Extempore uses asynchronous scheduling
by dividing the event scheduling threads. In the case of
asynchronous scheduling, processes involving IO can be
processed accurately in real-time; however, as the imple-
mentation depends on the OS task scheduler, it requires
individual support for each OS, and the execution cost
is relatively high.

3.2 Stateful function for signal processing

In this section, we describe appropriate semantics and
data structures for expressing UGen.

3.2.1 Comparing semantics for UGen between
data structures. A UGen takes a series of input data,
processes it in some way, and outputs it. At the first
glance, this seems to be possible as a pure function, but
in reality, we must use a data structure of a function
and a set of variables.

For example, a pure function is sufficient if it only adds
or multiplies the inputs; however, to represent signals
that cannot be expressed as a map f (t) to time t , such
as some filters and nonlinear oscillators, UGen must
have an internal state. Therefore, to represent UGen in
a general-purpose language, it must be represented as a
data structure that combines functions such as objects
and closures with internal states; however, if the user
wants to use multiple objects or closures, they must
instantiate them once and then call the actual process.
mimium has semantics, which allow us to use UGen

as if it is a normal function, without having to create a
dedicated data type for signal processing. Further, we
will see how to represent phasor, which is a sawtooth-
wave-like UGen that increases from 0 to 1 at a constant
rate and returns to 0 again, in objects, closures, Faust,
and Vult, and then we present a semantics for UGen as
a stateful function in mimium and its compilation.

Object. Object is a data structure that contains a set
of member variables as well as a set of member functions
(methods) that modify the variables and send messages
to other objects. In the case of an object, the internal

state is defined as a member constant. To use it, the user
must instantiate it beforehand and then call the main
processing method. Listing 5 shows the pseudo-code in
C++.

1 class Phasor{

2 double out_tmp =0;

3 double process(double freq){

4 out_tmp = out_tmp+freq /48000;

5 if(out_tmp >1){

6 out_tmp = 0;

7 }

8 return out_tmp;

9 }

10 };

11 // Instantiation

12 Phasor phasor1;

13 Phasor phasor2;

14 double something (){

15 //use instantiated objects

16 return phasor1.process(phasor2.process (10) +

1000);

17 }

Listing 5. The code of Phasor written with object in
C++.

Closure. Closure is a feature available in languages
with a lexical scope that allows function definitions
within functions. For example, the user can define func-
tion A that defines multiple local variables a, b, c. . . and
returns another function B that refers to the variables
a, b, c as free variables. Function A is a higher-order
function that returns function B , and executing A is
equivalent to creating an instance in an object.
The problem with using closures to describe signal

processing is that it becomes difficult to determine the
lifetime of variables at compile time. Languages that
can use closures are often implemented with a garbage
collection for automatic memory allocation and release,
but it is difficult to bring GC to DSP languages[3] where
functions are executed 48000 times per second in real-
time. SuperCollider implements a GC that can work on
real-time systems, and Extempore solves this problem
by requiring the user to specify the lifetime with manual
memory management. It means that either the user or
the developer must bear the implementation cost.

The following example(Listing 6) is a pseudo-code in
JavaScript 3.

1 //pseudo -code in javascript

2 function makeFilter(tmpinit){

3 let out_tmp = tmpinit;

4 let process = (freq) => {

3It is difficult to use this for signal processing practically as JS

works with GC, but we used JS to show an example because it is
imperative, easy to read, and closure can be used.
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5 out_tmp = out_tmp+freq /48000; // referring

free variable out_tmp

6 if(out_tmp >1){

7 out_tmp = 0;

8 }

9 return out_tmp;

10 }

11 return process;

12 }

13 // instantiation

14 let phasor1 = makePhasor (0);

15 let phasor2 = makePhasor (1);

16 function something (){

17 return phasor1(phasor2 (10) + 1000);

18 }

Listing 6. The pseudo-code of Phasor written with
Closure in Javascript.

Functional Representation. In the description of
signal processing in Faust and Kronos, a minimum set
of functions with internal states represented by delays
and a one-sample delay implicit in recursive connections
are prepared as built-in functions to enable algebraic
combinatorial expressions in UGen without reading and
writing temporary variables.

As shown in Listing 7, unlike objects and closures,
there is no need to instantiate them first, and temporary
variables for the phasor are automatically allocated for
each function call after compilation.

What is symbolized in these languages is, in Faust, a
unit generator with input and output (a constant is a
function with no input and one output, + operator is
a function with two inputs and one output, and so on),
and an input/output list of a processor in Kronos. In
these languages, the symbols do not correspond to data
on a specific memory address as in ordinary languages.
For this reason, it is difficult to use these languages as
self-extensible systems.

1 phasor(freq) = +(freq /4800) ~ out_tmp

2 with{

3 out_tmp = _ <: select2 (>(1),_,0);

4 };

5 // no need to instantiate.

6 something = phasor(phasor (10) +1000);

Listing 7. The code of Phasor written with Faust.

In the Vult language[21], if the user declares a variable
with the keyword mem and not the usual variable dec-
laration var in a function definition, the destructively
changed value will be kept over time series so that it can
represent the internal states of the UGens. This feature
allows the user to represent the connection of a UGen
with an internal state as if it were a normal function ap-
plication and does not need to be instantiated in advance
as in Faust.

1 fun phasor(freq){

2 mem out_tmp ;//" mem" variable holds its value

over times

3 out_tmp = out_tmp+freq /48000;

4 if(out_tmp >1){

5 out_tmp = 0;

6 }

7 return out_tmp;

8 }

9 fun something(input){

10 // no need to instantiate.

11 return phasor(phasor (10) +1000);

12 }

Listing 8. The code of Phasor written with Vult.

In both Faust and Vult, functions with an internal
state can be expressed directly without first instantiating
them. Instead, the initialization of the internal state is
determined at the time of function definition, and the
initial value cannot be determined via a constructor
when creating an instance.

In other words, by taking advantage of the fact that
the initial value of the internal state is almost always
zero or an array of zeroes, which constitutes domain-
specific knowledge in signal processing, functions with
internal states can be expressed in the same syntax as
normal function definition and application.
By expressing all the stateful functions with a lim-

ited number of built-in stateful functions (delays, table
lookups) and feedback connections as in Faust, stateful
functions can be mixed with the normal function applica-
tion grammar, eliminating the need to create an instance
of the function once; thereby removing redundancy from
the code.

3.2.2 DSP coding in mimium. Based on these as-
sumptions, in mimium, stateful functions can be used as
UGens. They are called in the same semantics of normal
function application f (x ) as in Vult. Using a limited
number of built-in stateful functions such as delay as in
Faust, the user can write stateful functions with little
awareness of variable management, while maintaining
that what is symbolized as data on the memory, similar
to the case of general-purpose languages.
In addition, the user can use the keyword self in the

function definition to refer to the return value returned
by the function in the previous sample.

self is a reserved word that can only be used in func-
tion definitions. self is initialized with 0 and allows us
to get the previous return value of the function. Listing
9 is the simplest use of self , a function that increments
from 0 to 1 per sample.

1 fn counter (){

2 return self+1
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3 }

Listing 9. The code of sample counter in mimium.

By applying this method, we can define the UGen
phasor, which we have seen as examples in objects and
closures and as functions, as shown in Listing 10. In this
example, the user does not need to declare variables in
the function, and there is no need to instantiate when
using the function. Additionally, the use of a recursive
connection is closed within the unit of the function,
unlike the representation of recursive connections as the
infix operator ∼ in Faust.

1 fn phasor(freq){

2 res = self + freq /48000 // assuming the

sample rate is 48000Hz

3 return if (res > 1) 0 else res

4 }

5 fn dsp(input){

6 return phasor (440)+phasor (660)

7 }

Listing 10. The code of phasor in mimium.

Further, for users who are already familiar with the
dataflow and functional paradigms, mimium provides
the pipeline operator | > as a syntax that makes it
easier to interpret stateful functions as connections be-
tween processors. The pipeline operator is used in several
functional language specifications such as F#[13] and
allows programmers to rewrite a nested function call
h(g(f (arg))) as arg | > f | > g | > h. Listing 11 is an ex-
ample of defining a sine wave oscillator using both regular
function calls and pipeline operators.

The equivalent codes to Listing 11 are shown in Listing
12 in Faust and in Figure 2 in Max, which describes
the flow of data from left to right in the same way
as the graphical connection of UGen. In addition to
the sequential composition operator in Faust(:), there
are operators with similar functions in other languages,
such as ChucK operator (=>) in ChucK language, but
the difference is that mimium’s pipeline operators are
semantically equivalent to function calls.

1 fn scaleTwopi(input){

2 return input* 2 * 3.141595

3 }

4 fn osc(freq){ // normal function call

5 return cos(scaleTwipi(phasor(freq)))

6 }

7 fn osc(freq){ // pipeline operator version

8 return freq |> phasor |> scaleTwopi |> cos

9 }

Listing 11. Example of Pipeleine Operator in mimium

1 scaleTwopi(input) = input * 2 * 3.141595;

2 osc(freq) = freq : phasor : scaleTwopi : cos;

Listing 12. Example of Sequential Composition in Faust

Figure 2. Example of dataflow syntax in Max

3.2.3 Compilation process of stateful functions.
Stateful functions are transformed into a combination
of pure functions and state variables as arguments after
closure transformation during compilation and before
low-level code generation, as shown in the Figure 1.
The transformation is done as follows. First, all the

function calls contained in dsp function definition are
searched in order, and if the function is defined in mim-
ium, the compiler further looks up its definition recur-
sively to create a dependency tree of function calls.

Finally, if the function definition refers to self or the
call of a built-in stateful function such as mem or delay ,
then the function becomes a stateful one, and the func-
tion that calls the stateful function is also determined
as stateful.

After creating the tree, the function definition is rewrit-
ten such that the argument of the stateful function is a
pointer to a tuple-type variable that lists all the state
variables used in the function. The function call part
should be rewritten in the same way, that is, to ensure
that the state variables become explicit arguments.
As an example, the code that uses the built-in delay

function and the two types of self is shown in Listing 13.

1 // delay is a built -in stateful function

2 fn fbdelay(input ,time ,fb){

3 return delay(input+self*fb,time)

4 }

5 fn dsp(){

6 // mix 2 feedback delay with different

parameters

7 src = random ()*0.1

8 out = fbdelay(src ,1000 ,0.8)+fbdelay(src

,2000 ,0.5)

9 return (out ,out)
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10 }

Listing 13. Example of Feedback Delay in mimium
before state tree transformation.

The pseudo-code converted from this code to a form
in which state variables are explicitly given as arguments
is shown in 14.

1 // pseudo -code after lifting stateful function

2 fn fbdelay(state ,input ,time ,fb){

3 // unpack state variables

4 self ,delay_mem = state

5 return delay(delay_mem ,input+self*fb,time)

6 }

7 fn dsp(state){

8 // unpack state variables

9 s_fbdelay0 , s_fbdelay1 = state

10 src = random ()*0.1

11 out = fbdelay(s_fbdelay0 ,src ,1000 ,0.8)+

fbdelay(s_fbdelay1 ,src ,2000 ,0.5)

12 return (out ,out)

13 }

Listing 14. Pseudo-code of Feedback Delay in mimium
after state tree transformation.

4 Discussion
To summarize, mimium can describe temporal-discrete
control and signal processing in unified semantics, in-
cluding the definition of UGen as a stateful function,
and the user can write code without being aware of the
hardware. In addition, almost all of the code is compiled
on memory through LLVM, so that the execution speed
is equivalent to that of a low-level language. For writ-
ing discrete processing, the @ operator can be used to
specify the time to execute a function, and by combin-
ing it with the temporal recursion design pattern, it is
possible to abstract events that occur repeatedly in the
time domain. For the description of signal processing,
by hiding state variables and combining only feedback
connections and limited built-in functions with states as
in Faust, functions with internal states can be expressed
in the same syntax as normal function definitions and
applications.

4.1 Comparison to related works

Compared to the existing environment, mimium brings
the following advantages: By taking an architecture
that adds minimal musical features and seman-
tics to the specification and implementation of a
general-purpose programming language, it keeps
the implementation simple and allows the user
to focus on musical tasks without losing the self-
extensibility of the programming language.

In fact, mimium can be used like a general-purpose
scripting language when the source does not use sched-
uling or stateful functions. The compiler structure of
mimium is the same as that of a general functional lan-
guage except for the stateful function conversion part.
Extempore is similar to this approach in this aspect,

allowing all description in a single environment; however,
user must use two different language: Scheme and xtlang.
xtlang requires the user to understand manual mem-
ory management and complex type signatures including
pointers when defining UGen as a closure. Although a
manual memory management is not always a negative
point as Extempore is an environment for full-stack live
programming that is not limited to music, it is generally
essential to make hardware management such as mem-
ory and threads unnecessary or optional in the language
specification, in terms of the language made for music,
so that the user can focus on musical tasks as suggested
by McCartney, the developer of SuperCollider, argues[11,
p61].

Kronos (and Meta-Sequencer) is also similar language
that focuses on self-extensibility. Kronos is more strict
functional language based on System F𝜔, and it is more
expressive as it can describe generic signal processor
by parameterizing inputs and outputs of processor as
lists. Its internal representation, however, is a graph
structure[16, p23] like Faust. An internal representation
in mimium is AST and SSA-form IR, more like to IR of
general programming languages.

4.2 Remaining Problems

The following issues remain in mimium when using it
practically as a unified language for music. First, the
way of describing discrete events using a task scheduler
is much more like an imperative paradigm that is apart
from the functional design pattern in signal processing.
When using @ operators, deferred functions are not

executed immediately; this inevitably leads to the use of
void-type functions with no return value and with side
effects (destructive assignment of variables), following
the form of imperative programming. Its programming
style is far apart from the notation of connecting signal
processing between the return value and the argument
between functions.
The combination of closures and temporal recursion,

as in Listing 15, would allow us to abstract discrete
values as functions and confine side effects within the
function; however, this is not possible in the current
implementation because the lifetime of a local variable
defined in a function is closed within that function defini-
tion. If the compiler can statically determine how long a
variable captured in a closure can survive by performing
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lifetime analysis[20], it would be possible to abstract dis-
crete values without changing the language specification
itself.

1 fn frp_constructor(period){

2 n = 0

3 modifier = |x|{

4 n = x // capture freevar

5 modifier(n+1)@(now+period)

6 }

7 modifier (0)@0

8 get = ||{ n }

9 return get

10 }

11 val = frp_constructor (1000)

12 event_val = val()

Listing 15. Example of encapsulating a temporal
discrete value not realized in current implementation
of mimium.

Another problem is that parametric replication of
functions with states is not possible in the current imple-
mentation that can be realized in Faust using a pattern
matching technique. Consider the example code in List-
ing 16 that inputs an arbitrary number of filters and
adds the outputs together. Here, we assume that the
function filter is a stateful function of some kind.

1 fn filterbank(N,input ,lowestfreq ,margin ,Q,

filter){

2 if(N>0){

3 return filter(input ,lowestfreq+N*margin ,Q)

4 + filterbank(N-1,input ,lowestfreq ,

margin ,Q,filter)

5 }else{

6 return 0

7 }

8 }

Listing 16. Example of parametric replication of
signal processor that cannot be realized in current
implementation of mimium.

In the current implementation, the compiler cannot
compile the code correctly because the compiler cannot
determine how many instances of the state variable for
the filter are needed statically. To solve this problem,
partial application of the constant N to the function
should be performed before the conversions of state
variables.

In the future, the compiler will need to be modified to
introduce a constant folding step between type inference
and stateful function conversion.
The current semantics, furthermore, has a problem

that the type system does not distinguish whether the
argument is a constant or not. For example, if a function
that returns some time-varying float is passed to N in
function filterbank, it is allowed at the type checker level,

but it fails at the constant folding stage. Semantically,
this constant folding can be seen as describing two stages
of computation in a single source code: one that deter-
mines the data flow of signal processing at the compile
time, and the other that runs at run time.
This situation is similar to the paradigm of multi-

stage computation such as templates/constexpr in C++
and MetaML[29]. Introducing a type system for multi-
stage computation would solve the problem that the
type checker cannot distinguish whether a variable is a
constant or not, because it can distinguish the stage of
computation (in this case compile-time and runtime) a
variable belongs to.

In addition, because multi-stage computation can be
used as an expressive macro[4], it is possible to build
more specialized DSLs for specific expressions on mim-
ium, just like developing DSLs built on top of Super-
Collider, for instance, TidalCycles[12], FoxDot[5], and
IXI[10], but in the same language system not like server/-
client model.

In addition, mimium’s DSP is based on the sample-by-
sample format similar to Faust, and it is not possible to
write functions such as FFT and granular synthesis that
process multiple samples as vectors at once. Considering
that in Kronos, this can be achieved by adding a built-
in function to convert the sample rate, mimium also
requires new semantics for the block computation.

5 Conclusion and Future Work
In this paper, we have described the design and imple-
mentation of mimium, a new programming language
for music. mimium is characterized by the fact that it
combines the discrete processing in the time domain and
the signal processing that has been a problem in music
programming languages.

As a language specification, music and signal process-
ing can be written without considering the hardware, as
memory management is not required and type inference
is available.

The design and implementation of mimium are based
on general programming languages with minimum fea-
tures for music such as @ operator and stateful functions
such as UGen, to allow users to concentrate on musical
tasks while ensuring that it is easily extensible on the
language itself. In contrast, the current major research
issues are the need to implement lifetime analysis of
variables such that discrete events can be described func-
tionally rather than imperatively, and the need to imple-
ment constant folding such that stateful functions can be
parametrically replicated. In addition, the possibility of
introducing the paradigm of multi-stage computation to
increase type safety and self-extensionality was implied.
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As a future application of the mimium language, we
aim to use it not only as a creative tool for creating
computer music, but also as an infrastructure for dis-
tributing musical works as programs. Faust, Soul, and
Vult have played an infrastructural role by allowing the
same DSP algorithm to be used across a wide range of
platforms such as audio plug-ins, web applications, and
hardware. While mimium incorporates discrete event
processing into the language specification, the compiler
implementation itself is relatively simple by design, and
the runtime features are kept to a minimum, making it
easy to reduce the binary size. In addition, the compiler,
runtime, execution engine and audio driver within the
runtime, are designed to be modular, to ensure that
they can be flexibly reconfigured through the addition
of various configurations such as DSP languages, for
example, a web-based backend and an audio driver for
file input/output.

In other words, mimium can enable the easy distribu-
tion of music generated by a program without fixing it
via recording or rendering; therefore, it has the potential
to serve as an infrastructure for codes as the musical
medium.

To make it easy to use it as a practical tool for such ap-
plications, we are working on implementing environment
variables (values that change depending on the execution
environment even for the same code, such as the sample
rate), enhancing IO such as MIDI and OSC support,
enriching the library, and developing a mechanism to
simplify code distribution, such as a package manager.

Additionally, a more formal definition of the languages
and the type system, and consideration of a benchmark
are the remaining issues.
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A EBNF definition of mimium
language

The language specification of mimium (at the version
0.4.0) is shown below in EBNF notation. The prece-
dence of operators is omitted but follows the order of
precedence of general programming languages, and the
@ operator is assumed to have the lowest precedence.

1 number ::= ?numbers?

2 symbol ::= ?all_alnum_and_underscore?

3 string ::= ?double_quote?<symbol >? double_quote?

4 rvar ::= <symbol >

5 lvar ::= <symbol > (":"<type >)?

6 lvar_args ::= <lvar > | <lvar_args > "," <lvar >

7 binop ::= "+"|" -"|"*"|"/"|"^"|"=="|

"!="|" >="|" <="|" >"|" <"|"&&"| "||"

8 uniop ::= "-" | "!"

9 infix ::= <expr > <binop > <expr > | <uniop > <expr

>

10 field ::= <expr >"."<symbol >

11 app ::= <expr >"(" <expr_args > ")"

12 lambda ::= "|" <lvar_args > "|" ("->" <type >)? <

expr >

13 if ::= "if" "("<expr >")" <expr > ("else" <expr

>)?

14 block ::= "{"< statements >"}"

15 expr ::= "self "|"now"|<number >|<string >|<rvar

>|<infix >|<field >|<app >|<lambda >|<if >|<

block >

16 expr_args ::= <expr > | <expr_args > "," <expr >

17

18 statements ::= <statement > | <statements > ?

linebreak? <statement >

19 statement ::= <app >|<schedule >|<fndef >|<assign

>|<lettuple >|<return >|<typealias >

20 schedule ::= expr "@" expr

21 fndef ::= "fn" <symbol > "("<lvar_args >")"

("->" <type >)? <block >

22 assign ::= <lvar > "=" <expr >

23 lettuple ::= <lvar_args > "=" <expr >

24 return ::= "return" <expr >

25

26 type ::= "void "|" float "|" string"|<symbol >|<

tupletype >|<fntype >|<recordtype >

27 types ::= <type > | <types >","<type >

28 tupletype ::= "()" | "("<types >")"

29 fntype ::= <tupletype >"->"<type >

30 recordtype ::= "{"< typekeyvals >"}"

31 typekeyvals ::= <typekeyval > | <typekeyvals

>","<typekeyval >

32 typekeyval ::= <string >":"<type >

33 typealias ::= "type" <symbol > "=" <type >

34

35 program ::= <statements >

Listing 17. EBNF definition of mimium
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