
Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

300

GENERALIZED TONAL PITCH SPACE WITH EMPIRICAL TRAINING

Hiroyuki YAMAMOTO (山本紘征)(yamamoto@kusuli.com)1 and Satoshi TOJO (東条敏)(tojo@jaist.ac.jp)1

1JAIST, Ishikawa, Japan

ABSTRACT

A chord name can be interpreted in multiple ways, so a se-
quence of chord names has combinatorially many interpre-
tations though most of which are inadequate. Tonal Pitch
Space (TPS) is a music model which enables us to mea-
sure the distance between two chords, and thus we can rely
on the theory to find most plausible interpretations, calcu-
lating the shortest path in the network of chord sequences.
Although TPS is based on classical music theory, it is not
based on data in a precise sense. As a result, the distance
in the original TPS is somewhat rough to achieve high pre-
diction accuracy.

In this study, we combine empirical observations with
TPS, that is, to allow users to pick arbitrary combinations
of features and calculate the distance of two chord inter-
pretations. Then we propose a path probability formula to
convert a path distance to a path probability, so that we
can train the parameters from annotated datasets. We illus-
trate several experimental distance elements and show that
some combinations of them can significantly improve the
prediction accuracy, which resulted in over 86% in the test
set.

1. INTRODUCTION

A Berklee style chord name by itself can be interpreted in
several ways, and we need to consider the context to deter-
mine the plausibility of each candidate. Tonal Pitch Space
(TPS) [3] gives us a foundation to consider the context by
defining the smoothnesss of chord connection as the nu-
meric distance between two chords, given their keys and
degrees. Based on this, Sakamoto et al. [4] have proposed
a method to find the most plausible interpretation path for
a chord sequence as the shortest path in the interpretation
graph, that expresses all possible chord interpretation paths
each edge is weighted by the distance on TPS. However,
the prediction accuracy of this method is only around 40%.
This is, we assume, partly because TPS is based on clas-
sical music theory but not on data. So its structure and
coefficients are not, strictly speaking, defined in an objec-
tive manner. Therefore, the model is a little too simple to
achieve high prediction accuracy.

In this study, we work through these problems by com-
bining empirical observations with TPS. First, we rear-

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

range the distance formula in TPS to the sum of three dis-
tance elements, then generalize it to allow us to add other
distance elements. These distance elements we define are
in the form of tables whose cells correspond to the spe-
cific combinations of features of two chord interpretations.
Next, we propose a path probability formula which gives
higher probability to a path with shorter total distance. Fi-
nally, by differentiating the cross entropy loss function, we
calculate the gradient and update the parameters using it.

Our approach 1 enables us to generalize and refine TPS
by learning the metric model of arbitrary combinations of
features as long as they contribute to decrease the value
of target (loss) function. And we demonstrate the effec-
tiveness of our approach by showing the best model being
able to significantly improve the prediction accuracy and
achieve over 86%.

This paper is organized as follows. In Section 2, we re-
view related works. Then we give the formal represen-
tation of our proposed model and the learning strategy in
Section 3 and 4, respectively. Thereafter, we show the ex-
perimental results in Section 5. Finally, we conclude in
Section 6.

2. TPS-BASED APPROACH

There have been a lot of approaches to analyze musical
harmony, and nowadays, a model with Hidden Markov
Model (HMM) [12–15] and that with neural networks
[16–18] seem prevalent. In this paper, however, we focus
on Tonal Pitch Space. The theory finds the shortest path by
the sum of the smallest distances in chords, and thus it re-
sults in the most plausible interpretation of chords by keys
and degrees. Therefore, the detection of the shortest path is
also expected to coincide with the local key identification.

2.1 Tonal Pitch Space

TPS is a music model for the quantitative harmony analy-
sis proposed by Lerdahl [3]. It is proposed to complement
Lerdahl’s the other music theory (the Generative Theory of
Tonal Music [5]), which applies the generative grammar to
extend the Schenkerian theory. A chord can be interpreted
in multiple degree/key pairs (e.g., interpretations of C ma-
jor triad are as follows: I/C, III/a, V/F, IV/G, VI/ a, and
VII/d) and TPS defines a distance between every pair of
these degree/key pairs.

The distance between chord interpretations 𝑥 and 𝑦, when

1 Source code is available at https://github.com/kusuli/
smc2021/.

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

301

they are in related keys, can be calculated as equation (1)

𝛿(𝑥, 𝑦) = 𝑟𝑒𝑔𝑖𝑜𝑛(𝑥, 𝑦) + 𝑐ℎ𝑜𝑟𝑑(𝑥, 𝑦)

+𝑏𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦)
(1)

where 𝑟𝑒𝑔𝑖𝑜𝑛(𝑥, 𝑦) is a distance between keys,
𝑐ℎ𝑜𝑟𝑑(𝑥, 𝑦) is a distance between degrees, and
𝑏𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦) is a distance on a structure called
basic space.

The calculation above is applicable only when 𝑥 and 𝑦
are in related keys which are defined as follows:

𝐶(𝑅) =

{︃
{I, i, ii, iii, IV,V, vi} if 𝑅 is a major key
{i, I,bIII, iv, v,bVI,bVII} otherwise

(2)
where roman numerals in this equation mean the keys with
the tonic being the degree of 𝑅 (e.g., 𝐶(F) is F, f, g, a, Bb,
C, and d). If 𝑥 and 𝑦 are not in related keys (i.e., distant
keys), distance between 𝑥 and 𝑦 can be calculated as :

𝛿(𝑥, 𝑦) = min (
𝛿(𝑥, 𝑇𝑅1) + ∆(𝑅1, 𝑅𝑛) + 𝛿(𝑇𝑅𝑛 , 𝑦)

|𝑅1 ∈ 𝐶(𝑅𝑥), 𝑅𝑛 ∈ 𝐶(𝑅𝑦)
)

∆(𝑅1, 𝑅𝑛) = min(
𝑛−1∑︁
𝑖=1

𝛿(𝑇𝑅𝑖
, 𝑇𝑅𝑖+1

)|𝑅𝑖+1 ∈ 𝐶(𝑅𝑖))

(3)
where 𝑇𝑅 is key 𝑅’s tonic, 𝑅𝑧 is chord interpretation 𝑧’s
key. In other words, the transition from 𝑥 to 𝑦 must be
considered as a combination of transitions within related
keys, and the overall distance is the shortest total distance
of the transitions.

As explained above, the distance within related keys
(equation (1)) is composed of the sum of three elements.
Now, because equation (3) is the sum of equation (1)s,
the resulting distance can also be considered as the sum
of three elements. Therefore, we can rewrite the distance
as follows:

𝛿(𝑥, 𝑦) = 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛(𝑥, 𝑦) + 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑(𝑥, 𝑦)

+𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦)
(4)

2.2 Former Approaches based on TPS

Sakamoto et al. [4] have applied TPS to analyze chord
sequences to find the most plausible interpretation as the
shortest path based on the distances described above.

Given a chord sequence, first their method extends each
chord to its interpretations and constrcuts a graph whose
edges have weights that correspond to the distances on
TPS. Then it applies the Viterbi algorithm [6] to find the
shortest interpretation paths from the start to the goal. Fig-
ure 1 shows an interpretation graph for chord sequence C
→ F → G → C. One of the shortest interpretation path in
Figure 1 is I/C → IV/C → V/C → I/C.

Catteau et al. [9] utilized the key profiles of Temperly
[10] alongside TPS to define probabilities concerning
chords, scales, and chroma vectors to estimate keys and
chords from audio. Rocher et al. [11] used Temperly’s key
profiles and TPS to construct a harmonic graph then esti-
mate individual chords and keys by finding the best path.

Figure 1. Interpretation graph.

In the effort to improve cadence detection, Matsubara et
al. [7] have proposed to restrict the minor scale to har-
monic one to avoid the ambiguity in chord interpretation,
and to revise the candidates of chord interpretations of each
chord names. Yamamoto et al. [8] have proposed to extend
TPS and interpretation graph to consider (1) tetrads and
three minor scales, (2) pivot-chord modulations, and (3)
certain cadence patterns to improve the expressiveness and
reduce the ambiguity mainly focusing on jazz harmony.
Furthermore, there are many approaches with some kinds
of metric models other than TPS. Feisthauer et al. [19] ,for
example, defined three proximity measures based on mu-
sicologial knowledge to find the optimal path as the tonal
plan.

In the following sections, we revise the structure of TPS
and predict chord interpretations using the interpretation
graph proposed by Sakamoto et al. [4].

3. PROPOSED MODEL

We define notations as follows:

𝒳 Δ
= {I/A, ii/A, · · · ,VI/g#,VII/g#} : the set of

chord interpretations

𝑥, 𝑦 ∈ 𝒳 : individual chord interpretations

ℐ Δ
= {1, 2, 3, 4.1, 4.2, 5.1, · · · , |ℐ|}: the set of dis-

tance element indices

𝑠𝑐𝑎𝑙𝑒 : 𝒳 → {0, 1}: the function which
maps a chord interpretation to its scale 2 (e.g.
𝑠𝑐𝑎𝑙𝑒(𝑖𝑖𝑖/𝐴) = 0, 𝑠𝑐𝑎𝑙𝑒(𝐼𝐼𝐼/𝑐) = 1)

𝑡𝑜𝑛𝑖𝑐 : 𝒳 → {𝑛 ∈ Z|0 ≤ 𝑛 ≤ 11}: the function
which maps a chord interpretation to its tonic note 3

(e.g. 𝑡𝑜𝑛𝑖𝑐(𝑖𝑖𝑖/𝐴) = 9, 𝑡𝑜𝑛𝑖𝑐(𝐼𝐼𝐼/𝑐) = 0)

𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥)

Δ
=

{︃
𝑡𝑜𝑛𝑖𝑐(𝑥) if 𝑠𝑐𝑎𝑙𝑒(𝑥) = 0

(𝑡𝑜𝑛𝑖𝑐(𝑥) + 3) 𝑚𝑜𝑑 12 otherwise

2 Here, we only consider major (= 0) and minor (= 1) scales.
3 We use pitch classes to express notes.

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

302

(e.g. 𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑖𝑖𝑖/𝐴) = 9,
𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝐼𝐼𝐼/𝑐) = 3)

𝑟𝑜𝑜𝑡 : 𝒳 → {𝑛 ∈ Z|0 ≤ 𝑛 ≤ 11}: the function
which maps a chord interpretation to its root note
(e.g. 𝑟𝑜𝑜𝑡(𝑖𝑖𝑖/𝐴) = 1, 𝑟𝑜𝑜𝑡(𝐼𝐼𝐼/𝑐) = 3)

𝑑𝑒𝑔𝑟𝑒𝑒 : 𝒳 → {𝑛 ∈ Z|1 ≤ 𝑛 ≤ 7}: the function
which maps a chord interpretation to its degree (e.g.
𝑑𝑒𝑔𝑟𝑒𝑒(𝑖𝑖𝑖/𝐴) = 3, 𝑑𝑒𝑔𝑟𝑒𝑒(𝐼𝐼𝐼/𝑐) = 3)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖 : 𝒳 × 𝒳 → R: the function
which maps a chord interpretation pair to their dis-
tance based on the distance element of index 𝑖 ∈ ℐ

𝑏 : ℐ → {0, 1}: the function which specifies the
activation of each distance element

The distance on TPS can be thought of the sum of three
distance elements as in equation (4). Now we rearrange
this equation as a sum of all (active) distance elements.

𝐺𝑇𝑃𝑆(𝑥, 𝑦) =
∑︁
𝑖∈ℐ

𝑏(𝑖) · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖(𝑥, 𝑦) (5)

The first three distance elements are from the original TPS,
namely, 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑, and 𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒
in equation (4). In addition to them, we can add arbi-
trary new distance elements by freely choosing which and
which features to distinguish. In the following subsections,
we propose in total twelve new distance elements, which
are inspired by the original TPS. Finally, with 𝑏(𝑖) term
in equation (5), we can use any combinations of distance
elements.

3.1 Distance Element 4: Scale Distance

Distance elements for scale transitions. We define two
variants as follows:

3.1.1 DE 4.1: Symmetric Scale Distance

𝑀4.1 ∈ R2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡4.1(𝑥, 𝑦)
Δ
= 𝑀4.1

[︂
(𝑠𝑐𝑎𝑙𝑒(𝑥)− 𝑠𝑐𝑎𝑙𝑒(𝑦))

𝑚𝑜𝑑 2

]︂
4

(6)

This one merely distinguishes whether the scale is
changed or not.

3.1.2 DE 4.2: Asymmetric Scale Distance

𝑀4.2 ∈ R2×2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡4.2(𝑥, 𝑦)
Δ
= 𝑀4.2 [𝑠𝑐𝑎𝑙𝑒(𝑥), 𝑠𝑐𝑎𝑙𝑒(𝑦)]

(7)
The asymmetric version of DE 4.1 (e.g., major → minor,

and minor → major are considered same in DE 4.1, but not
in DE 4.2).

4 𝑀 [𝑖𝑖, 𝑖2, · · · , 𝑖𝑛] indicates the value in 𝑛 dimensional table 𝑀 at
the index (𝑖1, 𝑖2, · · · , 𝑖𝑛).

3.2 Distance Element 5: Tonic Distance

Distance elements for tonic transitions, by which we intend
to generalize 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 in equation (4). Tonic transi-
tions can be thought of as key transitions without consid-
ering scales. We define six variants as follows:

3.2.1 DE 5.1: Symmetric Relative Tonic Distance

𝑀5.1 ∈ R7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.1(𝑥, 𝑦)

Δ
= 𝑀5.1

⎡⎢⎢⎢⎣𝑚𝑖𝑛

⎛⎜⎜⎜⎝
(𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑦)−𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12,

(𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥)−𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑦))

𝑚𝑜𝑑 12

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
(8)

Among all variants, this one is conceptually closest to the
original 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛.

3.2.2 DE 5.2: Symmetric Parallel Tonic Distance

𝑀5.2 ∈ R7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.2(𝑥, 𝑦)

Δ
= 𝑀5.2

[︃
𝑚𝑖𝑛

(︃
(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑡𝑜𝑛𝑖𝑐(𝑦))𝑚𝑜𝑑 12

)︃]︃ (9)

Unlike the relative tonic distance, this one identifies par-
allel keys (e.g., C major and C minor), instead of relative
keys (e.g., C major and A minor).

3.2.3 DE 5.3: Asymmetric Relative Tonic Distance

𝑀5.3 ∈ R12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.3(𝑥, 𝑦)

Δ
= 𝑀5.3 [(𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑦)−𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12]

(10)
The asymmetric version of DE 5.1 (e.g., C → D and D →

C are distinguished in DE 5.3, but not in DE 5.1).

3.2.4 DE 5.4: Asymmetric Parallel Tonic Distance

𝑀5.4 ∈ R12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡5.4(𝑥, 𝑦)

Δ
= 𝑀5.4 [(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12]

(11)

The asymmetric version of DE 5.2.

3.3 Distance Element 6: Key Distance

Distance elements for key transitions, which can handle
both scale transitions and tonic transitions at once. One
can calculate those distances by the combination of DE 4.x
and DE 5.x, but this assumes the independence of the tran-
sitions of scales and that of tonics. By contrast, DE 6.x can
consider the interactions of scales and tonics, if any. There
are two variants as follows:

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

303

3.3.1 DE 6.1: Symmetric Key Distance

𝑀6.1 ∈ R2×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡6.1(𝑥, 𝑦)

Δ
= 𝑀6.1

⎡⎢⎢⎢⎣(𝑠𝑐𝑎𝑙𝑒(𝑥)− 𝑠𝑐𝑎𝑙𝑒(𝑦))

𝑚𝑜𝑑 2
,𝑚𝑖𝑛

⎛⎜⎜⎜⎝
(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑡𝑜𝑛𝑖𝑐(𝑦))

𝑚𝑜𝑑 12

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

(12)

3.3.2 DE 6.2: Asymmetric Key Distance

𝑀6.2 ∈ R2×2×12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡6.2(𝑥, 𝑦)

Δ
= 𝑀6.2

[︃
𝑠𝑐𝑎𝑙𝑒(𝑥), 𝑠𝑐𝑎𝑙𝑒(𝑦),

(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12

]︃
(13)

The asymmetric version of DE 6.1.

3.4 Distance Element 7: Root-Degree Distance

Distance elements for root note transitions from each de-
gree, which roughly generalize 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑 in equation
(4), although with much more information 5 . We define
two variants as follows:

3.4.1 DE 7.1: Symmetric Root-Degree Distance

𝑀7.1 ∈ R7×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡7.1(𝑥, 𝑦)

Δ
= 𝑀7.1

⎡⎢⎢⎢⎣𝑑𝑒𝑔𝑟𝑒𝑒(𝑥),𝑚𝑖𝑛

⎛⎜⎜⎜⎝
(𝑟𝑜𝑜𝑡(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))

𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑟𝑜𝑜𝑡(𝑦))

𝑚𝑜𝑑 12

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

(14)
This one calculates distance according to the relative po-

sitions of roots for each (source) degree.

3.4.2 DE 7.2: Asymmetric Root-Degree Distance

𝑀7.2 ∈ R7×12

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡7.2(𝑥, 𝑦)

Δ
= 𝑀7.2 [𝑑𝑒𝑔𝑟𝑒𝑒(𝑥), (𝑟𝑜𝑜𝑡(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥)) 𝑚𝑜𝑑 12]

(15)
The asymmetric version of DE 7.1.

3.5 Distance Element 8: Key-Degree Distance

Distance elements for key and degree transitions, which
can handle both key (i.e., scale and tonic) transitions and
degree transitions all at once. Unlike the combinations of
DE 4.x, DE 5.x, and DE 7.x or DE 6.x and DE 7.x, DE 8.x
can consider the interactions of scales, tonics and degrees.
We define two variants as follows:

5 A straightforward way to do this may be to take step distance between
two degrees (i.e., replacing 𝑡𝑜𝑛𝑖𝑐 in DE 5.2 and DE 5.4 with 𝑑𝑒𝑔𝑟𝑒𝑒), but
we omitted them because both of them perform very poorly.

3.5.1 DE 8.1: Symmetric Key-Degree Distance

𝑀8.1 ∈ R2×7×7×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡8.1(𝑥, 𝑦)

Δ
= 𝑀8.1 [(𝑠𝑐𝑎𝑙𝑒(𝑥)− 𝑠𝑐𝑎𝑙𝑒(𝑦)) 𝑚𝑜𝑑 2, 𝑑𝑒𝑔𝑟𝑒𝑒(𝑥),

𝑑𝑒𝑔𝑟𝑒𝑒(𝑦),𝑚𝑖𝑛

(︃
(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))𝑚𝑜𝑑 12,

(𝑡𝑜𝑛𝑖𝑐(𝑥)− 𝑡𝑜𝑛𝑖𝑐(𝑦)) 𝑚𝑜𝑑 12

)︃]︃
(16)

3.5.2 DE 8.2: Asymmetric Key-Degree Distance

𝑀8.2 ∈ R2×7×2×12×7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡8.2(𝑥, 𝑦)

Δ
= 𝑀8.2 [𝑠𝑐𝑎𝑙𝑒(𝑥), 𝑑𝑒𝑔𝑟𝑒𝑒(𝑥), 𝑠𝑐𝑎𝑙𝑒(𝑦), 𝑑𝑒𝑔𝑟𝑒𝑒(𝑦),

(𝑡𝑜𝑛𝑖𝑐(𝑦)− 𝑡𝑜𝑛𝑖𝑐(𝑥))𝑚𝑜𝑑 12]
(17)

The asymmetric version of DE 8.1.
　
All the proposed distance elements and sample indices

are listed in Table 1.

DE I/C → V/G I/C → iv/c#
4.1 Sym Scale (0) (1)
4.2 Asym Scale (0, 0) (0, 1)
5.1 Sym Relative Tonic (5) (4)
5.2 Sym Parallel Tonic (5) (1)
5.3 Asym Relative Tonic (7) (4)
5.4 Asym Parallel Tonic (7) (1)
6.1 Sym Key (0, 5) (1, 1)
6.2 Asym Key (0, 0, 7) (0, 1, 1)
7.1 Sym Root-Degree (1, 2) (1, 6)
7.2 Asym Root-Degree (1, 2) (1, 6)
8.1 Sym Key-Degree (0, 1, 5, 5) (1, 1, 4, 1)
8.2 Asym Key-Degree (0, 1, 0, 5, 7) (0, 1, 1, 4, 1)

Table 1. Indices for two sample transitions.

4. LEARNING STRATEGY

We define additional notations as follows:

𝐺: an interpretation graph with |𝐺| layers

𝐺𝑠:𝑡: from 𝑠th layer to 𝑡th layer of 𝐺 (𝐺𝑠:𝑠 can be
abbreviated as 𝐺𝑠). As a simplified notation, a node
in the 𝑠th layer can be written as 𝑥 ∈ 𝐺𝑠, likewise,
𝑥 ∈ 𝐺𝑠:𝑡 be a path from the 𝑠th layer to the 𝑡th layer,
and 𝑥 ∈ 𝐺𝑠:𝑡−1||𝑥𝑡 be a path from 𝑠th layer to the
(𝑡− 1)th layer and added 𝑥𝑡 to be the last node.

𝑥𝑠:𝑡: from 𝑠th element to 𝑡th element of an interpre-
tation path 𝑥0:|𝐺| (𝑥𝑠:𝑠 can be abbreviated as 𝑥𝑠)

𝑥*
0:|𝐺|: the ground truth interpretation path

𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥𝑠:𝑡)
Δ
=
∑︀𝑡−1

𝑢=𝑠 𝐺𝑇𝑃𝑆(𝑥𝑢, 𝑥𝑢+1)

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

304

We want the calculated distances to allow us to estimate
the true interpretation path as a shortest path in the inter-
pretation graph. So we need to learn the parameters to
give true interpretation path a shorter total distance than
the other interpretation paths.

For that purpose, we first define the path probability for-
mula and then train the tables by using the gradients on the
parameter spaces.

4.1 Path Probability

We define the path probability from start node to 𝑠th chord
interpretation as below:

P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠)

Δ
=

{︃
1 if 𝑠 = 0 6∏︀𝑠−1

𝑡=0
exp(−𝐺𝑇𝑃𝑆(𝑥𝑡,𝑥𝑡+1))

𝑍𝐺,𝑡
otherwise

(18)

where

𝑍𝐺,𝑡
Δ
=
∑︁
𝑙∈𝐺𝑡

∑︁
𝑚∈𝐺𝑡+1

P(𝑋𝑡 = 𝑙|𝐺0:𝑡) exp(−𝐺𝑇𝑃𝑆(𝑙,𝑚))

We can calculate the probability for the whole interpreta-
tion path as P(𝑋0:|𝐺| = 𝑥0:|𝐺||𝐺0:|𝐺|). This probability
is designed to give higher values to the interpretation paths
with shorter total distances (Theorem 1).

We can calculate the node probability P(𝑋𝑠 = 𝑥𝑠|𝐺0:𝑠)
by marginalizing path probability:

P(𝑋𝑠 = 𝑥𝑠|𝐺0:𝑠) =
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠)

=
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

𝑍𝐺,𝑡

=
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

(︃
𝑠−2∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

𝑍𝐺,𝑡

)︃

× exp(−𝐺𝑇𝑃𝑆(𝑥𝑠−1, 𝑥𝑠))

𝑍𝐺,𝑠−1

=
∑︁

𝑥0:𝑠∈𝐺0:𝑠−1||𝑥𝑠

P(𝑋0:𝑠−1 = 𝑥0:𝑠−1|𝐺0:𝑠−1)

× exp(−𝐺𝑇𝑃𝑆(𝑥𝑠−1, 𝑥𝑠))

𝑍𝐺,𝑠−1

=
∑︁

𝑥𝑠−1∈𝐺𝑠−1

P(𝑋𝑠−1 = 𝑥𝑠−1|𝐺0:𝑠−1)

× exp(−𝐺𝑇𝑃𝑆(𝑥𝑠−1, 𝑥𝑠))

𝑍𝐺,𝑠−1

When 𝑠 = 0, 𝑥0:0 ∈ 𝐺0:−1||𝑥0 becomes 𝑥0:0 ∈ 𝑥0 be-
cause 𝐺0:−1 is empty. Note that, P(𝑋𝑠 = 𝑥𝑠|𝐺0:𝑠) =
P(𝑋𝑠 = 𝑥𝑠|𝐺0:|𝐺|) is not always the case. As we can
see, this process has a recursive structure, and, by calculat-
ing and memorizing in a sequential manner from the start
node, we can get the node probability and path probability
with the time complexity linear to 𝑠.

6 0th layer contains only one node, that is, the start node

4.2 Loss and Gradient

We define a cross entropy loss function as follows:

𝐿𝑜𝑠𝑠(𝑥0:|𝐺||𝐺0:|𝐺|)

Δ
=

∑︁
𝑥0:|𝐺|∈𝐺0:|𝐺|

−P*(𝑋0:|𝐺| = 𝑥0:|𝐺|)

× ln P(𝑋0:|𝐺| = 𝑥0:|𝐺||𝐺0:|𝐺|)

(19)

Here, P* is the probability function which only responds
to the ground truth:

P*(𝑋0:|𝐺| = 𝑥0:|𝐺|)
Δ
=

{︃
1 if 𝑥0:|𝐺| = 𝑥*

0:|𝐺|
0 otherwise

We can get the gradient by differentiating 𝐿𝑜𝑠𝑠 (19) with
respect to the parameters, then apply stochastic gradient
descent algorithm to update the parameters to minimize the
value of 𝐿𝑜𝑠𝑠 (19), which results in maximizing the path
probability for the ground truth path.

4.3 Accuracy

We evaluate our model based on how accurately it can pre-
dict each chord interpretation by specifying the shortest
path in the interpretation graph. If there are more than one
shortest paths, we calculate a weighted average for each
node in proportion 7 to how many paths go through the
node as is illustrated in Figure 2.

Figure 2. Accuracy calculation when there are more than
one shortest paths.

7 this proportion is different from the node probability

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

305

5. EXPERIMENTS

5.1 Data and Method

We use the dataset annotated in rntxt format [1], published
at [1, 2]. The dataset is composed of 360 pieces (1,691
phrases, 76,341 chords) and we regard every phrase as a
unit (i.e., to which we predict the interpretation path) but
when a phrase exceeds 50 chords we divide it into units
each of which does not exceed 50 chords, resulting in
2,472 phrases. Then use 1,976 phrases to the training, and
248 phrases to the validation, and remaining 248 phrases
to the test

Rntxt format contains a lot of information other than de-
gree/key, but in this study we utilize only key and degree
information. About secondary/tertiary chords, we employ
local keys (e.g., V/V/V on C major key is interpreted as V
on D major key).

We set all initial parameter values to be zero and train
the models by mini-batch stochastic gradient descent with
batch size=100 and learning rate=0.001. We continue
training until no accuracy update in validation set for ten
epochs in a row, then pick the parameter which gives the
highest validation accuracy..

5.2 Results

We compare the performances of each distance element
and some combinations. The result is shown in the Table
2, 3, and 4.

ex DE 1 DE 2 DE 3 mean stdev
0 0.1900 0.0257

1 ○ ○ ○ 0.3847 0.1023

2 ○ 0.3780 0.1034

3 ○ 0.1930 0.0288

4 ○ 0.3842 0.1023

5 ○ ○ 0.3770 0.1052

6 ○ ○ 0.3850 0.1025

7 ○ ○ 0.3841 0.1023

Table 2. Performances of each distance element (and com-
binations) of original TPS. 9

ex 0 is without any distance elements, just for informa-
tion.

ex 1 is the original TPS. This one successfully double the
accuracy (i.e., narrow down the candidate interpretation by
half) from ex 0. We consider this one to be the baseline.

We also conduct ablation patterns of TPS (ex 2-7). When
used alone (ex 2-4), 𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒 is the best per-
formance (ex4) and achieved almost the same accuracy
as the full TPS (ex 1). We consider the reason why
𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑖𝑐𝑠𝑝𝑎𝑐𝑒 is a little better than 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 (ex 2)
is that basic space can exress region distance by the dia-
tonic level and also other levels can give additional infor-
mation. Seeing the result of ex 3, however, 𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑜𝑟𝑑 do

9 ex, DE, mean, and stdev represent experiment, distance element,
model mean accuracies, and standard deviations of accuracies respec-
tively

ex DE prms mean stdev
8 4.1 Sym Scale 2 0.1900 0.0257
9 4.2 Asym Scale 4 0.2522 0.1432
10 5.1 Sym Relative Tonic 7 0.3983 0.1006
11 5.2 Sym Parallel Tonic 7 0.2908 0.2415
12 5.3 Asym Relative Tonic 12 0.3974 0.1003
13 5.4 Asym Parallel Tonic 12 0.2870 0.2408
14 6.1 Sym Key 14 0.4249 0.1739
15 6.2 Asym Key 48 0.5017 0.3380
16 7.1 Sym Root-Degree 49 0.5646 0.1640
17 7.2 Asym Root-Degree 84 0.5741 0.1628
18 8.1 Sym Key-Degree 686 0.8625 0.1780
19 8.2 Asym Key-Degree 2,352 0.8690 0.1717

Table 3. Performances of proposed distance elements.

not improve accuracy well. That is also the case when used
two of them together (ex 5-7).

In ex 8-19, we test each proposed distance elements by
themselves. DE 5.1 can accomplish almost the same accu-
racy as the full TPS (ex 1, 10), although it has only seven
parameters. DE 4.x cannot improve accuracy at all with-
out distinguishing directions (ex 8,9), but surprisingly, for
many other distance elements, it turns out that there is very
little or no accuracy gain by distinguishing the direction
from the comparisons ex 10 to ex 12, ex 11 to ex 13, ex 16
to ex 17, and ex 18 to ex 19. We also test tonic distances
in which parallel keys are identified (ex 11, 13), but they
are significantly worse than those of relatie keys (ex 10,
12). DE 8.x, being the most complex distance elements,
can achieve over 86% accuracy.

In ex 20-26, we test some combinations of proposed dis-
tance elements. The combinations are selected so that in-
volved distance elements complement each other though
not exhaustive. The combination of ex 23 can achieve 83%
with only 58 parameters, likewise, that of ex 25 and ex 26
can achieve 85.0% and 86% with a little more parameters.
Therefore, it seems that taking the interactions of all scale,
tonic, and degree into account is not so important consider-
ing the huge parameter size. Also, it is interesting that DE
4.1 have meaningful contribution in ex 23 here although it
does not make difference at all by itself (ex 8).

We also test some combinations of TPS element and dis-
tance tables (ex 27-29). Root table can be benefited from
the elements from TPS (ex 28), but in the other combina-
tions, there are not so obvious accuracy gains.

From all the experiments, we can observe that the combi-
nations which achieved over 80% (ex 18, 19, 23-26, 29)
have all three features (i.e., 𝑠𝑐𝑎𝑙𝑒, 𝑡𝑜𝑛𝑖𝑐/𝑚𝑎𝑗𝑜𝑟𝑇𝑜𝑛𝑖𝑐,
and 𝑑𝑒𝑔𝑟𝑒𝑒 (or 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑟𝑜𝑜𝑡)), but one of them (ex 23)
does not consider interactions nor directions. Therefore,
it seems that, including those three features is crucial, but
considering interactions or directions have relatively small
effects.

For illustrative purpose, we show some possible interpre-
tations for a chord progression Cm → F → Bb → Eb →
A∘ → D → Gm and their total distances in Table 5. We

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

306

ex DE 1 DE 2 DE 3 DE 4.1 DE 4.2 DE 5.1 DE 6.1 DE 6.2 DE 7.1 DE 7.2 prms mean stdev
20 ○ ○ 9 0.3978 0.1015

21 ○ ○ 11 0.5131 0.3402

22 ○ ○ 56 0.7627 0.1585

23 ○ ○ ○ 58 0.8301 0.1869

24 ○ ○ ○ 60 0.8226 0.1814

25 ○ ○ 63 0.8495 0.1775

26 ○ ○ 132 0.8601 0.1681

27 ○ ○ ○ 14 0.4210 0.2318

28 ○ ○ ○ 49 0.7309 0.1566

29 ○ ○ ○ 63 0.8308 0.1887

Table 4. Performances of some combinations of distance elements.

use the model trained in ex 23 to calculate the distances.
In this example, paths b and c both have only one key, but
calculated distances are longer than that of a, which con-
sists of two keys. But they are shorter than paths d and e.
We think this order more or less matches to our musical
perception.

Cm F Bb Eb A∘ D Gm
a ii/Bb V/Bb I/Bb VI/g ii∘/g G/g i/g

- 5.88 8.91 16.44 22.30 28.11 31.14
b ii/Bb V/Bb I/Bb IV/Bb vii∘/Bb III/Bb vi/Bb

- 5.88 8.91 14.25 20.75 26.59 33.36
c iv/g VII/g III/g VI/g ii∘/g G/g i/g

- 6.27 12.66 19.64 25.50 31.31 34.34
d v/f I/F IV/F VII/f vii∘/Bb VI/F ii/F

- 8.77 14.11 26.12 37.46 46.03 51.89
e i/c I/F I/Bb I/Eb ii∘/g I/D i/g

- 10.84 18.91 26.98 37.41 49.12 60.29

Table 5. Some possible interpretations and their total dis-
tances.

6. CONCLUSIONS

In this study, we have extended TPS to take in empirical
observation. We generalized the distance formula in TPS
and proposed a way to define distance elements that distin-
guish any combinations of given features and to train them
with data. Our best combination achieved 86.9% accuracy
in the test set, which is significantly higher than that of the
baseline model (38.5%), and this result, we believe, shows
that our approach successfully learns an effective metric
structure from data. Also, one of our combination with
only 58 parameters achieved 83%, and with 132 parame-
ters, 86%. We hope that these simple models will help us
to understand better about the structure of tonal harmony.

There are many potential directions to improve our
method. First, it would be beneficial to accept sequences
of chroma vectors or piano-roll as input. Second, not only
TPS, it would also be meaningful to extend our approach to

deal with key profiles like Krumhansl’s [20]. Furthermore,
the fact that distinguishing directions only makes small dif-
ference in accuracy is somewhat contradictory to our pre-
vious research [8]. This implies that there may be a better
way to take directions into account.

Acknowledgments

This work is supported by JSPS Kakenhi 16H01744.

7. REFERENCES

[1] D. Tymoczko, M. Gotham, M. S. Cuthbert, and C.
Ariza. “The RomanText Format: A Flexible and Stan-
dard Method for Representing Roman Numeral Anal-
yses”. International Society for Music Information Re-
trieval Conference (ISMIR), pp.123-129, 2019

[2] M. S. Cuthbert, C. Ariza. “music21: A toolkit
for computer-aided musicology and symbolic music
data.”, International Society for Music Information Re-
trieval Conference (ISMIR), pp.637–642, 2010

[3] F. Lerdahl: “Tonal Pitch Space”, Oxford University
Press, 2001

[4] S. Sakamoto, S. Arn, M. Matsubara, S. Tojo: “Har-
monic analysis based on tonal pitch space”, in Pro-
ceedings of the 8th International Conference on
Knowledge and Systems Engineering (KSE), pp.230-
233, 2016

[5] F. Lerdahl, R. Jackendoff: “A Generative Theory of
tonal music”, Cambridge, MA, 1983

[6] A. Viterbi: “Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm.” IEEE
transactions on Information Theory, 13.2: pp.260-269,
1967

[7] M. Matsubara, T. Kodama, S. Tojo: “Revisiting ca-
dential retention in GTTM” in 2016 Eighth interna-
tional conference on knowledge and systems engineer-
ing (KSE), pp.218-223, 2016

Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

307

[8] H. Yamamoto, Y. Uehara, S. Tojo: “Jazz harmony
analysis with 𝜖-transition and cadential shortcut” in
Proceedings of 17th Sound and Music Computing Con-
ference (SMC), pp.316-322, 2020

[9] B. Catteau, J. Martens, M. Leman. “A probabilistic
framework for audio-based tonal key and chord recog-
nition” in Advancesin Data Analysis, pp.637–644,
2007

[10] D Temperley. “What’s Key for Key? The Krumhansl-
Schmuckler Key-Finding Algorithm Reconsidered”.
Music Perception 17, 1, pp.65–100. 1999

[11] T. Rocher, M. Robine, P. Hanna, L. Oudre. “Con-
current estimation of chords and keys from audio”.
in Proceedings of the 11th International Society
for Music Information Retrieval Conference (ISMIR),
pp.141–146. 2010

[12] W. Chai, B. Vercoe. “Detection of key change in clssi-
cal piano music”. in Proceedings of the 6th Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pp.468–473. 2005

[13] L. Mearns, E. Benetos, S. Dixon. “Automatically de-
tecting key modulations in J. S. Bach Chorale record-
ings”. in Proceedings ofthe 8th Sound and Music Com-
puting Conference (SMC), pp.25–32, 2011

[14] N. Nápoles López, C. Arthur, I. Fujinaga. “Key-finding
based on a hidden Markov model and key profiles”.
in Proceedings of the 6th International Conference on
Digital Libraries for Musicology, pp.33–37, 2019

[15] H. Papadopoulos, G. Peeters. “Local Key Estimation
Based on Harmonic and Metric Structures”. in Inter-
national Conference on Digital Audio Effects (DAFx),
pp. 408–415, 2009

[16] T. Chen, L Su. “Functional harmony recognition of
symbolic music data with multi-task recurrent neural
networks”. in Proceedings of the 19th International
Society for Music Information Retrieval Conference
(ISMIR), pp.90–97, 2018

[17] T. Chen, L. Su. “Harmony transformer: incorporating
chord segmentation into harmony recognition”. in Pro-
ceedings of the 20th International Society for Music In-
formation Retrieval Conference (ISMIR), pp.259–267,
2019

[18] G. Micchi, M. Gotham, M Giraud. “Not all roads
leadto Rome: pitch representation and model architec-
ture for automatic harmonic analysis, in Transactions
of the International Society for Music Information Re-
trieval 3, 1 (May 2020), pp.42–54, 2020

[19] L. Feisthauer, L. Bigo, M. Giraud, F. Levé. “Estimat-
ing keys and modulations in musical pieces”. in Sound
and Music Computing Conference (SMC), pp. 323-
330, 2020

[20] C. L. Krumhansl “Cognitive foundations of musical
pitch”, Oxford University Press, 1990

8. APPENDIX

Theorem 1 (order accordance). In an interpretation graph
𝐺, 𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥0:𝑠) is smaller than 𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥

′
0:𝑠) if

and only if P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠) is greater than P(𝑋0:𝑠 =
𝑥′
0:𝑠|𝐺0:𝑠).

Proof.

𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥0:𝑠) < 𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥
′
0:𝑠)

⇔ exp(−𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥0:𝑠)) > exp(−𝐺𝑇𝑃𝑆𝑝𝑎𝑡ℎ(𝑥
′
0:𝑠))

⇔ exp(−
𝑠−1∑︁
𝑡=0

𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

> exp(−
𝑠−1∑︁
𝑡=0

𝐺𝑇𝑃𝑆(𝑥′
𝑡, 𝑥

′
𝑡+1))

⇔
𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

>

𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥′
𝑡, 𝑥

′
𝑡+1))

#divide both sides by the same (positive) value

⇔
∏︀𝑠−1

𝑡=0 exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))∏︀𝑠−1
𝑡=0 𝑍𝐺,𝑡

>

∏︀𝑠−1
𝑡=0 exp(−𝐺𝑇𝑃𝑆(𝑥′

𝑡, 𝑥
′
𝑡+1))∏︀𝑠−1

𝑡=0 𝑍𝐺,𝑡

⇔
𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥𝑡, 𝑥𝑡+1))

𝑍𝐺,𝑡

>
𝑠−1∏︁
𝑡=0

exp(−𝐺𝑇𝑃𝑆(𝑥′
𝑡, 𝑥

′
𝑡+1))

𝑍𝐺,𝑡

#from equation (18)
⇔ P(𝑋0:𝑠 = 𝑥0:𝑠|𝐺0:𝑠) > P(𝑋0:𝑠 = 𝑥′

0:𝑠|𝐺0:𝑠)

