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ABSTRACT 
The class Fb1_ODE, included in the miSCellaneous_lib 
quark extension library [1] of SuperCollider (SC, [2, 3]), 
enables the audible integration of ordinary (systems of) 
differential equations (ODEs) with initial values in 
realtime. The prefix 'Fb1' refers to the class Fb1 for single 
sample feedback and feedforward, on which it depends [4]. 
Consequently, the numerical integration of ODE systems 
with a step width of one sample is possible with arbitrary 
block sizes of SC's audio engine. Fb1_ODE opens the pos-
sibility for immediate audio experiments with models from 
physics, electrical engineering, population dynamics, 
chemistry, etc., preferably those with oscillatory respec-
tively quasi-oscillatory solutions or chaotic features. De-
signing new ODEs from scratch or altering respectively 
disturbing systems can also be interesting regarding the 
sounding results. Wrappers of Fb1_ODE include well-
known systems like Van der Pol, Duffing, Hopf, Mass-
Spring-Damper, and Lorenz; users can interactively add 
other systems with the class Fb1_ODEdef. The modula-
tion of ODE parameters, system time, and the feeding of 
additional audio signals into ODE systems are, amongst 
others, further options for unorthodox synthesis with dif-
ferential equations. 

1. INTRODUCTION 
We regard systems of the form 

 Y’(t) = F(t, Y(t))                               (1) 

in the domain of real numbers where Y and F can be vec-
tor-valued functions and the restriction of an initial value 
condition  

Y(t0) = y0                                    (2) 
 
In a physical interpretation, t is the system time. 

1.1 Why using ODEs for audio synthesis? 

That is a legitimate question, not at least because of some 
counterarguments. There are numerical hurdles, calcula-
tions often become CPU-demanding, and the usage of ar-
bitrary ODE models in many fields of science and technol-
ogy is no direct argument for their application in sound and 
music – besides from the ongoing research in acoustic and 
physical models [5]. However, an outweighing argument 
for comprehensive ODEs also comes from the fact that 
they can work as a generic description system for wave-
forms: many ODE solutions cannot be expressed in an an-
alytical form. This consideration leads to the assumption 
that ODEs can act as a key to a land of unknown and intri-
guing possibilities in sound synthesis. The growing signif-
icance – one might even say: popularity – of non-linear 
dynamical systems has certainly supported this view. How 
to choose from these possibilities in artistic regard is a cru-
cial question that needs practical exploration – a general-
purpose tool as the presented one aims to provide quick 
feedback. 

The power of ODEs as a description system already 
shows up by this trivial example. The second-order differ-
ential equation  

y’’(t) = -y(t)                                (3)  

is – by the substitution 

w(t) = y'(t)                                 (4) 

– reduced to the first-order ODE system 

y'(t) = w(t)                                 (5) 
 w'(t) = -y(t)                                    ( 

With the initial values y(0) = 0 and w(0) = 1, the system 
has the solution 

 y(t) = sin(t)                                (6) 
 w(t) = cos(t)                                   ( 

The initial equation (3) is, obviously, much more com-
pact than the representations of sine and cosine as infinite 
series derived from Taylor expansion. On the other hand, 
using numerical ODE integration for producing a sine 
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wave doesn't make much sense except a proof of concept. 
However, there exist many ODE systems with brief defi-
nitions that can generate rich and evolving spectra.  

Researchers have made several suggestions to use ODEs 
for audio synthesis and processing. The approaches par-
tially origin from the world of analog circuits (Slater [6]: 
Ueda, a variant of the Duffing oscillator, Choi [7] and 
Rodet [8]: Chua circuit). Jacobs [9] uses the FitzHugh-
Naguamo model of which Van Der Pol is a particular case. 
See Falaize and Hélie for stable simulations of analog au-
dio circuits from electronic schematics [10]. State space 
models aim to represent analog systems by input, output 
and state variables as parts of ODE systems (e.g., [11, 12]). 
Wave digital filters are an attempt to digitize analog cir-
cuits by ODEs and traveling-wave components [13].  

SC's main class library already includes the famous and 
widely used Lorenz model. The implementation via 
Fb1_ODE additionally allows the feeding of external input 
into the system, an experimental feature of ODE synthesis 
also recommended by Stefanakis, Abel, and Bergner [14, 
pp. 53–55, 57]. 

1.2 Numerical integration of ODEs  

There exist many integration techniques, which serve well 
in typical engineering applications. However, there is a 
specific demand with the audification of ODEs: oscilla-
tions should be kept stable over a relatively long period – 
or put in other words, we need many oscillations to get an 
audible signal for a significant amount of time. It is likely 
to encounter drifts in the long run with arbitrary integration 
methods. E.g., already in the case of a simple harmonic 
oscillator, a 3rd order Runge-Kutta scheme can fail (Figure 
5). For several oscillators, there exist specific integration 
schemes (Duffing: Bilbao [5, p. 75–77], Van der Pol: 
[15]). More general, so-called symplectic procedures have 
gained attention [16]. Roughly spoken, they preserve vol-
ume in a geometric sense and are often well suited for ODE 
audification. See the chapter on integration in David 
Pirrò's dissertation [17, pp. 135–146]. David Pirrò has im-
plemented the symmetric symplectic "rattle" integration in 
his optimized ODE compiler Henri, Fb1_ODE uses this 
scheme as default [18, 19, 20]. Implicit integration tech-
niques are also used widely in audio applications [21]. For 
implementational reasons – especially the interactive add-
ing of schemes – preference has been given to the explicit 
methods, from which several are built-in at choice (see 
2.5). 

2. IMPLEMENTATION IN SC 

2.1 Definition of ODEs and usage as unit generators 

The user interface for the most general purposes mainly 
consists of two classes in the SC language (the SC client): 
Fb1_ODEdef and Fb1_ODE. After defining an ODE with 
Fb1_ODEdef – by providing the function F of (1) as an SC 
Function – it is ready for synthesis usage with Fb1_ODE. 
The latter is a so-called pseudo-UGen (pseudo unit gener-
ator), a compound UGen structure comparable to macros 
in other languages. Under the hood, Fb1_ODE merges the 

selected numerical procedure, applied to F, into a UGen 
graph. That ensures integration on a per-sample base when 
employing the compiled synthdef (instrument) on the SC 
server (the audio engine). It also holds for a server block 
size greater than 1 by involving the single sample feedback 
pseudo-UGen Fb1 [4]. Figure 1, as a proof of concept, 
shows the code for producing a sine wave by using the har-
monic oscillator system. 

 
Figure 1. Sine wave by ODE integration 

 
More interesting, basic systems like the harmonic oscil-

lator or exponential decay can be the starting point for ex-
perimental variations. It’s a promising strategy to gradu-
ally drift away from a base case, e.g., define the system 

y’(t) = w(t)                                (7)  
w’(t) = -y(t) (1 + k w(t))                         (  

With k = 0, it equals the harmonic oscillator, greater val-
ues produce a brass-like sound. 

 

 
Figure 2. Blurred harmonic oscillator. 

2.2 Wrapper classes 

The library provides dedicated pseudo-UGen classes for 
the well-known systems Van der Pol, Duffing, Hopf, Lo-
renz, and Mass-Spring-Damper (MSD). The latter satisfies 
the second-order differential equation  

m y’’(t) = -k y(t) - c y’(t) + F(t)                (8)  

whereby m denotes the mass, c the dampen factor, k the 
spring stiffness, and F(t) the externally applied force. Like 
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the harmonic oscillator, one can transform it into a system 
of two first-order equations whose solutions describe po-
sition and velocity. The code example in Figure 3 uses the 
oscillation, which converges to an end position, for fre-
quency modulation. The audible result is a timbral devel-
opment to a sine with a fixed frequency. Note that, by de-
fault, Fb1_ODE and the wrapper classes apply a DC 
leaker, which, in this case, is disabled. 

 

 
Figure 3. Mass-Spring-Damper (MSD) used for FM. 

 
See the help files of the classes Fb1_VanDerPol, 

Fb1_Duffing, Fb1_Hopf, Fb1_Lorenz, and Fb1_MSD for 
further examples. The adaptive variants Fb1_HopfA and 
Fb1_HopfAFDC can preserve the frequency of an external 
force after its stopping. That provides an unusual synthesis 
option. The classes implement the techniques described in 
[22] and [23], which are generic ways to make ODE sys-
tems adaptive. 

2.3 Models from various fields 

ODE models occur in many fields like physics (eminently 
mechanics), electrical engineering, population dynamics, 
and even chemistry. They can be interesting audio engines 
themselves or act as a starting point for further explora-
tions. For an overview, see the SIAM publication Explor-
ing ODEs [24] with an experimental approach in the 
graphic domain and many links and examples. Also, it’s 
worth being aware that ODEs of one type can occur in dif-
ferent forms. The decision for a particular parameter set 
can have a vast impact on audio usability. Ultimately, pa-
rameter spaces demand a practical investigation. 
Fb1_ODE’s help file contains examples from mechanics 
(driven pendulum, reduced two-body problem, Ex. 8a/b) 
and population dynamics (Lotka-Volterra and Hastings-
Powell, Ex. 9a/b). 

2.4 Modulations 

It's possible to modulate systems parameters and the time 
scaling factor at audio rate – the latter can also get negative 
values. The example of Figure 4 varies that of Figure 3 by 
modulations of external force, mass, and time scaling 
(tMul argument). The specific choice preserves the devel-
opment of the previous example – in general, it is easy to 
make systems unstable by operations of such kind. While 
the changing mass might still have a physical plausibility, 
the use of changing and even negative time steps is finally 

destroying a correct integration, though still possibly use-
ful as a synthesis option. 

 
Figure 4. MSD with modulations, used for FM. 

2.5 Integration methods 

While the use of symplectic integration procedures has ad-
vantages for the cited reasons, Fb1_ODE supports other 
families of integration methods like Euler, Prediction-
Evaluation-Correction (PEC), Runge-Kutta, Adams-Bash-
forth, and Adams-Bashforth-Moulton as well. As an ad-
vanced feature, more integration methods can be added in-
teractively with the class Fb1_ODEintdef. In some cases, 
alternative integration methods can lead to timbral varia-
tions. Quite often, though, they lead to blowups or decays, 
where stable oscillations should occur. Figure 5 shows an 
example with a 3rd order Runge-Kutta integration of the 
harmonic oscillator, which leads to decay after a few sec-
onds. 

 
 

Figure 5. Failing integration with 3rd order Runge-Kutta. 
 

The symplectic “rattle” procedure has another ad-
vantage: it offers the option to improve accuracy by the 
iterated division of step sizes. To employ these variants, 
pass the SC Symbol ‘sym’ with one of the suffixes 2, 4, 6, 
8, 12, 16, 32, 64 on Fb1_ODE’s intType argument (default 
‘sym4’). 

2.6 Handling unstable systems 

It is possible to insert an additional function, which applies 
to every array of samples that is the intermediate result – 
and next input – of the numerical integration procedure. 
Consequently, the correct integration of the ODE is out of 
scope. The option still has its value: limiting functions can 
prevent systems from blowing up. Let us regard this para-
phrase on the Mass-Spring-Damper model: 

m y’’(t) = -k y(t) - c y’(t) + F(t) + y(t) y’(t)       (9)  
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The use of this ODE in similar ways as in the examples 
from Figures 3-4 leads to a derail by infinite numbers after 
few seconds. However, the system remains inside practical 
bounds with a limiting operator like clip2 (Figure 6). 

 
Figure 6. MSD with disturbance, used for FM. 

2.7 Further options and settings 

Initial values – the system state y0 at time t0: y(t0) = y0 – 
are essential for an ODE solution. The user can pass them 
on Fb1_ODE with the corresponding arguments t0 and y0. 
In many cases – like Mass-Spring-Damper with constant 
external force – a change of the start time does not have a 
consequence: the resulting waveform is the same, whereas 
the initial system values (position and velocity) have a sig-
nificant impact. 

Fb1_ODE can also return additional information in sep-
arate channels. By default, it returns the solution func-
tion(s) of the ODE system. Optionally, it can also output 
the differential and the time – which is not necessarily lin-
ear, as there might be a time modulation. The correspond-
ing arguments are withDiffChannels and withTimeChan-
nel. See the Fb1_ODE help file examples 6a and 6b. 

Fb1_ODEdef allows for amplitude scaling factors. Usu-
ally, they default to 1, but certain ODEs, like Lorenz, pro-
duce a very high amplitude level with standard parameters. 
Therefore, it makes sense to scale their output down by de-
fault. However, with Fb1_ODE's withOutScale argument, 
the default scaling can be disabled (Fb1_ODE help file ex-
amples 7).  

As many system solutions produce an unwanted DC 
offset, a DC leaker applies by default. The user can disable 
the option with Fb1_ODE's leakDC argument. 

One of Fb1_ODE's basic arguments is tMul for time 
scaling. As in Figure 1, it can determine the resulting fre-
quency (alternatively, the user might define the multipli-
cation in the system definition with Fb1_ODEdef). It is 
important to note that numerical integration in the audio 
rate case is always performed on a per-sample base – even 
if the block size is larger than 1 – only the unit of the sys-
tem time is varied. However, scaling is restricted to numer-
ical accuracy limits: with extreme tMul values or numeri-
cally sensitive equations, you might encounter blowups or 

situations where the resulting frequency does not linearly 
relate to the scaling. Besides, Fb1_ODE can alternatively 
run at control rate (Fb1_ODE.kr), which helps to save 
CPU-load if the current block size is larger than 1. 

2.8 Workflow recommendations, troubleshooting 

The direct definition of the ODE systems in the language 
is a convenience that comes with the price of a possibly 
large number of unit generators involved. That does not 
necessarily mean a high CPU-load of the audio engine but 
leads to a higher compile-time. The user might want to ex-
tend SC's server resources before booting, e.g., set a higher 
number of unit generators with the server option num-
WireBufs. For a smooth workflow, I would recommend 
taking a reduced blockSize (e.g., 1, 2, 4, 8, 16) while ex-
perimenting because compile-time is shorter. But after fix-
ing the design of a SynthDef, it might pay going back to a 
blockSize value of 32 or 64 for runtime efficiency, even 
more if many control rate unit generators are involved. 

Especially with custom-designed ODEs, the usage of 
Fb1_ODE is – inherently – highly experimental. I strongly 
recommend being careful with amplitudes! Sudden 
blowups might result from the mathematical characteris-
tics of the ODE systems. They might also stem from pa-
rameter adjustments – on which ODEs can react with ex-
treme sensitivity – or from numerical accumulation ef-
fects. As a precautionary measure, users can employ SC's 
limiting/distorting operators (tanh, clip, softclip, dis-
tort) with the compose option (2.6) or external limiting, 
e.g., with the quarks JITLibExtensions (MasterFX) or 
SafetyNet. 

The numerical integration procedure supposes well-de-
fined ODE systems. The Fb1_ODE framework doesn't 
perform any checks concerning the principal existence and 
uniqueness of an ODE solution. 

3. CONCLUSIONS 
The SC class extension Fb1_ODE enables the audification 
of ordinary systems of differential equations with initial 
values in realtime. ODEs serve as a generic description 
system for waveforms, which one often cannot define by 
(explicit) mathematical means. Synthesis experiments 
have proven to be promising with well-known ODE sys-
tems from many scientific fields, as well as with custom-
designed ODEs. Options for the modulation of ODE pa-
rameters and system time – and the integration mechanism 
itself – blur the model concept, though, also widen the field 
of sonic exploration. 
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