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ABSTRACT

Predominant instrument recognition in polyphonic mu-
sic is addressed using the score-level fusion of two vi-
sual representations, namely, Mel-spectrogram and mod-
gdgram. Modgdgram, a visual representation is obtained
by stacking modified group delay functions of consecu-
tive frames successively. Convolutional neural networks
(CNN) with an attention mechanism, learn the distinc-
tive local characteristics and classify the instrument to the
group where it belongs. The proposed system is system-
atically evaluated using the IRMAS dataset with eleven
classes. We train the network using fixed-length single-
labeled audio excerpts and estimate the predominant in-
struments from variable-length audio recordings. A wave
generative adversarial network (WaveGAN) architecture is
also employed to generate audio files for data augmenta-
tion. The proposed system reports a micro and macro F1
score of 0.65 and 0.60, respectively, which is 20.37% and
27.66% higher than those obtained by the state-of-the-art
Han model. The experiments demonstrate the potential
of CNN with attention mechanism on Mel-spectro/modgd-
gram fusion framework for the task of predominant instru-
ment recognition.

1. INTRODUCTION

Predominant instrument recognition refers to the problem
where the prominent instrument is identified from a mix-
ture of instruments being played together [1]. The au-
ditory scene produced by a musical composition can be
regarded as a multi-source environment, where different
sound sources are played at various pitches and loudness,
and even the spatial position of a given sound source may
vary with respect to time [2]. In polyphonic music, the
interference of simultaneously occurring sounds makes in-
strument recognition harder. Automatic identification of
lead instrument is important since it helps to enhance
fundamental music information retrieval (MIR) tasks like
source separation [2] auto-tagging [3], and automatic mu-
sic transcription [4].

Han et al. [1] employed the Mel-spectrogram-CNN ap-
proach for predominant instrument recognition in poly-
phonic music using an aggregation strategy over sliding
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windows. Pons et al. [5] analyzed the architecture of Han
et al. in order to formulate an efficient design strategy to
capture the relevant information about timbre. Both ap-
proaches were trained and validated by the IRMAS dataset
of polyphonic music excerpts. Detecting the activity of
music instruments using a deep neural network (DNN)
through a temporal max-pooling aggregation is addressed
in [6]. The paper [7] employed an attention mechanism
and multiple-instance learning (MIL) framework to ad-
dress the challenge of weakly labeled instrument recogni-
tion in the OpenMIC dataset. Dongyan Yu et al. [8] em-
ployed a network with an auxiliary classification scheme to
learn the instrument categories through multitasking learn-
ing. Gomez et al. [9] investigated the role of two source
separation algorithms as pre-processing steps to improve
the performance in the context of predominant instrument
detection tasks. It was found that both source separa-
tion and transfer learning could significantly improve the
recognition performance, especially for a small dataset
composed of highly similar musical instruments. In [10],
the Hilbert-Huang transform (HHT) is employed to map
one-dimensional audio data into two-dimensional matrix
format, followed by CNN to learn the affluent and effec-
tive features for the task. In [11] an ensemble of VGG-
like CNN classifiers, trained on non-augmented, pitch-
synchronized, tempo-synchronized, and genre-similar ex-
cerpts of IRMAS for the proposed task. The modified
group delay feature (MODGDF) has already been pro-
posed for pitched musical instrument recognition in an iso-
lated environment [12] and polyphonic predominant in-
strument recognition [13]. Bosch et al. improved the al-
gorithm proposed in [2] with source separation in a pre-
processing step [14]. While the commonly applied mel
frequency cepstral coefficients (MFCC) feature is capable
of modeling the resonances introduced by the filter of the
instrument body, it neglects the spectral characteristics of
the vibrating source, which also play its role in human per-
ception of musical sounds and genre classification [15].
Incorporating phase information is an effective attempt to
preserve this neglected component. It has already been
established in the literature that the modified group delay
function emphasizes peaks in spectra well [16]. The idea
of including modgdgram, GAN-based data augmentation
strategy, and CNN with multi-head attention are the main
contributions of the proposed scheme.

The rest of the paper is organized as follows. Section
2 gives an overview of the proposed model. The model
architecture is described in Section 3. The performance
evaluation is described in Section 4, followed by results in
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Figure 1. Block diagram of the proposed method of predominant instrument recognition.

Section 5. The paper is concluded in Section 6.

2. SYSTEM DESCRIPTION

The block diagram of the proposed method of predom-
inant instrument recognition is illustrated in Figure 1.
In the proposed model, CNN with multi-head attention
is used to learn the distinctive characteristics from Mel-
spectro/modgd-gram to identify the leading instrument in
polyphonic context. As a part of data augmentation, addi-
tional training files are generated using WaveGAN. During
the testing phase, the probability value at the output nodes
of the trained model is treated as the score correspond-
ing to the input test file. The input audio file is classified
to the node which gives the maximum score during test-
ing. In the fusion framework, the individual scores of Mel-
spectro/modgd-gram experiments are fused at the score-
level to make a decision. The fusion score 𝑆𝑓 , is obtained
by,

𝑆𝑓 = 𝛽𝑆𝑠𝑝𝑒𝑐𝑡𝑟𝑜 + (1− 𝛽)𝑆𝑚𝑜𝑑𝑔𝑑 (1)

where 𝑆𝑠𝑝𝑒𝑐𝑡𝑟𝑜, 𝑆𝑚𝑜𝑑𝑔𝑑, 𝛽 are the Mel-spectrogram score,
modgdgram score and weighting constant, respectively. 𝛽
= 0.5 is chosen empirically in our experiment. The per-
formance of the proposed system is compared with that of
Han’s model and a DNN framework. Feature extraction is
described in the following subsections.

2.1 Mel-spectrogram

Mel-spectrogram is widely used in recent music process-
ing applications [17, 18]. Mel-spectrogram approximates
how the human auditory system works and can be seen as
the spectrogram smoothed, with high precision in the low
frequencies and low precision in the high frequencies [19].

It is computed with a frame size of 50 ms and a hop size of
10 ms with 128 bins for the given task.

2.2 Modified group delay functions and Modgdgram

Group delay features are being employed in numerous
speech and music processing applications [16,20–22]. The
group delay function is defined as the negative derivative
of the unwrapped Fourier transform phase with respect to
frequency. Modified group delay functions (MODGD),
𝜏𝑚(𝑒𝑗𝜔) are obtained by,

𝜏𝑚(𝑒𝑗𝜔) = (
𝜏𝑐(𝑒

𝑗𝜔)

|𝜏𝑐(𝑒𝑗𝜔)|
)(|𝜏𝑐(𝑒𝑗𝜔)|)𝑎, (2)

where,

𝜏𝑐(𝑒
𝑗𝜔) =

𝑋𝑅(𝑒
𝑗𝜔)𝑌𝑅(𝑒

𝑗𝜔) + 𝑌𝐼(𝑒
𝑗𝜔)𝑋𝐼(𝑒

𝑗𝜔)

|𝑆(𝑒𝑗𝜔)|2𝑏
. (3)

The subscripts 𝑅 and 𝐼 denote the real and imaginary
parts, respectively. 𝑋(𝑒𝑗𝜔), 𝑌 (𝑒𝑗𝜔) and 𝑆(𝑒𝑗𝜔) are the
Fourier transforms of signal, 𝑥[𝑛], n.𝑥[𝑛] (signal multi-
plied with index), and the cepstrally smoothed version of
𝑋(𝑒𝑗𝜔), respectively. 𝑎 and 𝑏 (0 < 𝑎, 𝑏 ≤ 1 ) are intro-
duced to control the dynamic range of MODGD [16]. Mod-
gdgram is the visual representation of MODGD with time
and frequency in the horizontal and vertical axis, respec-
tively. The amplitude of the group delay function at a par-
ticular time is represented by the intensity or color in the
third dimension. Modgdgrams are computed with a frame
size of 50 ms and hop size of 10 ms using 𝑎 and 𝑏 values
of 0.9 and 0.5 respectively.
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3. MODEL ARCHITECTURE

3.1 Fusion without attention

First, we designed a three-layer CNN to encode the Mel-
spectrogram or modgdgram images. Filters of sizes 32, 64,
and 192 are used in the convolutional layers. Each con-
volutional layer is followed by 2x2 max-pooling. ReLU
is used as the activation in the hidden layer and the same
padding is employed to maintain the spatial resolution. We
used filters with a very small 2×2 receptive field, with a
fixed stride size of 1. For implementing fusion without at-
tention, we flattened the last convolutional layer followed
by fully connected layers. 20% of training data is used
for tuning the hyperparameters during training. Softmax is
used as the activation function for the output layer with 11
outputs. The number of parameters learned by the baseline
model is 1830315 parameters.

3.2 Attention model

Multi-head attention is employed after three convolutional
layers. It expands the model’s ability to focus on different
positions of Mel-spectrogram/modgdgram. For construct-
ing the attention the principle behind is to create smaller
linear representations of the same block by splitting the
content of a block into query vectors(𝑞), key vectors(𝑘),
and value vectors(𝑣). Using key and query vectors we can
create weights for the value vectors that will be used to
create the output vector. In the paper [23], such attention
blocks are used to encode and decode the sentences. The
various parameters chosen are shown in Table 1.

N 𝑙 𝑑 ℎ 𝑑𝑣 𝑑𝑜𝑢𝑡 𝑑𝑘

6 6*6 = 36 64*3 = 192 8 8*3 = 24 32 36

Table 1. Various hyperparameters (top row) and its values
(bottom row) selected for attention model.

where N represents the number of encoders or decoders
present in the self-attention layer, 𝑙 is the number of blocks
in the feature map the convolutional network made, 𝑑 is
the dimension of block, 𝑑𝑣 is the dimension of linear space
the input to be projected, 𝑑𝑜𝑢𝑡 is the output of the block
after applying attention and ℎ is the number of heads or
number of projections for each block. 𝑑𝑘 is the dimension
of the query vector. 𝑞1, 𝑘1, 𝑣1 are the query, key and value
vectors of input and 𝑞2, 𝑘2, 𝑣2 are the ℎ projections with
size 𝑑𝑣 of the 𝑞1, 𝑘1, 𝑣1 vectors. Then each query vector is
multiplied with each key vector to get the softmax predic-
tions over ℎ value vectors. The outputs from all 8 attention
heads are concatenated to form a single output vector be-
fore passing it through the feed-forward network. After the
attention layer, a normalization layer is also added to in-
crease the speed of convergence. It makes the tensor have
a standard normal distribution, at the same time it acts as
another smaller attention by deleting some dimensions of
the vector that are not important. The norm layer is fol-
lowed by flattened layers. The network is trained using
adam optimizer with a learning rate of 0.001. The network
learns the model with 473163 parameters which are ap-

proximately 4 times smaller than the baseline model with-
out attention. The model summary of the proposed method
of CNN with multi-head attention is shown in Table 2.

Input size Description
1x28x28 Modgdgram /Mel-spectrogram
32x28x28 2x2 Convolution, 32filters
32x14x14 2x2 Max-pooling
64x13x13 2x2 Convolution, 64 filters
64x7x7 2x2 Max-pooling
192x6x6 2x2 Convolution, 192 filters
192x36 Reshape
32x36 Multi-head attention
32x6x6 Reshape
32x6x6 Normalization layer
1152 Flattened and fully connected
256 Dense
11 Softmax

Table 2. Proposed CNN architecture with multi-head at-
tention.

4. PERFORMANCE EVALUATION

4.1 Dataset

IRMAS dataset [2], comprising eleven classes, is used
for the evaluation. The classes include cello (Cel), clar-
inet (Cla), flute (Flu), acoustic guitar (Gac), electric guitar
(Gel), organ (Org), piano (Pia), saxophone (Sax), trum-
pet (Tru), violin (Vio) and human singing voice (Voice).
The training data consists of 6705 audio files with excerpts
of 3 s from more than 2000 distinct recordings. Since the
dataset consists of testing audio samples with multiple pre-
dominant instruments as labels, we have considered all the
audio files with a single predominant instrument (single la-
bel) during the testing phase.

4.2 Data augmentation using WaveGAN

GAN has been successfully applied to a variety of prob-
lems in image generation [24] and style transfer [25].
WaveGAN v2 is used here to generate polyphonic files
with the leading instrument required for training. Wave-
GAN is similar to DCGAN, which is used for Mel-
spectrogram generation, in various music processing ap-
plications. The transposed convolution operation of DC-
GAN is modified to widen its receptive field in WaveGAN.
Specifically, longer one-dimensional filters of length 25 are
used instead of two-dimensional filters of size 5x5 and are
upsampled by a factor of 4 instead of 2 at each layer. The
discriminator is also modified similarly, using length 25
filters in one dimension [26]. The output dimensionality of
WaveGAN v2 is 65536 samples (corresponding to 4.01 s of
audio at 16 kHz). For the generator, the input is a random
noise uniformly distributed between -1 and 1. For training,
the WaveGAN optimizes WGAN-GP using Adam for both
generator and discriminator. A constant learning rate of
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Figure 2. Visual representation of an audio excerpt with acoustic guitar as leading, Mel-spectrogram of original and WaveGAN-
generated (Upper pane left and right). Modgdgram of original and WaveGAN-generated (Lower pane left and right).

0.0001 is used with 𝛽1 = 0.5 and 𝛽2 = 0.9. WaveGAN is
trained for 2000 epochs on the three sec audio files of each
class to generate similar audio files based on a similarity
metric (𝑠) [27] with a criteria 𝑠 > 0.1. A total of 6585 au-
dio files with cello (625), clarinet (482), flute (433), acous-
tic guitar (594), electric guitar (732), organ (657), piano
(698), saxophone (597), trumpet (521), violin (526) and
voice (720) are generated.

The quality of generated files is evaluated using a per-
ception test. It is conducted with ten listeners to as-
sess the quality of generated files for 275 files cover-
ing all classes. Listeners are asked to grade the quality
by choosing one among the five opinion grades varying
from poor to excellent quality (scores, 1 to 5). A mean
opinion score of 3.64 is obtained. This value is compa-
rable to the mos score obtained in [26] and [28] using
WaveGAN. The generated files are denoted by 𝑇𝑟𝑎𝑖𝑛𝑔

and training files available in the corpus are denoted by
𝑇𝑟𝑎𝑖𝑛𝑑. Mel-spectrogram and modgdgram of natural and
generated audio files for acoustic guitar are shown in Fig-
ure 2. The experiment details and a few audio files can be
accessed at https://sites.google.com/view/audiosamples-
2020/home/instrument

4.3 Experimental set-up

The experiment is progressed in three phases namely Mel-
spectrogram-based, modgdgram-based, and score-level
fusion-based. 1305 polyphonic files comprising eleven
classes with a single label are used for the testing phase.
The performance of the proposed method is compared with
that of Han’s model [1]. As different from our approach,
they used a sliding window to perform short-time analysis,
and sigmoid outputs were aggregated by taking class-wise

average. After normalization, the candidate with maxi-
mum probability is assumed to be the most predominant
instrument. Han’s baseline model is implemented for the
given experiment with 1 s slice length for performance
comparison 1

A DNN framework on musical texture features (MTF)
is also experimented with to examine the performance
of deep learning methodology on handcrafted features.
MTF includes MFCC (13 dim), spectral centroid, spectral
bandwidth, root mean square energy, spectral roll-off, and
chroma STFT. The features are computed with a frame size
of 40 ms and a hop size of 10 ms using Librosa framework
2 . DNN consists of seven layers, with increasing units
from 8 to 512. ReLU has been chosen for hidden layers
and softmax for the output layer. The network is trained
for 500 epochs using Adam optimizer with a learning rate
of 0.001.

Since the number of annotations for each class was not
equal, we computed precision, recall, and F1 measures for
both the micro and the macro averages. For the micro
averages, we calculated the metrics globally, thus giving
more weight to the instrument with a higher number of ap-
pearances. On the other hand, we calculated the metrics
for each label and found their unweighted average for the
macro averages. Overall accuracy is also used as a metric
for performance evaluation. ‘

5. RESULTS AND ANALYSIS
The overall performance of different phases of the ex-
periment is tabulated in Table 3. Fusion with Attention
(Fusion-Attn) network achieved micro and macro F1 mea-

1 https://github.com/Veleslavia/EUSIPCO2017
2 https://librosa.org/doc/latest/tutorial.html
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SL.No Class MTF-DNN Han’s Model Mel-spectrogram-Attn Modgdgram-Attn Fusion-Attn

P R F1 P R F1 P R F1 P R F1 P R F1

1 Cello 0.54 0.59 0.56 0.55 0.44 0.49 0.48 0.70 0.57 0.09 0.15 0.12 0.79 0.67 0.73

2 Clarinet 0.15 0.40 0.22 0.23 0.64 0.33 0.74 0.68 0.71 0.10 0.28 0.15 0.54 0.80 0.65

3 Flute 0.17 0.21 0.19 0.54 0.54 0.54 0.66 0.60 0.63 0.21 0.16 0.18 0.68 0.72 0.70

4 Acoustic guitar 0.59 0.39 0.47 0.62 0.51 0.56 0.61 0.44 0.51 0.61 0.38 0.47 0.66 0.57 0.61

5 Electric guitar 0.56 0.46 0.51 0.57 0.51 0.54 0.53 0.64 0.58 0.49 0.47 0.48 0.66 0.68 0.67

6 Organ 0.22 0.45 0.29 0.20 0.42 0.27 0.26 0.69 0.38 0.12 0.18 0.14 0.30 0.62 0.40

7 Piano 0.70 0.36 0.47 0.72 0.58 0.64 0.68 0.66 0.67 0.64 0.55 0.59 0.73 0.71 0.72

8 Saxophone 0.03 0.40 0.06 0.13 0.60 0.21 0.10 0.70 0.18 0.03 0.20 0.05 0.18 0.70 0.29

9 Trumpet 0.14 0.57 0.23 0.30 0.86 0.44 0.86 0.43 0.57 0.19 0.36 0.24 0.59 0.71 0.65

10 Violin 0.24 0.53 0.33 0.43 0.58 0.49 0.85 0.31 0.45 0.38 0.45 0.42 0.56 0.51 0.53

11 Voice 0.55 0.34 0.43 0.69 0.55 0.61 0.74 0.47 0.57 0.68 0.54 0.60 0.78 0.61 0.68

Macro 0.35 0.43 0.34 0.45 0.57 0.47 0.59 0.57 0.53 0.32 0.34 0.31 0.59 0.66 0.60

Micro 0.39 0.39 0.39 0.54 0.54 0.54 0.56 0.56 0.56 0.43 0.43 0.43 0.65 0.65 0.65

Table 3. Precision (P), recall (R), and F1 score for the experiments with data augmentation.

Figure 3. Visualisation of feature maps of convolutional layers and attention. The upper pane represents the feature maps for Mel-
spectrogram inputs and the lower pane represents the feature maps for modgdgram inputs.

sures of 0.65 and 0.60, respectively. The State-of-the-
art Han model reports micro F1 and macro F1 scores of
0.54 and 0.47, respectively. Micro F1 and macro F1 are
20.37% and 27.66% higher than those obtained for the
baseline model. Modgdgram added complementary infor-
mation to the spectrogram approach. Conventionally, the
spectrum-related features used in instrument recognition
take into account merely the magnitude information. How-
ever, there is often additional information concealed in
the phase, which could be beneficial for recognition [12].
Han’s model and the proposed Mel-spectrogram approach
show similar performance with better performance for the
proposed architectural choice. It is worth noting that mod-
gdgram itself outperforms the MTF-DNN methodology.
It reveals the importance of phase information in musical
processing tasks.

5.1 Effect of attention

Attention mechanisms have become an integral part of
compelling sequence modeling and transduction models
since these models show superior quality while being more
parallelizable and requiring significantly less time to train.
[23]. It is applied to a variety of speech and music pro-
cessing applications like speech emotion recognition [29],
music instrument recognition [7], music generation [30]
etc. For polytimbral music instrument recognition atten-
tion model focus on specific time segments in the audio
relevant to each instrument label. The ability of the atten-
tion model to weigh relevant and suppress irrelevant pre-
dictions for each instrument leads to better classification
accuracy [7]. Compared to self-attention the multi-head
attention gives the attention layer multiple representation
subspaces, and as the image passes through different heads
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Sl.No Model Micro Macro
P R F1 P R F1

1 Fusion-without Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔) 0.54 0.54 0.54 0.46 0.58 0.48
2 Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑) 0.57 0.57 0.57 0.53 0.63 0.54
3 Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔). 0.65 0.65 0.65 0.59 0.66 0.60

Table 4. Performance comparison of the models with and without data augmentation.

Sl.No Model Micro Macro
P R F1 P R F1

1 Bosch et al. [14] 0.50 0.50 0.50 0.41 0.45 0.43
2 Han et al./1446k [1] 0.65 0.56 0.60 0.54 0.51 0.50
3 Single-layer/62k [5] 0.61 0.52 0.56 0.52 0.48 0.48
4 Multi-layer/743k [5] 0.65 0.54 0.59 0.55 0.52 0.52
5 Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔)/473k 0.63 0.63 0.63 0.51 0.55 0.52

Table 5. Performance comparison for IRMAS dataset.

predictions about the predominant instruments are more re-
fined than employing single head self-attention. Another
important point is that it requires very few trainable param-
eters to learn the model, which helps to reach convergence
faster than the models employing CNN alone. The signif-
icance of attention in the proposed model can be analyzed
from Table 4. Fusion without Attention reports micro and
macro F1 scores of 0.54 and 0.48 respectively. Fusion with
Attention reports micro and macro F1 scores of 0.65 and
0.60, respectively, with an improvement of 20.37% and
25% higher than that obtained by Fusion without Atten-
tion.

Visualization of the feature maps extracted from the first
two convolutional layers and attention layer is shown in
Figure 3. It is created with 8 feature maps as subplots. The
feature maps close to the input detect small or fine-grained
detail, whereas attention layer feature maps capture more
general and refined features for predominant instrument
recognition.

5.2 Effect of data augmentation

For deep learning, the number of training examples is crit-
ical for the performance compared to the case of using
hand-crafted features because it aims to learn a feature
from the low-level input data [1]. The significance of data
augmentation in the proposed model can be analyzed from
Table 4. Fusion-Attn without data augmentation (𝑇𝑟𝑎𝑖𝑛𝑑)
reports micro and macro F1 score of 0.57 and 0.54 re-
spectively. Fusion-Attn (𝑇𝑟𝑎𝑖𝑛𝑑 + 𝑇𝑟𝑎𝑖𝑛𝑔) reports micro
and macro F1 score of 0.65 and 0.60, respectively, with
improvement of 14.03% and 11.11% higher than that ob-
tained by Fusion (𝑇𝑟𝑎𝑖𝑛𝑑).

5.3 Multiple predominant instrument recognition

The IRMAS dataset contains testing files of variable length
and has multiple predominant instruments. For our ini-
tial work, we considered only the variable-length poly-

phonic testing files with a single predominant instrument.
The same experiment is repeated for multiple predominant
instrument recognition using the entire 2874 testing files
available in the corpus. For that, we trained our networks
using fixed-length excerpts containing a single predomi-
nant instrument and estimated an arbitrary number of in-
struments from variable-length audio files having multiple
predominant instruments.

The standard metrics for various algorithms on the IR-
MAS corpus are reported in Table 5. The number of
trainable parameters is also indicated. Bosch et al. [14]
algorithm used typical hand-made timbral audio features
with their frame-wise mean and variance statistics to train
SVMs with source separation technique called flexible
audio source separation framework (FASST) in a pre-
processing step. The state-of-the-art Han model [1] re-
ports micro and macro F1 score of 0.60 and 0.50 re-
spectively. Han et al. [1] developed a deep CNN for
instrument recognition based on Mel-spectrogram inputs.
Pons et al. [5] customized the architecture of Han et
al. and introduced two models, namely, single-layer and
multi-layer approaches. They used the same aggregation
strategy as that of Han’s model by averaging the soft-
max predictions and finding the candidates with a thresh-
old of 0.2. As different from the existing approaches,
we estimated the predominant instrument using the entire
Mel-spectrogram without sliding or aggregation analysis.
As our Mel-spectrogram/modgdgram inputs pass through
multiple heads the presence of predominant instruments is
refined from the simultaneously occurring partials. Our
Fusion approach reports a micro and macro F1 score of
0.63 and 0.52, which is a 5 % and 4 % increase from Han’s
model. Also, our proposed method shows better micro
and macro recall than the existing techniques. Our pro-
posed method reports a micro and macro recall of 0.63
and 0.55, which is an 12.5 % and 7.84 % increase from
Han’s model. It reveals the importance of the attention
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mechanism in predicting multiple instruments. A signif-
icant improvement is also observed over the method pro-
posed in [14]. Also, the fusion network reports better re-
sults with very less trainable parameters, compared to ex-
isting techniques. In [7], the usage of an attention layer
was shown to improve classification results in the Open-
MIC dataset, when applied to a set of Mel-spectrogram
features extracted from a pre-trained VGG net. While the
work [7] focusses on Mel-spectrogram, we experimented
with the effect of phase information along with magnitude
information. The experimental results in the paper show
the potential of Mel-spectrogram and modgdgram on rec-
ognizing predominant instruments in a polyphonic envi-
ronment with multi-head attention.

6. CONCLUSIONS

We presented an Attention-based predominant instrument
recognition system using Mel-spectro/modgd-gram in-
puts. CNN with multi-head attention is used to capture
the instrument-specific characteristics and then do fur-
ther classification. The proposed method is evaluated us-
ing the IRMAS dataset. Data augmentation is also per-
formed using WaveGAN. The fusion framework outper-
forms the latest model proposed by Han et al. The re-
sults show the potential of score-level fusion of magni-
tude and phase-based approaches and the attention mecha-
nism empowers the network to focus on specific regions of
Mel-spectrogram/modgdgram in predominant instrument
recognition in polyphonic music.
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