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ABSTRACT

The potential of physics-based synthesis algorithms for
developing computer-based musical instruments relies on
the inclusion of articulatory elements that enable physi-
cally plausible and musically meaningful interactions. In
this paper, non-excitational interaction with a rectangu-
lar vibrating plate is modelled through time variation in
distributed contact parameters. For numerical simulation
a finite difference approach is taken, enabling efficient
modelling of local interactions. Comparison between the
continuous- and discrete-domain system power balances
confirms conditional stability and a match in the source
terms due to parameter time-variance. The methodology
is exemplified with a few case studies, and its potential for
application in the design of a virtual-acoustic plate-based
musical instrument is discussed.

1. INTRODUCTION

Music performed with mechano-acoustic instruments is of-
ten articulated through physical contact, either directly be-
tween the musician and a resonating element or via an ex-
tension (e.g. a mallet, bow, or slide). Such embodied inter-
action generally serves two kinds of purposes. The first is
to inject energy into the instrument’s vibrating parts, such
as plucking a string or striking a membrane. The second is
to alter the vibrating properties of the instrument, for ex-
ample holding down a string against a fretboard to achieve
a specific pitch. Some forms of contact serve both purposes
simultaneously, e.g. guitar tapping [1].

In the case of 2-D vibrating systems, such as membranes
and plates featuring in percussion instruments, contact for
the second purpose is often of a distributed nature, and
generally involves damping, clamping, and mass-loading.
For any specific form of contact, typically one of those
phenomena dominates. For example, Figure 2(a) displays
a common way to damp the sound of a vibrating cym-
bal, in which the hand’s strong damping is accompanied
by small additional stiffness (which can be considered as
clamping) and mass-loading. The spectrogram in Figure
2(d) of a recorded cymbal strike with hand damping ap-
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Figure 1. Schematic representation of the locally reacting con-
tact layer. The grey object represents the plate, and the green ele-
ments represent additional surface density. The springs represent
additional stiffness and damping per unit area.

plied at around 𝑡=1.2s shows how the partials may not be
damped to the same extent, and also shows slight lowering
of some of the resonance frequencies. Figure 2(b) shows a
partially clamped vibraphone bar, introducing spring-like
distributed restoring forces over the clamped region, and
altering the resonant characteristics. As can be seen in the
spectra shown in Figure 2(e), the specific resonance alter-
ations depend on where the system is clamped. Somewhat
similar to placing a capo on the guitar neck, this form of
contact is conducted more on the level of design and recon-
figuration than performatory action. Figure 2(c) shows the
partial submersion of a small round gong in water, effec-
tively introducing strong mass-loading on the submerged
region, which lowers the resonance frequencies. Mod-
ulating the plate’s resonance frequencies by dynamically
changing the amount of submerged plate surface is an es-
tablished performance practice with gongs and tam-tams
(see, e.g. [2]). Figure 2(f) shows the spectrogram of a gong
strike followed by gradually lifting the gong upwards and
then back downwards, thus effecting a temporary decrease
in submerged surface area.

From a music articulation perspective, dynamic contact is
of particular interest. The three aforementioned phenom-
ena are therefore considered here as time-varying.

This paper focuses on the simulation of such time-
varying, non-excitational distributed contact, with a view
to facilitate physically plausible contact with intuitive pa-
rameter control in physics-based sound synthesis, using a
rectangular plate model with free edges as a testbed 2-D
resonator. The approach is to model the contact in terms
of additional damping, stiffness, and mass-loading terms
(see Figure 1), in effect adding what is known in room
acoustics as a locally-reacting layer. Similar to earlier
work on modelling string excitation [3, 4], dynamic con-
tact is emulated via time variation of the local contact pa-
rameters. For example, initiating contact of a hand with
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Figure 2. Examples of distributed contact in 2-D musical resonators: (a) regional damping of a cymbal via local hand contact, (b)
regional clamping of a vibraphone bar, (c) regional mass loading of a round gong by submerging it partially in water, (d) spectrogram of
a cymbal strike with hand damping at 𝑡 = 1.2 s, (e) amplitude spectra of a struck vibraphone bar clamped at two different positions, (f)
spectrogram of a gong with time-varying water submersion.

the plate is modelled by ramping up from zero the spring
stiffness and damping per unit area as well as the surface
density. For static values of the contact parameters the
model is grounded in Newtonian physics, but the speci-
fication of how the parameters vary to emulate dynamic
contact is, due to the simplifications involved, more phe-
nomenological. It would be more physically correct to
model the motion of the hand or other external object sepa-
rately, allowing also to simulate collisions, such as recently
reported in the context of slide-string articulation in [5].
The reasons for not taking a more complex approach are
(a) collisions have a limited role in most practical exam-
ples of non-excitational contact (except for sympathetic vi-
brations, which can be modelled separately), (b) it would
require updating a large set of additional mass positions,
adding significant computational burden, and (c) in a real-
time scenario, the distance between the object and the 2-D
resonator would have to be sensed across the spatial co-
ordinates, which is a challenge in its own right. For the
simpler model chosen, only a pressure map needs to be
sensed, which can be done with available sensing devices,
such as the Sensel Morph 1 ; the local contact parameters
may then be specified as an implicit function of the local
control pressure.

Regarding the modelling of plate vibrations, i.e. the sys-
tem without contact terms, the equations of motion given
in Section 2 and their discretisation and associated energy
analysis presented in Section 3 are equivalent to those pre-
sented in earlier work on plate modelling [6, 7]. The novel
aspect in these sections revolves around the introduction of
the time-varying contact terms and their discretisation.

1 https://sensel.com/

2. PLATE MODEL WITH CONTACT

Let 𝜕𝑥𝑢 and 𝑑𝑥𝑢 denote the partial and total derivative of
𝑢 with respect to 𝑥, respectively.

2.1 System Equations

Consider transversal vibrations of a thin plate with damp-
ing and distributed contact terms:

𝜌ℎ𝜕2𝑡 𝑢 = −𝐷∆2𝑢+ 2𝜌ℎ [𝜎2∆ − 𝜎0] 𝜕𝑡𝑢+ 𝜓𝐹e

−𝜕𝑡(�̄�𝜕𝑡𝑢) − 𝑘𝑢− 2𝜌ℎ�̄�𝜕𝑡𝑢⏟  ⏞  
contact

, (1)

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) denotes transversal displacement, 𝜌
is mass density, and 𝜎0 and 𝜎2 are damping constants. The
parameter𝐷 = 1

12𝐸ℎ
3/(1−𝜈2) can be considered as char-

acterising the plate stiffness, where 𝐸 is the Young’s mod-
ulus, ℎ is the plate thickness, and 𝜈 is the Poisson’s ratio.
The first term on the right-hand side of (1) can be written

−𝐷∆2𝑢 = −𝐷
(︀
𝜕4𝑥 + 𝜕4𝑦 + 2𝜕2𝑥𝜕

2
𝑦

)︀
𝑢,

= 𝜕2𝑥𝑚𝑥 + 𝜕2𝑦𝑚𝑦 + 2𝜕𝑥𝜕𝑦𝑚𝑥𝑦, (2)

where the plate bending moments

𝑚𝑥 = −𝐷
(︀
𝜕2𝑥𝑢+ 𝜈𝜕2𝑦𝑢

)︀
, (3)

𝑚𝑦 = −𝐷
(︀
𝜕2𝑦𝑢+ 𝜈𝜕2𝑥𝑢

)︀
, (4)

𝑚𝑥𝑦 = −𝐷 (1 − 𝜈) 𝜕𝑥𝜕𝑦𝑢, (5)

are introduced due to their usefulness in defining boundary
conditions and in performing energy analysis. The term
𝜓 = 𝜓(𝑥, 𝑦, 𝑡) = 𝛿𝐷(𝑥 − 𝑥e(𝑡), 𝑦 − 𝑦e(𝑡)) defines the
position of the driving force 𝐹e = 𝐹e(𝑡).
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The lower line in (1) contains three time-varying terms
due to distributed contact, in accordance with Figure 1.
The contact surface density �̄� = �̄�(𝑥, 𝑦, 𝑡), stiffness 𝑘 =
𝑘(𝑥, 𝑦, 𝑡) and damping �̄� = �̄�(𝑥, 𝑦, 𝑡) are each modelled
here as being dependent on a non-dimensional distributed
control pressure map 𝑝 = 𝑝(𝑥, 𝑦, 𝑡):

�̄� = 𝑎𝜆𝑝, 𝑘 = 𝑎𝑘𝑝, �̄� = 𝑎𝜎𝑝(1 + 𝑔) + 𝜎0𝑔, (6)

where 𝑔 = �̄�/(𝜌ℎ) and 𝑎𝑖 ≥ 0, 𝑖 ∈ {𝜆, 𝑘, 𝜎} can be
tuned to suit specific interaction design purposes, and with
0 ≤ 𝑝 ≤ 1. The control pressure is a map that - for real-
time application - could be sensed with a force-sensitive
electronic pad, such as the Sensel Morph. Grouping com-
mon terms, one can re-write (1) as

𝜕𝑡
[︀(︀
𝜌ℎ+ �̄�

)︀
𝜕𝑡𝑢

]︀
= −

[︀
𝐷∆2 + 𝑘

]︀
𝑢+ 𝜓𝐹e

+ 2𝜌ℎ [𝜎2∆ − (�̄� + 𝜎0)] 𝜕𝑡𝑢. (7)

Hence the effective frequency-independent damping is

𝜎0,eff =
2𝜌ℎ (�̄� + 𝜎0)

2
(︀
𝜌ℎ+ �̄�

)︀ (6)
= 𝜎0 + 𝑎𝜎𝑝, (8)

which shows how the specific form for �̄� in (6) facilitates
direct control of the effective additional local damping. Eq.
(7) also brings to light how practical ranges for each of the
contact parameters are relative to the ‘corresponding’ plate
parameters.

2.2 Boundary Conditions

Free boundary conditions are imposed, mainly to enable a
natural way of damping by grabbing the edge of the plate
(like in cymbals, see Figure 2a). For a rectangular plate of
size 𝐿𝑥 × 𝐿𝑦 , at the edges we have [8]

𝑥 = 0, 𝐿𝑥 : 𝑚𝑥 = 0, 𝜕𝑥𝑚𝑥 + 2𝜕𝑦𝑚𝑥𝑦 = 0, (9)
𝑦 = 0, 𝐿𝑦 : 𝑚𝑦 = 0, 𝜕𝑦𝑚𝑦 + 2𝜕𝑥𝑚𝑥𝑦 = 0, (10)

Through substitution this can be written as

𝑥=0,𝐿𝑥: 𝜕2𝑥𝑢+𝜈𝜕2𝑦𝑢=0, 𝜕3𝑥𝑢+(2−𝜈)𝜕𝑥𝜕
2
𝑦𝑢=0, (11)

𝑦=0,𝐿𝑦: 𝜕2𝑦𝑢+𝜈𝜕2𝑥𝑢=0, 𝜕3𝑦𝑢+(2−𝜈)𝜕𝑦𝜕
2
𝑥𝑢=0. (12)

An additional condition is required at corners:

𝑚𝑥𝑦 = 0, =⇒ 𝜕𝑥𝜕𝑦𝑢 = 0. (13)

2.3 Energy Analysis

Given the functions 𝑓(𝑥, 𝑦, 𝑡) and 𝑔(𝑥, 𝑦, 𝑡), let’s define the
plate domain

𝒫 = {(𝑥, 𝑦) ∈ R | 0 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤ 𝑦 ≤ 𝐿𝑦} (14)

and the associated inner product and norm

⟨𝑓, 𝑔⟩𝒫 =

∫︁ 𝐿𝑦

𝑦=0

∫︁ 𝐿𝑥

𝑥=0

𝑓(𝑥, 𝑦, 𝑡) 𝑔(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦, (15)

‖𝑓‖𝒫 =
√︀
⟨𝑓, 𝑓⟩𝒫 , (16)

which will allow compact notation of energy terms. Mul-
tiplying (1) with 𝜕𝑡𝑢 and integrating over the plate domain
𝒫 , one obtains the power balance

𝑑𝑡 (𝐻p +𝐻c) = 𝑃e + 𝑃c −𝑄p −𝑄c, (17)

with the (non-negative) energy components

𝐻p =
1

𝐷(1 − 𝜈2)

[︁
1
2‖𝑚𝑥‖2𝒫 + 1

2‖𝑚𝑦‖2𝒫 − 𝜈⟨𝑚𝑥,𝑚𝑦⟩𝒫
]︁

+ 1
2𝜌ℎ‖𝜕𝑡𝑢‖2𝒫 +

1

𝐷(1 − 𝜈)
‖𝑚𝑥𝑦‖2𝒫 , (18)

𝐻c = 1
2 ⟨𝑘𝑢, 𝑢⟩𝒫 + 1

2 ⟨�̄� 𝜕𝑡𝑢, 𝜕𝑡𝑢⟩𝒫 . (19)

The power input terms (of indeterminate sign) are

𝑃e = 𝐹e⟨𝜓, 𝜕𝑡𝑢⟩𝒫 , (20)
𝑃c = 1

2 ⟨𝑢 𝜕𝑡𝑘, 𝑢⟩𝒫 − 1
2 ⟨𝜕𝑡𝑢 𝜕𝑡�̄�, 𝜕𝑡𝑢⟩𝒫 . (21)

and the (non-negative) damping terms are

𝑄p = 2𝜌ℎ
(︀
𝜎0‖𝜕𝑡𝑢‖2𝒫 + 𝜎2‖𝜕𝑡∇𝑢‖2𝒫

)︀
, (22)

𝑄c = 2𝜌ℎ⟨�̄� 𝜕𝑡𝑢, 𝜕𝑡𝑢⟩𝒫 . (23)

In the above, the subscripts ‘p’, ‘c’, and ‘e’ indicate ‘plate’,
‘contact’, and ‘excitation’, respectively. As explained in
[7], additional boundary terms in (17) obtained initially af-
ter integration by parts vanish for the boundary conditions
in (9), (10), and (13).

3. NUMERICAL FORMULATION

3.1 Discretisation Operators

Employing the usual spatio-temporal gridding notation
𝑢𝑛𝑙,𝑚 to denote 𝑢 at time 𝑡 = 𝑛∆𝑡 and position 𝑥 = 𝑙∆𝑥,
𝑦 = 𝑚∆𝑥, the following shift operators are defined:

𝜖𝑡+𝑢
𝑛
𝑙,𝑚 = 𝑢

𝑛+1
2

𝑙,𝑚 , 𝜖𝑡−𝑢𝑛𝑙,𝑚 = 𝑢
𝑛−1

2

𝑙,𝑚 . (24)

Elemental temporal difference and averaging operators can
then be constructed as

𝛿𝑡 =
𝜖𝑡+ − 𝜖𝑡−

∆𝑡
, 𝜇𝑡 =

𝜖𝑡+ + 𝜖𝑡−
2

, (25)

𝛿𝑡+ =
𝜖2𝑡+ − 1

∆𝑡
, 𝜇𝑡+ =

𝜖2𝑡+ + 1

2
, (26)

𝛿𝑡− =
1 − 𝜖2

𝑡−
∆𝑡

, 𝜇𝑡− =
1 + 𝜖2

𝑡−
2

. (27)

Various finite-difference approximations can be achieved
by directly applying or combining these elemental opera-
tors, e.g.

𝛿2𝑡 𝑢
𝑛
𝑙,𝑚 =

𝑢𝑛+1
𝑙,𝑚 − 2𝑢𝑛𝑙,𝑚 + 𝑢𝑛−1

𝑙,𝑚

∆2
𝑡

≈ (𝜕2𝑡 𝑢)*, (28)

𝛿𝑡·𝑢
𝑛
𝑙,𝑚 := 𝛿𝑡𝜇𝑡𝑢

𝑛
𝑙,𝑚 =

𝑢𝑛+1
𝑙,𝑚 − 𝑢𝑛−1

𝑙,𝑚

2∆𝑡
≈ (𝜕𝑡𝑢)*, (29)

𝜇2
𝑡𝑢

𝑛
𝑙,𝑚 =

𝑢𝑛+1
𝑙,𝑚 + 2𝑢𝑛𝑙,𝑚 + 𝑢𝑛−1

𝑙,𝑚

4
≈ 𝑢*, (30)
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where the asterisk denotes that the relevant quantity is eval-
uated at time 𝑛∆𝑡 and position (𝑙∆𝑥,𝑚∆𝑥). Spatial oper-
ators can be defined analogously, by replacing 𝑡with 𝑥 or 𝑦
in the above, and using ∆𝑦 = ∆𝑥 for convenient analysis
and implementation [6]. A discrete Laplacian and bihar-
monic operator can be constructed as

∆̃ = 𝛿2𝑥 + 𝛿2𝑦, (31)

∆̃2 = 𝛿4𝑥 + 2𝛿2𝑥𝛿
2
𝑦 + 𝛿4𝑦. (32)

3.2 Product Identities

The following product identities hold for any two time se-
ries 𝑓 = 𝑓𝑛 and 𝑔 = 𝑔𝑛:

𝜇𝑡 (𝜇𝑡𝑓 · 𝜇𝑡𝑔) · 𝛿𝑡·𝑔 = 1
2𝛿𝑡

[︀
𝜇𝑡𝑓 · (𝜇𝑡𝑔)2

]︀
− 𝛿𝑡·𝑓 · 𝜇𝑡+𝑔 · 𝜇𝑡−𝑔, (33)

𝛿𝑡 (𝜇𝑡𝑓 𝛿𝑡𝑔) · 𝛿𝑡·𝑔 = 1
2𝛿𝑡

[︀
𝜇𝑡𝑓 · (𝛿𝑡𝑔)2

]︀
+ 𝛿𝑡·𝑓 · 𝛿𝑡+𝑔 · 𝛿𝑡−𝑔, (34)

which is easily proven by direct evaluation of the terms to
which discretisation operators are applied. These identities
are useful in energy analysis regarding the terms with time-
varying parameters. For the time-invariant terms, here re-
lating to plate vibrations, use can be made of a handful of
identities involving inner products (see, e.g. [6, 7]).

3.3 Numerical Scheme

The fully explicit numerical scheme employed here results
from applying discretisation operators to (7) as follows:

𝛿𝑡
[︀(︀
𝜌ℎ+ 𝜇𝑡�̄�

𝑛
𝑙,𝑚

)︀
𝛿𝑡𝑢

𝑛
𝑙,𝑚

]︀
= −𝐷∆̃2𝑢𝑛𝑙,𝑚 + 𝜓𝑛

𝑙,𝑚𝐹
𝑛
e

− 𝜇𝑡

(︀
𝜇𝑡𝑘

𝑛
𝑙,𝑚 𝜇𝑡𝑢

𝑛
𝑙,𝑚

)︀
− 2𝜌ℎ

[︀
�̄�𝑛
𝑙,𝑚 + 𝜎0

]︀
𝛿𝑡·𝑢

𝑛
𝑙,𝑚

+ 2𝜌ℎ𝜎2∆̃𝛿𝑡−𝑢𝑛𝑙,𝑚, (35)

where 𝜓𝑛
𝑙,𝑚 is a discrete-domain version of the distri-

bution function 𝜓(𝑥, 𝑦, 𝑡) obtained through bilinear de-
interpolation. Dropping the indexes in the notation, e.g.
𝑢 = 𝑢𝑛𝑙,𝑚, one may write the first term on the right-hand
side in terms of the discretised moments:

−𝐷∆̃2𝑢 = 𝛿2𝑥𝑚𝑥 + 𝛿2𝑦𝑚𝑦 + 2𝛿𝑥−𝛿𝑦−𝑚𝑥𝑦, (36)

where

𝑚𝑥 = −𝐷
(︀
𝛿2𝑥𝑢+ 𝜈𝛿2𝑦𝑢

)︀
, (37)

𝑚𝑦 = −𝐷
(︀
𝛿2𝑦𝑢+ 𝜈𝛿2𝑥𝑢

)︀
, (38)

𝑚𝑥𝑦 = −𝐷 (1 − 𝜈) 𝛿𝑥+𝛿𝑦+𝑢, (39)

with𝑚𝑥𝑦 = 𝑚𝑛
𝑥𝑦,𝑙+1

2 ,𝑚+1
2

. By substitution, we can recover
the biharmonic operator in the form of (32).

3.4 Boundary Conditions

Using a non-centered approach for the boundaries, at the
left and bottom edge one may specify [7]:

𝑥=0 : 𝑚𝑥 =0, 𝛿𝑥−𝑚𝑥+2𝑒𝑥−𝛿𝑦−𝑚𝑥𝑦 =0, (40)

𝑦=0 : 𝑚𝑦 =0, 𝛿𝑦−𝑚𝑦+2𝑒𝑦−𝛿𝑥−𝑚𝑥𝑦 =0. (41)

Through substitution we obtain:

𝑥=0 : 𝛿2𝑥𝑢+𝜈𝛿2𝑦𝑢=0, 𝛿𝑥−
[︀
𝛿2𝑥𝑢+(2−𝜈)𝛿2𝑦

]︀
𝑢=0, (42)

𝑦=0 : 𝛿2𝑦𝑢+𝜈𝛿2𝑥𝑢=0, 𝛿𝑦−
[︀
𝛿2𝑦𝑢+(2−𝜈)𝛿2𝑥

]︀
𝑢=0, (43)

which is analogous to (11,12). For the corner at 𝑥 = 0, 𝑦 =
0, a suitable numerical condition is

𝑒𝑥−𝑒𝑦−𝑚𝑥𝑦 = 0, =⇒ 𝛿𝑥−𝛿𝑦−𝑢𝑛𝑙,𝑚 = 0. (44)

Appropriately symmetric versions of the above conditions
are applied to the other edges and corners.

3.5 Energy Analysis

For non-centered boundaries, the numerical inner product
takes the form [6, 7]

⟨𝑓, 𝑔⟩𝒫 =

𝑀𝑥∑︁
𝑙=0

𝑀𝑦∑︁
𝑚=0

𝑓𝑛𝑙,𝑚 𝑔𝑛𝑙,𝑚 ∆2
𝑥. (45)

where 𝑀𝑥 and 𝑀𝑦 define the grid size. After multiplying
(35) with 𝛿𝑡·𝑢 and performing summation by parts, one ob-
tains the power balance

𝛿𝑡
(︀
𝐻𝑛

p +𝐻𝑛
c

)︀
= 𝑃𝑛

e + 𝑃𝑛
c −𝑄𝑛

p −𝑄𝑛
c , (46)

where, making use of the product identities presented in
Section 3.2, the energy components and power input terms
can be specified as

𝐻
𝑛+1

2
p = 1

2𝜌ℎ‖𝛿𝑡+𝑢‖𝒫 +
1

𝐷(1 − 𝜈)
⟨𝑚𝑥𝑦, 𝑒𝑡+𝑚𝑥𝑦⟩𝒫

− 1
2𝜌ℎ𝜎2∆𝑡

(︀
‖𝛿𝑡+𝛿𝑥+𝑢‖2𝒫 + ‖𝛿𝑡+𝛿𝑦+𝑢‖2𝒫

)︀
+

1

𝐷(1 − 𝜈2)

[︁
1
2 ⟨𝑚𝑥, 𝑒𝑡+𝑚𝑥⟩𝒫

+ 1
2 ⟨𝑚𝑦, 𝑒𝑡+𝑚𝑦⟩𝒫 − 1

2𝜈⟨𝑚𝑥, 𝑒𝑡+𝑚𝑦⟩𝒫

− 1
2𝜈⟨𝑒𝑡+𝑚𝑥,𝑚𝑦⟩𝒫

]︁
, (47)

𝐻
𝑛+1

2
c = 1

2 ⟨𝜇𝑡+𝑘 𝜇𝑡+𝑢, 𝜇𝑡+𝑢⟩𝒫
+ 1

2 ⟨𝛿𝑡+𝑢𝜇𝑡+�̄�, 𝛿𝑡+𝑢⟩𝒫 , (48)
𝑃𝑛
e = 𝐹𝑛

e ⟨𝜓, 𝛿𝑡·𝑢⟩𝒫 , (49)
𝑃𝑛
c = 1

2 ⟨𝜇𝑡+𝑢𝜇𝑡−𝑢, 𝛿𝑡·𝑘⟩𝒫 − 1
2 ⟨𝛿𝑡+𝑢 𝛿𝑡−𝑢, 𝛿𝑡·�̄�⟩𝒫 .

(50)

The damping terms are

𝑄𝑛
p = 2𝜌ℎ

[︁
𝜎0‖𝛿𝑡·𝑢‖2𝒫

+ 𝜎2
(︀
‖𝛿𝑡·𝛿𝑥−𝑢‖2𝒫 + ‖𝛿𝑡·𝛿𝑦−𝑢‖2𝒫

)︀ ]︁
, (51)

𝑄𝑛
c = 2𝜌ℎ⟨�̄� 𝛿𝑡·𝑢, 𝛿𝑡·𝑢⟩𝒫 . (52)

As before with the continuous-domain power balance, ad-
ditional boundary terms in (46) obtained initially after
summation by parts vanish for the boundary conditions in
(40), (41), and (44). The scheme can thus be said to be sta-
ble under the condition that the numerical system energy
𝐻𝑛+1

2 = 𝐻
𝑛+1

2
p +𝐻

𝑛+1
2

c remains non-negative. Given that
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𝐻
𝑛+1

2
c ≥ 0 without further conditions, this requires non-

negativity of 𝐻𝑛+1
2

p , which can be shown to hold if

∆𝑥 ≥ ∆min
𝑥 =

√︃
4∆𝑡

(︂
𝜎2 +

√︁
𝜎2
2 +𝐷/(𝜌ℎ)

)︂
. (53)

In implementatons, this condition is met by setting ∆𝑥 =
∆min

𝑥 and adjusting the plate dimensions to fit to the grid:

𝐿𝑥 = ⌊𝐿′
𝑥/∆𝑥⌉⏟  ⏞  
𝑀𝑥

∆𝑥, 𝐿𝑦 = ⌊𝐿′
𝑦/∆𝑥⌉⏟  ⏞  
𝑀𝑦

∆𝑥, (54)

where 𝐿′
𝑥 and 𝐿′

𝑦 are the initial target dimensions. Com-
parison of the above equations with those of section 2.3
reveals that, provided that the stability condition is satis-
fied, the numerical system mirrors the energy behaviour of
its underlying continuous-domain counterpart, in that (a)
the system is strictly dissipative in the absence of external
forces and time-variation in the contact parameters, and (b)
variation in �̄� or 𝑘 results in articulatory power sources of
matching form, i.e. (50) takes the form of a direct discreti-
sation of (21).

3.6 Update Equation

For the scheme in (35) one can derive the general update
equation:[︁
𝑐0 + 𝜁𝑛𝑙,𝑚 + �̄�

𝑛+1
2

𝑙,𝑚 + 𝛾
𝑛+1

2

𝑙,𝑚

]︁
𝑢𝑛+1
𝑙,𝑚 =[︁

𝑐3 − (�̄�
𝑛+1

2

𝑙,𝑚 + �̄�
𝑛−1

2

𝑙,𝑚 ) + (𝛾
𝑛+1

2

𝑙,𝑚 + 𝛾
𝑛−1

2

𝑙,𝑚 )
]︁
𝑢𝑛𝑙,𝑚

+
[︁
𝑐4 + 𝜁𝑛𝑙,𝑚 − �̄�

𝑛−1
2

𝑙,𝑚 − 𝛾
𝑛−1

2

𝑙,𝑚

]︁
𝑢𝑛−1
𝑙,𝑚

+ 𝑐2𝑣
𝑛
𝑙,𝑚 + 𝑐5𝑣

𝑛−1
𝑙,𝑚 + 𝑐1

[︁
2𝑠𝑛𝑙,𝑚 + 𝑤𝑛

𝑙,𝑚

]︁
+ 𝑐6

[︁
𝜓𝑛
𝑙,𝑚𝐹

𝑛
e

]︁
. (55)

where

𝑣𝑛𝑙,𝑚 = 𝑢𝑛𝑙+1,𝑚 + 𝑢𝑛𝑙−1,𝑚 + 𝑢𝑛𝑙,𝑚+1 + 𝑢𝑛𝑙,𝑚−1, (56)

𝑤𝑛
𝑙,𝑚 = 𝑢𝑛𝑙+2,𝑚 + 𝑢𝑛𝑙−2,𝑚 + 𝑢𝑛𝑙,𝑚+2 + 𝑢𝑛𝑙,𝑚−2, (57)

𝑠𝑛𝑙,𝑚 = 𝑢𝑛𝑙+1,𝑚+1 + 𝑢𝑛𝑙−1,𝑚+1 + 𝑢𝑛𝑙+1,𝑚−1 + 𝑢𝑛𝑙−1,𝑚−1.

(58)

Note that for nodes on and near the boundary, ghost-nodes
(nodes falling outside the domain) come into play in the
expressions in (56), (57) and (58), and these need to be
substituted for using the boundary conditions in (42), (43),
and (44). The various coefficients in (55) are defined as

�̄�
𝑛+1

2

𝑙,𝑚 = 1
4𝜉𝜇𝑡𝑘

𝑛+1
2

𝑙,𝑚 , 𝛾
𝑛+1

2

𝑙,𝑚 = 𝜇𝑡𝑔
𝑛+1

2

𝑙,𝑚 , (59)

𝑐0 = 1 + 𝜁0, 𝑐1 = −𝐾2, (60)

𝑐2 = 8𝐾2 + 𝜁2, 𝑐3 = 2 − 20𝐾2 − 4𝜁2, (61)
𝑐4 = −1 + 4𝜁2 + 𝜁0, 𝑐5 = −𝜁2, 𝑐6 = 𝜉, (62)

with

𝐾 =

√︃
𝐷

𝜌ℎ

∆𝑡

∆2
𝑥

, 𝜁0 = 𝜎0∆𝑡, 𝜁2 =
2𝜎2∆𝑡

∆2
𝑥

,

𝜁𝑛𝑙,𝑚 = �̄�𝑛
𝑙,𝑚∆𝑡, 𝜉 =

∆2
𝑡

𝜌ℎ
, 𝑔𝑛𝑙,𝑚 =

�̄�𝑛𝑙,𝑚
𝜌ℎ

. (63)

-5

300

0

u 
(m

m
)

5

200

y (mm)

100
300250

x (mm)

2001501000 500

-5

300

0

u 
(m

m
)

5

200

y (mm)

100
300250

x (mm)

2001501000 500

Figure 3. Examples of regional clamping of a square-shaped
steel plate. Top: corner region clamp. Bottom: circular plate
with clamped edges.

4. NUMERICAL EXPERIMENTS

In this section, the functionality of the model is demon-
strated with a few examples. In all cases, the material pa-
rameters used are 𝐸 = 200 GPa, 𝜌 = 8000 kg/m3 and
𝜈 = 0.3, which are typical of steel. The simulations are run
using ∆𝑡 = 1/44100 s. To help manage potential drift, a
very small additional amount of clamping (𝑘 = 100 N/m3)
is systematically applied across the plate.

4.1 Static Contact

4.1.1 Regional Clamping

Figure 3 shows snapshots of two simulations in which a
specific region of a square plate was clamped by setting
𝑘 = 1013 N/m3 in that region. In the first experiment (see
top plot in Figure 3), a small quarter-circular region at one
of the corners was clamped, and the system was brought
into vibration by driving the opposite corner with a sinu-
soid. For such a high 𝑘 value, practically no oscillation can
occur in the clamped region. Setting lower values facili-
tates softly clamped regions, which lead to different system
resonances. In the second experiment (see bottom plot in
Figure 3), the clamped region was chosen as lying outside
a centrally-positioned circle, allowing the simulation of a
clamped circular plate, albeit accepting approximations in
terms of the domain shape due to the spatial discretisation.
The system was driven off-center with the second lowest
resonance frequency of the system, as such revealing the
shape of its (1,1) normal mode.
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Figure 4. Contact damping (�̄� = 1000 s−1) over differently
sized regions. The plate was excited at its lower right corner.
Left: regions. Right: impulse responses. The dark grey curve is
the impulse response with no contact damping applied. The blue
and orange curves match the same-colour damping regions in the
left-hand side plot.

4.1.2 Regional Damping

Similarly, one may apply a non-zero �̄� value to a region
of the plate, in order to locally effect damping. Figure 4
compares the impulse response of a rectangular plate for
two different damping regions with the impulse response
of the same plate with no contact damping applied. The
expected observation of stronger damping with larger con-
tact area also gives an indication of the requirement of any
contact damping having to be distributed in order to facili-
tate strong damping. In other words, there is little scope for
modelling strong damping through a single contact point.

4.2 Dynamic Contact

For dynamic contact, the pressure map 𝑝𝑛𝑙,𝑚 is updated ev-
ery sample by linearly interpolating between control-rate
updates made every𝑁b samples, setting𝑁b = 256. Sound
examples are available on the companion webpage 2 .

4.2.1 Damping of a Single Pulse

A square plate of side length 𝐿𝑥 = 𝐿𝑦 = 0.1415 m and
thickness ℎ = 1.8 mm is excited at coordinates 𝑥e =
0.77𝐿𝑥, 𝑦e = 0.5𝐿𝑦 . A velocity output signal is picked
up at 𝑥p = 0.95𝐿𝑥, 𝑦p = 0.11𝐿𝑦 . The plate damping
parameters were set as 𝜎0 = 1 s−1 and 𝜎2 = 0.001 m2

s−1. Contact damping is applied after 1.6 seconds over a
circular area of radius 42.4 mm, with the circle centre posi-
tioned at 𝑥 = 0.1𝐿𝑥, 𝑦 = 0.5𝐿𝑦 (see the top plot in Figure
5). The damping is effected through linearly increasing the
control pressure uniformly over the circular region, accord-
ing to the profile shown in the middle plot of Figure 5. The
contact-layer constants featured in equation (6) were set to
𝑎𝑘 = 10000 N m−3, 𝑎𝜎 = 250 s−1, and 𝑎𝜆 = 7.2 kg m−2

in order to simulate hand-plate contact with somewhat ex-
aggerated mass loading. The output spectrogram is shown
in the bottom plot. Of particular interest is the small de-
crease in partial frequencies, which is due to the increase
in surface density. In addition, it is noticable that some
partials are damped more effectively than others, which is
mainly due to the chosen region over which damping is ap-
plied. One can also observe a small amount of broadband
power injected at 𝑡 = 1.6 s, which corresponds to the term

2 www.socasites.qub.ac.uk/mvanwalstijn/smc21b

Figure 5. Pulse damping example. The top plot shows the re-
gion over which damping was increased according to the profile
shown in the middle plot, while the bottom plot shows the output
spectrogram.

𝑃c in the power balance equation in (46), and is due to the
variation over time of the contact parameters.

4.2.2 Linear Water Gong

In this example, the plate geometrical parameters are set
as 𝐿𝑥 = 𝐿𝑦 = 0.2983 m and ℎ = 2 mm, and the damp-
ing parameters are 𝜎0 = 1 s−1 and 𝜎2 = 0.0016 m2 s−1.
To emulate suspension of the plate, clamping is applied at
the corner with coordinates 𝑥 = 𝐿𝑥, 𝑦 = 𝐿𝑦 . The plate
is partly submerged into water at the opposite plate corner
(𝑥 = 0, 𝑦 = 0), the water level reaching 30 percent of the
diagonal between the two opposite corners. The plate is
excited at 𝑥e = 0.88𝐿𝑥, 𝑦e = 0.87𝐿𝑦 , and the output ve-
locity is picked up at 𝑥p = 0.08𝐿𝑥, 𝑦p = 𝐿𝑦 . The excita-
tion signal consists of a single short pulse, as shown in the
middle plot of Figure 6. During the simulation, the plate
is gradually lifted upwards and back downwards (see top
plot of Figure 6). Submersion into water is simulated using
𝑎𝜆 = 32 kg m−2 and and setting 𝑝 = 1 over the submerged
region. The ‘additional mass factor’ is thus 2, which is in
line with theoretical and experimental findings for the first
bending mode [9]. The resulting variation of partial fre-
quencies is clearly visible in the spectrogram shown in the
bottom plot of Figure 6. Similar to the measured sound
shown in Figure 2, the frequency variation differs consid-
erably per partial, which is typical for this type of sound,
and sonically distinguishable from phenomena in which all
partial frequencies move synchronously.
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Figure 6. Water gong example. The top plot shows the height
position of the suspended plate with respect to the water level.
The middle plot shows the excitation signal and the bottom plot
shows the output spectrogram.

5. TOWARDS A VIRTUAL-ACOUSTIC PLATE
INSTRUMENT

This section outlines ideas and challenges the authors
are currently encountering and addressing in applying the
methodology towards developing a virtual-acoustic plate
instrument.

5.1 Regional vs Global Contact

Recent publications [10, 11] discuss the development of a
virtual-acoustic plate prototype instrument, the Vodhrán,
featuring a modal synthesis algorithm for real-time sim-
ulation of plate vibrations, and utilising a Sensel Morph
in combination with a contact microphone to sense tactile
interaction. One of the ideas behind the design and de-
velopment of the Vodhrán is achieving and controlling a
degree of alignment with real-world counterparts in terms
of sonically-relevant affordances.

With the Vodhrán, damping is effected via mapping
the overall sum of non-percussive forces detected on the
Sensel surface to the plate model’s damping parameters.
This provides intuitive damping control, but does not ac-
count for the specific damping region, and also lacks any
additional effects (e.g. mass loading) that accompanies any
real-world damping of plates. A real-time implementation
of the proposed finite-difference model will allow a more
natural, region-dependent form of damping.

One may use the same setup to facilitate and explore
clamping configurations. Of particular interest is the po-

Figure 7. Clamping a Sensel Morph.

tential to reconfigure the plate on the fly not through ma-
nipulations in software, but instead through actual clamp-
ing of the sensing device, as shown in Figure 7. This
will open up ways of exploring the affordances of virtual-
acoustic ‘prepared plates’ entirely through embodied in-
teraction, leveraging skills and embodied knowledge ac-
quired via interaction with real-world plates.

Contact that introduces mass-loading over a time-varying
plate region, such as in the water gong example, could
also be realised in real-time, but - if the affordances of
the sensel are to be preserved - this will require an addi-
tional sensor interface. One strategy would be to employ
a spring-loaded fader (similar to e.g. a synthesizer modu-
lation wheel) to control the ‘height’ of the plate relative to
the water level, as this would provide the musician with a
haptic reference. This sensor would then drive the model’s
surface density via an additional term in the mapping, i.e.
changing the first mapping in equation (6) to

�̄� = 𝑎𝜆𝑝+ 𝑎w𝑝w, (64)

where 𝑝w would be set to unity for the submerged region
and zero elsewhere, and 𝑎w is an appropriate scalar.

5.2 Computational Challenges

A number of challenges arise in the real-time implemen-
tation of the proposed model. Firstly, the implementation
in finite-difference form will place limits on the possible
size of the plate (in terms of the number of finite-difference
nodes). Parallelisation techniques, such as Single Instruc-
tion, Multiple Data (SIMD) or Advanced Vector Exten-
sions (AVX) have already proven useful in reducing the
relevant CPU time [12,13]. The new, additional challenges
that emerge here are due to (a) the need to map the pressure
data as sensed on the grid of the sensing device to the finite-
difference grid, which involves 2-D (de-)interpolation, and
(b) the need to carry out linear interpolation on the con-
tact parameters, which are initially calculated at control
rate (i.e. every 𝑁b samples). One investigative route is to
establish whether the grid mapping could be done on the
sensing device, as such off-loading the main processor.

5.3 Model Extensions

While interesting sounds and articulations are possible
with the proposed model, a few further extensions are of
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interest. Firstly, most real-world (thin) plates are charac-
terised by strong non-linear behaviour, and this plays an
important role in many plates of musical interest. Such be-
haviour can be simulated by adding a non-linear term to
the equation of motion, for example in the form of the von
Kármán model [14]; finite-difference discretisations and
associated energy analyses developed in [15, 16] could be
readily applied to the current model, although with signif-
icant additional computational costs. The discretisation of
the linear model could also be further investigated, in par-
ticular regarding ways to reduce numerical dispersion, pos-
sibly using parameterised schemes [17, 18]. Finally, many
musical plates are circular, with a free edge; such a bound-
ary could only be realised in the current approach using
a staggered approximation of the curved edge. Possibly a
better approach would be to apply finite-volume methods
at the boundary, as for example employed in [19] for cir-
cular plates with fixed and clamped boundary conditions.

6. CONCLUSIONS

The proposed numerical model has been shown to en-
able simulation of specific, musically-relevant forms of
non-excitational contact with a rectangular plate. An un-
derlying motivation of the study is the exploration of
new musical behaviours through simultaneous combina-
tions of damping, clamping and mass-loading that would
be impractical or expensive with mechanical technology.
This will require real-time implementation of the pro-
posed model in conjunction with design and development
of sensing strategies, informed by wider instrument design
notions. Further future work will focus on model exten-
sions, including nonlinear plate modelling, and on appli-
cation to membrane-based instruments, which mainly re-
quires a simple replacement in the equation of motion of
the stiffness term with a tension term. Of particular inter-
est is the simulation of the tabla, as its performatory vo-
cabulary consists of numerous intricate forms of dynamic
contact [20]. Finally, the work presented is also relevant
to non-musical sonic interactions, and is part of a wider
project 3 that seeks to improve aural immersion in virtual
and augmented reality settings.
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ics of the wave turbulence spectrum in vibrating plates: A
numerical investigation using a conservative finite difference
scheme,” Physica D: Nonlinear Phenomena, vol. 280-281,
pp. 73 – 85, 2014.

[17] S. Bilbao, L. Savioja, and J. Smith, “Parameterized finite dif-
ference schemes for plates: Stability, the reduction of direc-
tional dispersion and frequency warping,” IEEE Trans. Au-
dio, Speech, and Lang. Proc., vol. 15, no. 4, pp. 1488–1495”,
2007.

[18] S. Orr and M. van Walstijn, “Modal representation of the res-
onant body within a finite difference framework for simula-
tion of string instruments,” in 12th Int. Conference on Digital
Audio Effects (DAFx-09), Como, Italy, 2009, pp. 213–220.

[19] B. Hamilton and A. Torin, “Finite difference schemes on
hexagonal grids for thin linear plates with finite volume
boundaries,” in DAFx, 2014.

[20] A. Kapur, G. Essl, P. Davidson, and P. R. Cook, “The elec-
tronic tabla controller,” Journal of New Music Research,
vol. 32, no. 4, pp. 351–359, 2003.


