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Preface

Data are becoming ever more important, in all parts of society, including
academia, and including the humanities. The availability of large amounts of
digital data (such as text, speech, video, behavioural measurements) raises new
research questions, which are typically and often investigated using quantitative
methods. Aimed at humanities researchers and students, this book offers an
overview of and introduction into the most important quantitative methods
and statistical techniques used in the humanities. The book provides a solid
methodological foundation for quantitative research, and it introduces the most
commonly used statistical techniques to describe data and to test hypotheses.
This will also enable the reader to critically evaluate such quantitative research.

This textbook is being used in the course Methods and Statistics 1 at Utrecht
University (Linguistics program). The book is also highly suitable for self-study
at a basic level, for everybody who wishes to learn more about quantitative
methods and statistics.

The main text has been kept free of mathematical derivations and formulas,
which are typically not very helpful for humanities scholars and students. Our
explanation is rather conceptual, and rich in examples. Where necessary we
present derivations and formulas in separate sections.

This book also contains instructions on how to “do” the statistical analyses and
visualisations, using the three statistical packages SPSS, JASP, and R. These
packages are further introduced in §1.6. These instructions too are in separate
sections.

We would like to thank our co-teachers in various courses for the many discus-
sions and examples that have been used in any shape or form in this textbook.
We thank our students for their curiosity and for their sharp eyes in spotting
errors and inconsistencies in previous versions.

We are also thankful to Gerrit Bloothooft, Margot van den Berg, Willemijn
Heeren, Rianne Kraakman, Caspar van Lissa, Els Rose, Tobias Quené, Kirsten
Schutter, Marijn Struiksma, and Joanna Wall, for their advice, data, comments
and suggestions.

We thank Rianne Kraakman for writing the subsections on JASP instructions,
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and Aleksei Nazarov and Joanna Wall for translating this book from Dutch to
English. Special thanks to Marijn Struiksma, for inspiration and for coordinat-
ing the JASP additions and the translation.

Utrecht, February 2021

Hugo Quené, https://www.hugoquene.nl

Huub van den Bergh, https://www.uu.nl/staff/HHvandenBergh

Liever Nederlands?

This is the English version of the textbook, titled Quantitative Methods and
Statistics.

U leest nu de Engelstalige versie van het tekstboek. Er is ook een parallelle
Nederlandstalige versie, getiteld Kwantitatieve Methoden en Statistiek, te vinden
via https://hugoquene.github.io/KMS-NL/.

Notation

Following international usage we use the full stop (decimal point) as decimal
separator; hence we write 3

2 = 1.5. Note that the decimal separator may vary be-
tween computers and between software packages on the same computer. Check
which decimal separator is used by (each software package on) your computer.

License

This document is licensed under the GNU GPL 3 license (for details see https:
//www.gnu.org/licenses/gpl-3.0.en.html).

Citation

Please cite this work as follows (in APA style, and substitute the date):

Quené, H. & Van den Bergh, H. (2021). Quantitative Methods and Statistics.
Retrieved 29 January 2021 from https://hugoquene.github.io/QMS-EN/ .

https://www.hugoquene.nl
https://www.uu.nl/staff/HHvandenBergh
https://hugoquene.github.io/KMS-NL/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://hugoquene.github.io/QMS-EN/
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Technical details

All materials for this textbook are availabe at https://doi.org/10.5281/zenodo.
4479620 or directly from https://github.com/hugoquene/QMS-EN: this in-
cludes other versions of this textbook (EPUB, PDF, HTML), the source code
(Rmarkdown and R) of the text including figures and examples, accompanying
datasets used in the text, and figures as separate files.

The original Dutch version of this text was written in LaTeX, and was then
converted to Rmarkdown, using pandoc (MacFarlane, 2020) and the bookdown
package (Xie, 2020) in Rstudio. The parallel Dutch version is available at
https://hugoquene.github.io/KMS-NL. The English translation is based on the
Dutch LaTeX version (for Part I) and Rmarkdown version (for Parts II and III).

About the authors

Both authors work at the Faculty of Humanities at Utrecht University, the
Netherlands. HQ is professor in the Quantitative Methods of Empirical Re-
search in the Humanities, and he is also founding director of the Centre for
Digital Humanities at Utrecht University. HvdB is professor in the Pedagogy
and Testing of Language Proficiency, and he is also section chair in Dutch Lan-
guage and Literature at the Dutch National Board of Tests and Examinations
(CvTE).

https://doi.org/10.5281/zenodo.4479620
https://doi.org/10.5281/zenodo.4479620
https://github.com/hugoquene/QMS-EN
https://www.rstudio.com
https://hugoquene.github.io/KMS-NL
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Chapter 1

Introduction

In this textbook, we will discuss the fundamental concepts, methods, and an-
alytic techniques used in empirical scientific inquiry, both in general and as
applied to the broad domain of language and communication. We will look at
questions such as: What is a good research question? Which methodology is best
for answering a given research question? How can researchers draw meaningful
and valid conclusions from (statistical analyses of) their data? In this textbook,
we will restrict ourselves to the most important fundamental concepts, and to
the most important research methodologies and analytical techniques. In this
first chapter, we will provide an overview of various types and forms of scien-
tific research. In the following chapters, we will focus most of our attention on
scientific research methodologies in which empirical observations are expressed
in terms of numbers (quantitative), which may be analysed using statistical
techniques.

1.1 Scientific research

To begin, we have to ask a question that refers back to the very first sentence
above: what exactly is scientific research? What is the difference between sci-
entific and non-scientific research (e.g., by investigative journalists)? Research
conducted by a scholar does not necessarily have to be scientific research. Nor
is research by journalists non-scientific by definition just because it is conducted
by a journalist. In this textbook, we will follow this definition (Kerlinger and
Lee, 2000, p.14):

“Scientific research is systematic, controlled, empirical, amoral, pub-
lic, and critical investigation of natural phenomena. It is guided by
theory and hypotheses about the presumed relations among such
phenomena.”

15



16 CHAPTER 1. INTRODUCTION

Scientific research is systematic and controlled. Scientific research is designed
such that its conclusions may be believed, because these conclusions are well-
motivated. A research study can be repeated by others, which will (hopefully)
lead to the same results. This demand that research be replicable also means
that scientific research is designed and conducted in highly controlled ways (see
Chapters 3 and 6). The strongest form of control is found in a scientific experi-
ment: we will therefore devote considerable attention to experimental research
(§1.5). Any possible alternative explanations for the phenomenon studied are
looked into one by one and excluded if possible, so that, in the end, we are left
with one single explanation (Kerlinger and Lee, 2000). This explanation, then,
forms our scientifically motivated conclusion on or theory of the phenomenon
studied.

The definition above also states that scientific research is empirical. The con-
clusion a research draws about a phenomenon must ultimately be based on
(systematic and controlled) observations of that phenomenon in reality – for
example, on the observed content of a text or the behaviour observed in a par-
ticipant. If such observation is absent, then any conclusion drawn from such
research cannot be logically connected to reality, which means that it has no
scientific value. Confidential data from an unknown source or insights gained
from a dream or in a mystical experience are not empirically motivated, and,
hence, may not form the basis of a scientific theory.

1.1.1 Theory

The goal of all scientific research is to arrive at a theory of a part of reality.
This theory can be seen as a coherent and consistent collection of “justified true
beliefs” (Morton, 2003). These beliefs as well as the theory they form abstract
away from the complex reality of natural phenomena to an abstract mental
construct, which in its very nature is not directly observable. Examples of similar
constructs include: reading ability, intelligence, activation level, intelligibility,
active vocabulary size, shoe size, length of commute, introversion, etc.

When building a theory, a researcher not only defines various constructs, but
also specifies the relationships between these constructs. It is only when the
constructs have been defined and the relationships between these constructs
have been specified that a researcher can arrive at a systematic explanation of
the phenomenon studied. This explanation or theory can, in turn, form the
basis of a prediction about the phenomenon studied: the number of spoken
languages will decrease in the 21st century; texts without overt conjunctions
will be more difficult to understand than texts with overt conjunctions; children
with a bilingual upbringing will perform no worse at school than monolingual
children.

Scientific research comes in many kinds and forms, which may be classified in
various ways. In §1.2, we will discuss a classification based on paradigm: a
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researcher’s outlook on reality. Research can also be classified according to a
continuum between ‘purely theoretical’ to ‘applied’. A third way of classify-
ing research is oriented towards the type of research, for instance, instrument
validation (§1.3), descriptive research (§1.4), and experimental research (§1.5).

1.2 Paradigms

One criterion to distinguish different kinds of research is on the basis of the
paradigm used: the researcher’s outlook on reality. In this textbook, we have
spent almost all of our attention on the empirical-analytical paradigm, because
this paradigm has been written about the most and is the most influential.
At present, this approach can be seen as ‘the’ standard approach, against the
backdrop of which other paradigms try to distinguish themselves.

Within the empirical-analytical paradigm, we distinguish two variants: posi-
tivism and critical rationalism. Both schools of thought share the assumption
that there exist lawful generalizations that can be ‘discovered’: phenomena may
be described and explained in terms of abstractions (constructs). The difference
between the two schools within the empirical-analytical tradition lies in the way
generalizations are treated. Positivists claim that it is possible to make state-
ments from factual observations towards a theory. Based on the observations
made, we may generalize towards a general principle by means of induction.
(All birds I have seen are also perceived by me to be singing, so all birds sing.)

The second school is critical rationalism. Those within this school of thought
oppose the inductive statements mentioned above: even if I see masses of birds
and they all sing, I still cannot say with certainty that the supposed general
principle is true. But, say critical rationalists, we can indeed turn this on its
head: we may try to show that the supposed general rule or hypothesis is
not true. How would this work? From the general principle, we can derive
predictions about specific observations by using deduction. (If all birds sing,
then it must be true that all birds in my sample do sing.) If it is not the case
that all birds in my sample sing, this means the general principle must be false.
This is called the falsification principle, which we will discuss in more detail in
2.4.

However, critical rationalism, too, has at least two drawbacks. The falsifica-
tion principle allows us to use observations (empirical facts, research results) to
make theoretical statements (regarding specific hypotheses). Strictly speaking,
a supposed general principle should be immediately rejected after a single suc-
cessful instance of falsification (one of the birds in my sample does not sing): if
there is a mismatch between theory and observations, then, according to critical
rationalists, the theory fails. But to arrive at an observation, a researcher has
to make many choices (e.g., how do I draw an appropriate sample, what is a
bird, how do I determine whether a bird sings?), which may cast doubt on the
validity of the observations. This means that a theory/observation mismatch
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could also indicate a problem with the observations themselves (hearing), or
with the way the constructs in the theory (birds, singing) are operationalized.

A second drawback is that, in practice, there are very few theories that truly
exclude some type of observation. When we observe discrepancies between a
theory and observations made, the theory is adjusted such that the new observa-
tions still fit within the theory. In this way, theories are very rarely completely
rejected.

One alternative paradigm is the critical approach. The critical paradigm is dis-
tinguished from other paradigms by its emphasis on the role of society; there
is no one true reality: our image of reality is not a final one, and it is deter-
mined by social factors. Thus, insight into relationships within society, by itself,
influences this reality. This means that our concept of science, as formulated
in the definitions of research and theory given above, is rejected in the critical
paradigm. Critical researchers claim that research processes cannot be seen as
separate from the social context in which research is conducted. However, we
must add that this latter viewpoint has lately been taken over by more and
more researchers, including those that follow other paradigms.

1.3 Instrument validation

As stated above, research is a systematized and controlled way of collecting and
interpreting empirical data. Researchers strive for insight into natural phenom-
ena and into the way in which (constructs corresponding to) these phenomena
are related to one another. One requirement for this is that the researcher be
able to actually measure said phenomena, i.e., to express them in terms of an
observation (preferable, in the form of a number). Instrument validation re-
search is predominantly concerned with constructing instruments or methods
to make phenomena, behaviour, ability, attitudes, etc. measurable. The de-
velopment of good instruments for measurement is by no means an easy task:
they truly have to be crafted by hand, and there are many pitfalls that have to
be avoided. The process of making phenomena, behaviour, or constructs mea-
surable is called operationalization. For instance, a specific reading test can be
seen as an operationalization of the abstract construct of ‘reading ability’.

It is useful to make a distinction between the abstract theoretical construct and
the construct as it is used for measurements, which means: a distinction between
the concept-as-intended and the concept-as-defined. Naturally, the desired sit-
uation is for the concept-as-defined (the test or questionnaire or observation) to
maximally approach the concept-as-intended (the theoretical construct). If the
theoretical construct is given a good approximation, we speak of an adequate
or valid measurement.

When a concept-as-intended is operationalized, the amount of choices to be
made is innumerable. For instance, the Dutch government institute that devel-
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ops standardized tests for primary and secondary education, the CITO (Cen-
traal instituut voor toetsontwikkeling, or Central Test Development Institute)
must develop new reading comprehension tests each year to measure the reading
ability exhibited by students taking the centralized final exams for secondary
school students (eindexamens). For this purpose, the first step is to choose and
possibly edit a text. This text cannot be too challenging for the target audience,
but may also not be too easy. Furthermore, the topic of the text may not be
too well-known – otherwise, some students’ general background knowledge may
interfere with the opinions and standpoints brought forward in the text. At the
next step, questions must be developed in such a way that the various parts of
the text are all covered. In addition, the questions must be constructed in such
a way that the theoretical concept of ‘reading ability’ is adequately operational-
ized. Finally, exams administered in previous years must also be taken into
consideration, because this year’s exam may not differ too much from previous
years’ exams.

To sum up, a construct must be correctly operationalized in order to arrive at
observations that are not only valid (a good approximation of the abstract con-
struct, see Chapter 5) but also reliable (observations must be more or less identi-
cal when measurement is repeated, see Chapter 12). In each research study, the
validity and reliability of any instance of measurement are crucial; because of
this, we will spend two chapters on just these concepts. However, in instrument
validation research, specifically, these concepts are absolutely essential, because
this type of research itself is meant to yield valid and reliable instruments that
are a good operationalization of the abstract construct-as-intended.

1.4 Descriptive research

Descriptive research refers to research predominantly geared towards describing
a particular natural phenomenon in reality. This means that the researcher
mostly aims for a description of the phenomenon: the current level of ability, the
way in which a particular process or discussion proceeds, the way in which Dutch
language classes in secondary education take shape, voters’ political preferences
immediately before an election, the correlation between the number of hours
a student spent on individual study and the final mark they received, etc. In
short, the potential topics of descriptive research are also be very diverse.

Example 1.1: Dingemanse et al. (2013) made or chose recordings of
conversations in 10 languages. Within these conversations, they took
words used by a listener to seek “open clarification”: little words like
huh (English), hè (Dutch), ã? (Siwu). They determined the sound
shape and pitch contour of these words using acoustic measurements
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and phonetic transcriptions made by experts. One of the conclusions
of this descriptive research is that these interjections in the various
languages studied are much more alike (in terms of sound shape and
pitch contour) than would be expected based on chance.

This example illustrates the fact that descriptive research does not stop when
the data (sound shapes, pitch contours) have been described. Oftentimes, rela-
tionships between the data points gathered are also very interesting (see §1.1).
For instance, in opinion polls that investigate voting behaviour in elections, a
connection is often made between the voting behaviour polled, on the one side,
and age, sex, and level of education, on the other side. In the same way, research
in education makes a connection between the number of hours spent studying,
on the one side, and performance in educational assessment, on the other side.
This type of descriptive research, in which a correlation is found between pos-
sible causes and possible effects, is otherwise also referred to as correlational
research.

The essential difference between descriptive and experimental research lies in
the question as to cause and effect. Based on descriptive research, a causal
relationship between cause and effect cannot be properly established. Descrip-
tive research might show that there is a correlation between a particular type
of nutrition and a longer lifespan. Does this mean that this type of nutrition
is the cause of a longer lifespan? This is definitely not necessarily the case: it
is also possible that this type of food is mainly consumed by people who are
relatively highly educated and wealthy, and who live longer because of these
other factors1. In order to determine whether there is a causal relationship, we
must set up and conduct experimental research.

1.5 Experimental research

Experimental research is characterized by the researcher’s systematically ma-
nipulating a particular aspect of the circumstances under which a study is con-
ducted (Shadish et al., 2002). The effect arising from this manipulation now
becomes central in the research study. For instance, a researcher suspects that
a particular new method of teaching will result in better student performance
compared to the current teaching method. The researcher wants to test this
hypothesis using experimental research. She or he manipulates the type of
teaching: some groups of students are taught according to the novel, experi-
mental teaching method, and other groups of students are taught according to

1It is even possible that the nutrition habits under study cause people to live shorter, but
that this negative effect is masked by the stronger positive effects of education and wealth.
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the traditional method. The novel teaching method’s effect is evaluated by com-
paring both types of student groups’ performance after they have been ‘treated’
with the old vs. new teaching method.

The advantage of experimental research is that we may usually interpret the
research results as the consequence or effect of the experimental manipulation.
Because the research systematically controls the study and varies just one aspect
of it (in this case, the method of teaching), possible differences between the
performance observed in the two categories can only be ascribed to the aspect
that has been varied (the method of teaching). Logically speaking, this aspect
that was varied is the only thing that could have cause the observed differences.
Thus, experimental research is oriented towards evaluating causal relationships.

This reasoning does require that participants (or groups of students, as in the
example above) are assigned to experimental conditions (in our example, the
old or the new method of teaching) at random. This random assignment is
the best method to exclude any non-relevant differences between the conditions
of treatment. Such an experiment with random assignment of participants to
conditions is called a randomized experiment or true experiment (Shadish et al.,
2002). To remain with our example: if the researcher had used the old research
method only with boys, and the new research method only with girls, then any
difference in performance can no longer just be attributed to the manipulated
factor (teaching method), but also to a non-manipulated but definitely relevant
factor, in this case, the students’ sex. Such a possible disruptive factor is called
a confound. In Chapter 6, we will discuss how we can neutralize such confounds
by random assignment of participants (or groups of students) to experimental
conditions, combined with other measures.

There also exists experimental research in which a particular aspect (such as
teaching method) is indeed systematically varied, but in which participants or
groups of students are not randomly assigned to the experimental conditions;
this is called quasi-experimental research (Shadish et al., 2002). In the exam-
ple above, this term would be applicable if teaching method were investigated
using data from groups of students for which it was not the researcher, but
their teacher who determined whether the old or new teaching method would
be used. In addition, the teacher’s enthusiasm or teaching style might be a con-
found in this quasi-experiment. We will encounter various examples of quasi-
experimental research in the remainder of this textbook.

Within the type of experimental research, we can also make a further division:
that between laboratory research and field research. In both types of experi-
mental research, some aspect of reality is manipulated. The difference between
both types of research lies in the degree to which the researcher is able to keep
under control the various confounds present in reality. In laboratory research,
the researcher can very precisely determine under which environmental condi-
tions observations are made, which means that the researcher can keep many
possible confounds (such as lighting, temperature, ambient noise, etc.) under
control. In field research, this is not the case. When ‘out in the field’, the re-
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searcher is not able to keep all (possibly relevant) aspects of reality fully under
control.

Example 1.2: Margot van den Berg and colleagues from the Uni-
versities of Utrecht, Ghana and Lomé investigated how multilingual
speakers use their languages when they have to name attributes like
colour, size, and value in a so-called Director-Matcher task (Van den
Berg et al., 2017). In this task, one research participant (the ‘direc-
tor’) gave clues to another participant (the ‘matcher’) to arrange a
set of objects in a particular order. This allowed the researchers to
collect many instances of attribute words in a short period of time
(“Put the yellow car next to the red car, but above the small san-
dal”). The interactions were recorded, transcribed, en subsequently
investigated for language choice, moment of language switch, and
type of grammatical construction. In this type of fieldwork, how-
ever, various kinds of non-controlled aspects in the environment may
influence the sound recordings and, thus, the data, including “cluck-
ing chickens, a neighbour who was repairing his motorbike and had
to start it every other second while we were trying to record a con-
versation, pouring rain on top of the aluminium roof of the building
where the interviews took place.” (Margot van den Berg, personal
communication)

Example 1.3: When listening to spoken sentences, we can infer from
a participant’s eye movements how these spoken sentences are pro-
cessed. In a so-called ‘visual world’ task, listeners are presented with
a spoken sentence (e.g., “Bert says that the rabbit has grown”), while
they are looking at multiple images on the screen (usually 4 of them,
e.g., a sea shell, a peacock, a saw, and a carrot). It turns out that
listeners will predominantly be looking at the image associated with
the word they are currently mentally processing: when they are pro-
cessing rabbit, they will look at the carrot. A so-called ‘eye tracker’
device allows researchers to determine the position on the screen at
which a participant is looking (through observation of their pupils).
In this way, the researcher can therefore observe which word is men-
tally processed at which time (Koring et al., 2012). Research of this
kind is best conducted in a laboratory, where one can control back-
ground noise, lighting, and the position of participants’ eyes relative
to the computer screen.
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Both laboratory research and field research have advantages and disadvantages.
The great advantage of laboratory research is, of course, the degree to which
the researcher can keep all kinds of external matters under control. In a lab-
oratory, the experiment is not likely to be disturbed by a starting engine or a
downpour. However, this advantage of laboratory research also forms an impor-
tant disadvantage, namely: the research takes place in a more or less artificial
environment. It is not at all clear to what extent results obtained under ar-
tificial circumstances will also be true of everyday life outside the laboratory.
Because of this, the latter forms a point to the advantage of field researcher:
the research is conducted under circumstances that are natural. However, the
disadvantage of field research is that many things can happen in the field that
may influence the research results, but remain outside of the researcher’s con-
trol (see example 1.2). The choice between both types of experimental research
that a researcher has to make is obviously strongly guided by their research
question. Some questions are better suited to being investigated in laboratory
situations, while others are better suited to being investigated field situations
(as is illustrated by the examples above).

1.6 Outline of this textbook

This textbook consists of three parts. Part I (Chapter 1 to 7) covers research
methods and explains various terms and concepts that are important in design-
ing and setting up a good scientific research study.
In part II (Chapters 8 to 12), we will cover descriptive statistics, and in part
III (Capters 13 to 17), we will cover the basic methods of inferential statistics.
These two parts are designed to work towards three goals.
Firstly, we would like for you to be able to critically evaluate articles and other
reports in which statistical methods of processing and testing hypotheses on
data have been used. Secondly, we would like for you to have the knowledge
and insight necessary for the most important statistical procedures. Thirdly,
these parts on statistics are meant to enable you to perform statistical analysis
on your own for your own research, for instance, for your internship or final
thesis.
These three goals are ordered by importance. We believe that an adequate
and critical interpretation of statistical results and the conclusions that may
be connected to these is of great importance to all students. For this reason,
part I of this textbook devotes considerable attention to the ‘philosophy’ or
methodology behind the statistical techniques and analyses we will discuss later.
In separate subsections, we will also provide instructions on how you can perform
these statistical analyses yourself, in three different statistical packages:

• SPSS (version 22.0 and later): a popular software package for statistical
analysis. SPSS is available at https://SurfSpot.nl for a small fee.

https://SurfSpot.nl
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• JASP (version 0.11 and later): an attractive open-source package, very
user-friendly, and offering attractive output of its results.
JASP is freely available at https://jasp-stats.org. The JASP website also
offers further instruction documents and videos.

• R (version 3.0 and later): a somewhat more challenging, but also much
more powerful and versatile software package that is gaining popularity
among researchers.
R is freely available at https://www.R-project.org. A brief introduction
to R can be found at https://hugoquene.github.io/emlar2020/. Longer
introductions are available in Dalgaard (2002) and in excellent web books;
a list of recommended books is available at https://statisticalhorizons.
com/resources/free-web-books-for-learning-r.

For students and employees at Utrecht University, these packages are pre-
installed in MyWorkPlace.

https://jasp-stats.org
https://www.R-project.org
https://hugoquene.github.io/emlar2020/
https://statisticalhorizons.com/resources/free-web-books-for-learning-r
https://statisticalhorizons.com/resources/free-web-books-for-learning-r


Chapter 2

Hypothesis testing research

2.1 Introduction

Many empirical studies pursue the goal of establishing connections between
(supposed) causes and their (supposed) effects or consequences. The researcher
would like to know whether one variable has an influence on another. Their
research tests the hypothesis that there is a connection between the supposed
cause and the supposed effect (see Table 2.1). The best way to establish such a
connection, and, thus, to test this hypothesis, is an experiment. An experiment
that has been set up properly and is well executed is the ‘gold standard’ in
many academic disciplines, because it offers significant guarantees concerning
the validity of the conclusions drawn from it (see Chapter 5). Put differently:
the outcome of a good experiment forms the strongest possible evidence for
a connection between the variables investigated. As we discussed in Chapter
1, there are also many other forms of research, and hypotheses can also be
investigated in other ways and according to other paradigms, but we will limit
ourselves here to experimental research.

Table 2.1: Possible causes and possible effects.

Domain Supposed cause Supposed effect
trade outside temperature units of ice cream sold
healthcare type of treatment degree of recovery
eduction method of instruction performance on test
language age at which L2 learning satrts degree of proficiency
education class size general performance in school
healthcare altitude rate of malaria infection
language age speaking rate (speech tempo)

25
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In experimental research, the effect of a variable manipulated by the researcher
on some other variable is investigated. The introduction already provided an
example of an experimental study. A novel teaching method was tested by
dividing students between two groups. One group was taught according to the
novel method, while the other group was taught as usual. The researcher hoped
and expected that her or his novel teaching method would have a beneficial
effect, meaning that it would lead to better student performance.
In hypothesis testing research, it is examined whether the variables investigated
are indeed connected to one another in the way expected by the researcher. Two
terms play a central role in this definition: ‘variables’ and ‘in the way expected’.
Before we consider experimental research in more detail, we will first take a
closer look at these terms.

2.2 Variables

What is a variable? Roughly speaking, a variable is a particular kind of property
of objects or people: a property that may vary, i.e., take different values. Let us
look at two properties of people: how many siblings they have, and whether their
mother is a woman or a man. The first property may vary between individuals,
and is thus a (between-subject or between-participants) variable. The second
property may not vary: if there is a mother, she will always be a woman by
definition [at least, traditionally]. Thus, the second property is not a variable,
but a constant.
In our world, almost everything exists in varying quantities, in varying man-
ners, or to various extents. Even a difficult to define property, like a person’s
popularity within a certain group, may form a variable. This is because we can
rank people in a group from most to least popular. There are ample examples
of variables:

• regarding individuals: their length, their weight, shoe size, speaking rate,
number of siblings, number of children, political preference, income, sex,
popularity within a group, etc.

• regarding texts: the total number of words (‘tokens’), the number of unique
words (‘types’), number of typos, number of sentences, number of signs of
interpunction, etc.

• regarding words: their frequency of use, number of syllables, number of
sounds, grammatical category, etc.

• regarding objects such as cars, phones, etc.: their weight, number of com-
ponents, energy use, price, etc.

• regarding organizations: the number of their employees, their postal code,
financial turnover, numbers of customers or patients or students, number
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of surgeries or transactions performed or number of degrees awarded, type
of organization (corporation, non-profit, …), etc.

2.3 Independent and dependent variables

In hypothesis testing research, we distinguish two types of variables: dependent
and independent variables. The independent variable is whatever is presumed
to bring about the supposed effect. The independent variable is the aspect that
a research will manipulate in a study. In our example where an experiment
is conducted to evaluate the effects of a new teaching method, the teaching
method is the independent variable. When we compare performance between
the students that were taught using the new method and those whose writing
instruction only followed the traditional method, we can see that the indepen-
dent variable takes on two values. In this case, we can give these two values (also
called levels) that the independent variable can take the names of “experimen-
tal” and “control”, or “new” and “old”. We might also express the independent
variable’s values as a number: 1 and 0, respectively. These numbers do not have
a numerical interpretation (for instance, we might as well give these values the
names 17 and 23, respectively), but are used here solely as arbitrary labels to
distinguish between groups. The manipulated variable is called ‘independent’
because the chosen (manipulated) values of this variable are not dependent on
anything else in the study: the researcher is independent in their choice of this
variable’s values. An independent variable is also called a factor or a predictor.

The second type of variable is the dependent variable. The dependent variable
is the variable for which we expect the supposed effect to take place. This
means that the independent variable possibly cause an effect on the dependent
variable, or: it is presumed that the dependent variable’s value depends on the
independent variable’s value - hence their names. An observed value for the
dependent variable is also called a response or score; oftentimes, the depen-
dent variable itself may also be given these names. In our example where an
experiment conducted to evaluate the effect a new teaching method has on stu-
dents’ performance, the student’s performance is the dependent variable. Other
examples of possible dependent variables include speaking rate, score on a ques-
tionnaire, or the rate at which a product is sold (see Table 2.1). In short, any
variable could be used as the dependent variable, in principle. It is mainly the
research question that determines which dependent variable is chosen, and how
it is measured.

This being said, it must be stressed that independent and dependent variables
themselves must not be interpreted as ‘cause’ and ‘effect’, respectively. This
is because the study has as its goal to convincingly demonstrate the existence
of a (causal) connection between the independent and the dependent variable.
However, Chapter 5 will show us how complex this can be.

The researcher varies the independent variable and observes whether this results
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in differences observed in the dependent variable. If the dependent variable’s
values differ before and after manipulating the independent variable, we may
assume that this is an effect that the manipulation has on the independent vari-
able. We may speak of a relationship between both variables. If the dependent
variable’s value does not differ under the influence of the independent variable’s
values, then there is no connection between the two variables.

Example 2.1: Quené et al. (2012) investigated whether a smile or
frown influences how listeners process spoken words. The words
were ‘pronounced’ (synthesized) by a computer in various phonetic
variants - specifically, in such a way that these words sounded as
if pronounced neutrally, with a smile, or with a frown. Listeners
had to classify the words as ‘positive’ or ‘negative’ (in meaning) as
quickly as possible. In this study, the phonetic variant (neutral,
smile, frown) takes the place of the independent variable, and the
speed with which listeners give their judgment is the dependent vari-
able.

2.4 Falsification and null hypothesis

The goal of scientific research is to arrive at a coherent collection of “justified
true beliefs” (Morton, 2003). This means that a scientific belief must be properly
motivated and justified (and must be coherent with other beliefs). How may we
arrive at such a proper motivation and justification? For this, we will first refer
back to the so-called induction problem discussed by Hume (1739). Hume found
that it is logically impossible to generalize a statement from a number of specific
cases (the observations in a study) to a general rule (all possible observations
in the universe).
We will illustrate the problem inherent in this generalization or induction step
with the belief that ‘all swans are white’. If I had observed 10 swans that are
all white, I might consider this as a motivation for this belief. However, this
generalization might be unjustified: perhaps swans also exist in different colours,
even if I might not have seen these. The same problem of induction remains
even if I had seen 100 or 1000 white swans. However, what if I had seen a single
black swan? In that case, I will know immediately and with certainty that the
belief of all swans being white is false. This principle is also used in scientific
research.
Let us return to our earlier example in which we presumed that a new teaching
method will work better than an older teaching method; this belief is called
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H1. Let us now set this reasoning on its head, and base ourselves on the com-
plementary belief that the new method is not better than the old one1; this
belief is called the null hypothesis or H0. This belief that ‘all methods have
an equal effect’ is analogous to the belief that ‘all swans are white’ from the
example given in the previous paragraph. How can we then test whether the
belief or hypothesis called H0 is true? For this, let us draw a representative
sample of students (see Chapter 7) and randomly assign students to the new or
old teaching method (values of the independent variable); we then observe all
participating students’ performance (dependent variable), following the same
protocol in all cases. For the time being, we presume that H0 is true. This
means that we expect no difference between the student groups’ performance.
If, despite this, the students taught by the new method turn out to perform
much better than the students taught by the old method, then this observed
difference forms the metaphorical black swan: the observed difference (which
contradicts H0) makes it unlikely that H0 is true (provided that the study was
valid; see Chapter 5 for more on this). Because H0 and H1 exclude each other,
this means that it is very likely that H1 is indeed true. And because we based
our motivation upon H0 and not H1, sceptics cannot accuse us of being biased:
after all, we did try to show that there was indeed no difference between the
performance exhibited by the students in each group.

The method just described is called falsification, because we gain knowledge by
rejecting (falsifying) hypotheses, and not by accepting (verifying) hypotheses.
This method was developed by philosopher of science Karl Popper (Popper,
1935, 1959, 1963). The falsification method has interesting similarities to the
theory of evolution. Through variation between individual organisms, some can
successfully reproduce, while many others die prematurely and/or do not repro-
duce. Analogously, some tentative statements cannot be refuted, allowing them
to ‘survive’ and ‘reproduce’, while many other statements are indeed refuted,
through which they ‘die’. In the words by Popper (1963) (p.51, italics removed):

” … to explain (the world) … as far as possible, with the help of laws
and explanatory theories …there is no more rational procedure than
the method of trial and error — of conjecture and refutation: of
boldly proposing theories; of trying our best to show that these are
erroneous; and of accepting them tentatively if our critical efforts
are unsuccessful.”

Thus, a proper scientific statement or theory ought to be falsifiable or refutable
or testable (Popper, 1963). In other words, it must be possible to prove this
statement or theory wrong. A testable statement’s scientific motivation, and,
therefore, its plausibility increases with each time this statement proves to be
immune to falsification, and with each new set of circumstances under which this

1Two beliefs are complementary when they mutually exclude each other, like H1 and H0
in this example.
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happens. ‘Earth’s climate is warming up’ is a good example of a statement that
is becoming increasingly immune to falsification, and, therefore, is becoming
increasingly stronger.

Example 2.2: ‘All swans are white’ and ‘Earth’s climate is warm-
ing up’ are falsifiable, and therefore scientifically useful statements.
What about the following statements?
a. Gold dissolves in water.
b. Salt dissolves in water.
c. Women talk more than men.
d. Coldplay’s music is better than U2’s.
e. Coldplay’s music sells better than U2’s.
f. If a patient rejects a psychoanalyst’s reading, then this is a conse-
quence of their resistance to the fact that the psychoanalyst’s reading
is correct.
g. Global warming is caused by human activity.

2.5 The empirical cycle

So far, we have provided a rather global introduction to experimental research.
In this section, we will describe the course of an experimental study in a more
systematic way. Throughout the years, various schemata have been devised
that describe research in terms of phases. The best known of these schemata is
probably the empirical cycle by De Groot (1961).

The empirical cycle distinguishes five phases of research: the observation phase,
the induction phase, the deduction phase, the testing phase, and the evaluation
phase. In this last phase, any shortcomings and alternative interpretations are
formulated, which lead to potential new studies, each of which once again goes
through the entire series of phases (hence the name, ‘cycle’). We will now look
at each of these five phases of research one by one.

2.5.1 observation

In this phase, the researcher constructs a problem. This is to say, the researcher
forms an idea of possible relationships between various (theoretical) concepts or
constructs. These presumptions will later be worked out into more general hy-
potheses. Presumptions like these may come about in myriads of different ways
– but all require for the researcher to have sufficient curiosity. The researcher
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may notice an unusual phenomenon that needs an explanation, e.g., the phe-
nomenon that the ability to hear absolute pitch occurs much often in Chinese
musicians than in American ones (Deutsch, 2006). Systematic surveys of scien-
tific publications may also lead to presumptions. Sometimes, it turns out that
different studies’ results contradict each other, or that there is a clear gap in
our knowledge.

Presumptions can also be based on case studies: these are studies in which one
or several cases are studied in depth and extensively described. For instance,
Piaget developed his theory of children’s mental development based on observing
his own children during the time he was unemployed. These observations later
(when Piaget already had his own laboratory) formed the impetus for many
experiments that he used to sharpen and strengthen his theoretical insights.

It is important to realize that purely unbiased and objective observation is
not possible. Any observation is influenced by theory or prior knowledge to a
greater or smaller extent. If we do not know what to pay attention to, we also
cannot observe properly. For instance, those that specialize in the formation
of clouds can observe a far greater variety of cloud types than the uninitiated.
This means that it is useful to first lay down an explicit theoretical framework,
however rudimentary, before making any observations and analysing any facts.

A researcher is prompted by remarkable phenomena, case studies, studying
the literature, etc. to arrive at certain presumptions. However, there are no
methodological guidelines on how this process should come about: it is a creative
process.

2.5.2 induction

During the induction phase, the presumption voiced in the observation phase
is generalized. Having started from specific observations, the researcher now
formulates a hypothesis that they suspect is valid in general. (Induction is the
logical step in which a general claim or hypothesis is derived from specific cases:
my children (have) learned to talk → all children (can) learn to talk.)

For instance, from the observation made in their own social circle that women
speak more than men do (more minutes per day, and more words per day), a
researcher may induce a general hypothesis: H1: women talk more than men
do (see Example 2.2; this hypothesis may be further restricted as to time and
location).

In addition, the hypothesis’ empirical content must be clearly described, which
is to say: the type or class of observations must be properly described. Are we
talking about all women and men? Or just speakers of Dutch (or English)? And
what about multilingual speakers? And children that are still acquiring their
language? This clearly defined content is needed to test the hypothesis (see the
subsection on testing below, and see Chapter 13).
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Finally, a hypothesis also has to be logically coherent: the hypothesis has to
be consistent with other theories or hypotheses. If a hypothesis is not logically
coherent, it follows by definition that it cannot be unambiguously related to the
empirical realm, which means that it is not properly testable. From this, we can
conclude that a hypothesis may not have multiple interpretations: within an ex-
periment, a hypothesis, by itself, must predict one single outcome, and no more
than one. In general, three types of hypotheses are distinguished (De Groot,
1961):

• Universal-deterministic hypotheses.
These take the general shape of all As are B. For example: all swans are
white, all human beings can speak. If a researcher can show for one single
A that it is not B, then the hypothesis has, in principle, been falsified. A
universal deterministic hypothesis can never be verified: a researcher can
only make statements about the cases they have observed or measured.
If we are talking about an infinite set, such as: all birds, or all human
beings, or all heaters, this may lead to problems. The researcher does not
know whether such a set might include a single case for which ‘A is not B’;
there is one bird that cannot fly, et cetera. Consequently, no statement
can be made about these remaining cases, which means that the universal
validity of the hypothesis can never be fully ‘proven’.

• Deterministic existential hypotheses.
These take the general shape of there is some (at least one) A that is B.
For example: there is some swan that is white, there is some human being
that can speak, there is some heater that provides warmth. If a researcher
can demonstrate that there exists one A that is B, the hypothesis has
been verified. However, deterministic existential hypotheses may never be
falsified. If we wanted to do that, it would be necessary to investigate
all units or individuals in an infinite set for whether they are B, which is
exactly what is excluded by the infinite nature of the set. At the same
time, this makes it apparent that this type of hypotheses does not lead to
generally valid statements, and that their scientific import is not as clear.
One could also put it this way: a hypothesis of this type makes no clear
predictions for any individual case of A; a given A might be the specific
one that is also B, but it might also not be. In this sense, deterministic
existential hypotheses do not conform to our criterion of falsifiability.

• Probabilistic hypotheses.
These take the general shape of there are relatively more As that are B
compared to non-As that are B. In the behavioural sciences, this is by far
the most frequently occurring type of hypothesis.
For example: there are relatively more women that are talkative compared
to men that are talkative. Or: there are relatively more highly perform-
ing students for the new teaching method compared to the old teaching
method. Or: speech errors occur relatively more often at the beginning
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rather than at the end of the word. This does not entail that all women
speak more than all men, nor does this entail that all students taught
by the new method perform better than all students taught by the old
method.

2.5.3 deduction

During this phase, specific predictions are deduced from the generally formu-
lated hypothesis set up in the induction phase. (Deduction is the logical step
whereby a specific statement or prediction is derived from a more general state-
ment: all children learn to talk → my children (will) learn to talk.)

If we presume (H0) that “women talk more than men”, we can make specific
predictions for specific samples. For example, if we interviewed 40 female and
40 male school teachers of Dutch, without giving them a time limit, then we
predict that the female teachers in this sample will say more than the male
teachers in the sample (including the prediction that they will speak a greater
number of syllables in the interview).

As explained above (§2.4), most scientific research does not test H1 itself, but
its logical counterpart: H0. Therefore, for testing a H1 (in the next phase of
the empirical cycle), we use the predictions derived from H0 (!), for instance:
“women and men produce equal numbers of syllables in a comparable interview”.

In practice, the terms “hypothesis” and “prediction” are often used interchange-
ably, and we often speak of testing hypotheses. However, according to the above
terminology, we do not test the hypotheses, but we test predictions that are de-
rived from those hypotheses.

2.5.4 testing

During this phase, we collect empirical observations and compare these to the
worked-out predictions made “under H0”, i.e., the predictions made if H0 were
to be true. In Chapter 13, we will talk more about this type of testing. Here,
we will merely introduce the general principle. (In addition to the conventional
“frequentist” approach described here, we may also test hypotheses and com-
pare models using a newer “Bayesian” approach; however, this latter method of
testing is outside the scope of this textbook).

If the observations made are extremely unlikely under H0, there are two possi-
bilities.

• (i) The observations are inadequate, we have observed incorrectly. But
if the researcher has carried out rigorous checks on their work, and
if they take themselves seriously, this is not likely to be true.
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• (ii) The prediction was incorrect, meaning that H0 is possibly incorrect,
and should be rejected in favour of H1.

In our example above, we derived from H0 (!) the prediction that, within a
sample of 40 male and 40 female teachers, individuals will use the same amount
of syllables in a standardized interview. However, we find that men use 4210
syllables on average, while women use 3926 on average (Quené, 2008, p.1112).
How likely is this difference if H0 were true, assuming that the observations are
correct? This probability is so small, that the researcher rejects H0 (see option
(ii) above) and concludes that women and men do not speak equal amounts of
syllables, at least, in this study.

In the example above, the testing phase involves comparing two groups, in this
case, men and women. One of these two groups is often a neutral or control
group, as we saw in the example given earlier of the new and old teaching
methods. Why do researchers often make use of a control group of this kind?
Imagine that we had only looked at the group taught by the new method. In the
testing phase, we measure students’ performance, which is a solid B on average
(7 in the Dutch system). Does this mean that the new method is successful?
Perhaps it is not: if the students might have gotten an A or A- (8 in the Dutch
system) under the old method, the new method would actually be worse, and it
would be better not to add this new method to the curriculum. In order to be
able to draw a sensible conclusion about this, it is essential to compare the new
and old methods between one another. This is the reason why many studies
involve components like a neutral condition, null condition, control group, or
placebo treatment.

Now that we know this, how can we determine the probability of the observations
we made if H0 were to be true? This is often a somewhat complex question, but,
for present purposes, we will give a simple example as an illustration: tossing
a coin and observing heads or tails. We presume (H0): we are dealing with a
fair coin, the probability of heads is 1/2 at each toss. We toss the same coin
10 times, and, miraculously, we observe the outcome of heads all 10 times. The
chance of this happening, given that H0 is true, is 𝑃 = (1/2)10 = 1/1024. Thus,
if H0 were to be true, this outcome would be highly unlikely (even though the
outcome is not impossible, since 𝑃 > 0); hence, we reject H0. Therefore, we
conclude that the coin most likely is not a fair coin.

This leads us to an important point: when is an outcome unlikely enough for us
to reject H0? Which criterion do we use for the probability of the observations
made if H0 were to be true? This is the question of the level of significance, i.e.,
the level of probability at which we decide to reject H0. This level is signified
as 𝛼. If a study uses a level of significance of 𝛼 = 0.05, then H0 is rejected if
the probability of finding these results under H02 is smaller than 5%.

2More accurately: If the probability to find either these results or other results that would
differ even more from those predicted by H0 is smaller than 5%, then H0 is rejected.
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In this case, the outcome is so unlikely, that we choose to reject H0 (option (ii)
above), i.e., we conclude that H0 is most probably not true.

If we thus reject H0, there is a small chance that we are actually dealing with
option (I): H0 is actually true, but the observations happen by chance to strongly
diverge from the prediction under H0, and H0 is falsely rejected. This is called
a Type I error. This type of error can be compared to unjustly sentencing
an innocent person, or undeservedly classifying an innocent email message as
‘spam’. Most of the time, 𝛼 = 0.05 is used, but other levels of significance are
also possible, and sometimes more prudent.

Note that significance is the probability of finding the extreme data that were
observed (or data even more extreme than that) given that H0 is true:

significance = 𝑃(data|H0)

Most importantly, significance is not the probability of H0 being true given these
data, 𝑃(H0|data), even though we do encounter this mistake quite often.

Each form of testing also involves the risk of making the opposite mistake, i.e.,
not rejecting H0 even though it should be rejected. This is called a Type II
error: H0 is, in fact, false (meaning that H1 is true), but, nevertheless, H0 is
not rejected. This type of mistake can be compared to unjustly acquitting a
guilty person, or undeservedly letting through a spam email message (see Table
2.2).

Table 2.2: Possible outcomes of the decision procedure.

Reality Decision
Reject H0 Maintain H0

H0 is true (H1 false) Type I error (𝛼) correct
H0 is false (H1 true) correct Type II error (𝛽)

Convict defendant Acquit defendant
defendant is innocent (H0) Type I error correct
defendant is guilty correct Type I error

Discard message Allow message
message is OK (H0) Type I error correct
message is spam correct Type II error

If we set the level of significance to a higher value, e.g., 𝛼 = .20, this also means
that the chance of rejecting H0 is much higher. In the testing phase, we would
reject H0 if the probability of observing these data (or any more extreme data)
were smaller than 20%. This would mean that 8 times heads within 10 coin
tosses would be enough to reject H0 (i.e., judging the coin as unfair). Thus,
more outcomes are possible that lead to rejecting H0. Consequently, this higher
level of significance entails a greater risk of a Type 1 error, and, at the same
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time, a smaller risk of a Type II error. The balance between the two type of error
depends on the exact circumstances under which the study is conducted, and
on the consequences that each of the two types of error might have. Which type
of error is worse: throwing away an innocent email, or letting a spam message
through? The probability of making a Type I error (the level of significance)
is controlled by the researcher themselves. The probability of a Type II error
depends on three factors and is difficult to gauge. Chapter 14 will discuss this
in more detail.

2.5.5 evaluation

At the end of their study, the researcher has to evaluate the results the study
yielded: what do they amount to? The question posed here is not merely
whether the results favour the theory that was tested. The goal is to pro-
vide a critical review of the way in which the data were collected, the steps
of reasoning employed, questions of operationalization, any possible alternative
explanations, as well as what the results themselves entail. The results must be
put in a broader context and discussed. Perhaps the conclusions will also lead
to recommendations, for example, recommendations for clinical applications or
for educational practice. This is also the appropriate moment to suggest ideas
for alternative or follow-up studies.

During this phase, the aim is primarily to interpret the results, a process in which
the researcher plays an important and personal role as the one who provides the
interpretation. Different researchers may interpret the same results in widely
different ways. Finally, in some cases, results will contradict the outcome that
was predicted or desired.

2.6 Making choices

Research consists of a sequence of choices: from the inspirational observations
during the first phase, to the operational decisions involved in performing the
actual study, to interpreting the results during the last stage. Rarely will a
researcher be able to make the best decision for every choice point, but they
must remain vigilant of the possibility of making a bad decision along the way.
The entire study is as strong as the weakest link: the entire study is as good as
the worst choice in its sequence of choices. As an illustration, we will provide
an overview of the choices a researcher has to make throughout the empirical
cycle.

The first choice that has to be made concerns the formulation of the problem.
Some relevant questions that the researcher has to answer at that moment in-
clude: how do I recognize a certain research question, is research the right choice
in this situation, is it possible to research this idea? The best answers to such
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questions depend on various factors, such as the researcher’s view of humankind
and society, any wishes their superiors or sponsors might have, financial and
practical (im)possibilities, etc.

The research question does have to be answerable given the methods and means
available. However, within this restriction, the research question may relate to
any aspect of reality, regardless of whether this aspect is seen as irrelevant or
important. There are many examples of research that was initially dismissed as
irrelevant, but, nevertheless, did turn out to have scientific value, for instance,
a study on the question: “is ‘Huh?’ a universal word?” (Dingemanse et al.,
2013) (Example 1.1). In addition, some ideas that were initially dismissed as
false later did turn out to be in accordance with reality. For instance, Galilei’s
statement that Earth revolved around the Sun once was called unjustified. In
short, research questions should not be rejected too soon for being ‘useless’,
‘platitudes’, ‘irrelevant’, or ‘trivial’.

If the researcher decides to continue their study, the next step is usually studying
the literature. Most research handbooks recommend doing a sizeable amount of
reading, but how is an appropriate collection of literature found? Of course, the
relevant research literature on the area of knowledge in question must be looked
at. Fortunately, these days, there are various resources for finding relevant
academic publications. For this, we recommend exploring the pointers and so-
called “libguides” offered by the Utrecht University Library (see http://www.uu.
nl/library and http://libguides.library.uu.nl/home_en). We would also like to
warmly recommend the guide by Sanders (2011), which contains many extremely
helpful tips to use when searching for relevant research literature.

During the next phase, the first methodological problems start appearing: the
researcher has to formulate the problem more precisely. One important decision
that has to be made at that point is whether the problem posed here is actually
suited for research (§2.4). For instance, a question like “what is the effect of
the age of onset of learning on fluency in a foreign language?” cannot be re-
searched in this form. The question must be specified further. Crucial concepts
must be (re)defined: what is the age of onset of learning? What is language
fluency? What is an effect? And how do we define a foreign language? How
is the population defined? The researcher is confronted with various questions
regarding definitions and operationalization: Is the way concepts are defined
theoretical, or empirical, or pragmatic in nature? Which instruments are used
to measure the various constructs? But also: what degree of complexity should
this study have? Practically speaking, would this allow for the entire study be
completed? In which way should data be collected? Would it be possible at
all to collect the desired data, or might respondents never be able or willing
to answer such questions? Is the proposed manipulation ethically sound? How
great is the distance between the theoretical construct and the way in which it
will be measured? If anything goes wrong during this phase, this will have a
direct effect upon the rest of the study.

If a problem has been successfully formulated and operationalized, a further ex-

http://www.uu.nl/library
http://www.uu.nl/library
http://libguides.library.uu.nl/home_en
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ploration of the literature follows. This second bout of literature study is much
more focussed on the research question that has been worked out by this point,
compared to the broad exploration of the literature mentioned earlier. On the
grounds of earlier publications, the researcher might reconsider their original
formulation of the problem. Not only does one have to look at the literature
in terms of theoretical content, but one should also pay attention to examples
of how core concepts are operationalized. Have these concepts been properly
operationalized, and if there might be different ways of operationalizing them,
what is the reason behind these differences? In addition, would it be possible
to operationalize the core concepts in such a way that the distance between the
concept-as-intended and the concept-as-defined become (even) smaller (§??)?
The pointers given above with regard to searching for academic literature are
useful here, as well. After this, the research is to (once again) reflect upon the
purpose of the study. Depending on the problem under consideration, ques-
tions such as the following should be asked: does the study contribute to our
knowledge within a certain domain, does the study create solutions for known
stumbling blocks or problems, or does the study contribute to the potential de-
velopment of such solutions? Does the research question still cover the original
problem (or question) identified by superiors or sponsors? Are the available
facilities, funds, and practical circumstances sufficient to conduct the study?

During the next step, the researcher must specify how data will be collected.
This is an essential step, which influences the rest of the study; for this reason,
we will devote an entire chapter to it (Chapter ??). What constitutes the pop-
ulation: language users? Students? Bilingual infants? Speech errors involving
consonants? Sentences? And what is the best way to draw a representative
sample (or samples) from this population (or populations)? What sample size
is best? In addition, this phase involves choosing a method of analysis. More-
over, it is advisable to design a plan of analysis at this stage. Which analyses
will be performed, what ways of exploring the data are envisioned?

All the choices mentioned so far are not yet sufficient for finishing one’s prepara-
tions. One must also choose one’s instruments: which devices, recording tools,
questionnaires, etc., will be used to make observations? Do suitable instru-
ments already exist? If so, are these easily accessible and does the researcher
have permission to use them? If not, instruments must be developed first (§??).
However, in this latter case, the researcher must also take the task upon them-
selves to first test these instruments: to check whether the data obtained with
these instruments conform to the quality standards that are either set by the
researcher or that may be generally expected of instruments used in scientific
research (in terms of reliability and validity, see Chapters 5 and 12).

It is only when the instruments, too, have been prepared that the actual empiri-
cal study begins: the selected type of data is collected within the selected sample
in the selected manner using the selected instruments. During this phase, also,
there are various, often practical problems the researcher might encounter. An
example from actual practice: three days after a researcher had sent out their
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questionnaire by mail, a nationwide mail workers’ strike was declared, which
lasted for two weeks. Unfortunately, the researcher had also given the respon-
dents two weeks’ notice to respond by mail. This means that, once the strike
was over, the time frame the participants were given to respond had already
passed. What was the researcher to do? Lacking any alternatives, our protago-
nist decided to approach each of the 1020 respondents by phone, asking them to
fill out the questionnaire regardless and return it at their earliest convenience.

For the researcher who has invested in devising a plan of analysis in advance,
now is the time of harvest. Finally, the analyses that were planned can be
performed. Unfortunately, reality usually turns out to be much more stubborn
than the researcher might have imagined beforehand. Participants might give
unexpected responses or not follow instructions, presumed correlations turn out
to be absent, and unexpected (and undesirable) correlations do turn out to be
present to a high degree. Later chapters will be devoted to a deeper exploration
of various methods of analysis and problems associated with them.

Finally, the researcher must also report on their study. Without an (adequate)
research report, the data are not accessible, and the study might as well not
have been performed. This is an essential step, which, among other things,
involves the question of whether the study may be checked and replicated based
on the way it is reported. Usually, research activity is reported in the form of
a paper, a research report, or an article in an academic journal. Sometimes, a
study is also reported on in a rather more popular journal or magazine, targeted
towards an audience broader than just fellow researchers.

This concludes a brief overview of the choices researchers have to make when
doing research. Each empirical study consists of a chain of problems, choices,
and decisions. The most important choices have been made before the researcher
starts collecting data.
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Chapter 3

Integrity

3.1 Introduction

Scientific research has brought humanity immeasurably great benefits, such as
reliable computing technology, high-quality medical care, and an understand-
ing of languages and cultures that are not our own. All these assets are based
on scientifically motivated knowledge. Researchers produce knowledge, whose
progress and growth comes about because researchers build upon their prede-
cessors’ experience and insights.

Example 3.1*: Sir Isaac Newton wrote of his scientific work: “If
I have seen further it is by standing on [the] shoulders of Giants”
(in a letter addressed to Robert Hooke, dated 5 Feb 1675)1. This
metaphor can be traced back to the medieval scholar, Bernard de
Chartres: “nos esse quasi nanos gigantum umeris insidentes” [that
we are like dwarfs sat on giants’ shoulders] compared to scholars
from the times of Antiquity. The aforementioned quote by Newton
has also become Google Scholar’s motto (scholar.google.com).

In this chapter, we will discuss the ethical and moral aspects of scientific re-
search. Science is done by human beings, and requires a well-developed sense

1A copy of this letter may be found at https://digitallibrary.hsp.org/index.php/Detail/
objects/9792; for some background information, see http://www.bbc.co.uk/worldservice/
learningenglish/movingwords/shortlist/newton.shtml.
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of judgment on the part of the researchers. The Netherlands Code of Conduct
for Research Integrity (VSNU, 2018) (https://www.vsnu.nl/en_GB/research-
integrity) describes how researchers (and students) are to behave. According
to this code of conduct, scientific research and teaching should be based on the
following principles:

• honesty,

• diligence,

• transparency,

• independence, and

• responsibility.

The following sections will go over how these principles are to be implemented
in our actions during the various phases of scientific research. How are we to set
up a study, collect and process data, and report on our study in a way that is
honest, diligent, transparent, independent, and responsible? This is something
we have to think about even before we start working on our project, which is
why these topics are discussed at the beginning of this reader, even though we
will also refer to terms and concepts that will be worked out in more detail in
subsequent chapters.

3.2 Design

To be sure, scientific research does bring us immeasurably great benefits, but this
is balanced by considerable cost. This includes direct expenses, such as setting
up and maintaining laboratories, equipment, and technical support, but also
researchers’ salaries, financial compensation for informants and participants,
travel expenses for access to libraries, archives, informants, and participants, etc.
These direct expenses are usually subsidized by public funds held by universities
and other academic institutions. In addition, there is an indirect cost, which
is partially borne by informants and participants: time and effort that can no
longer be spent on something else, loss of privacy, and possibly other risks we are
not yet aware of. One often forgotten type of cost is loss of naïveté: a participant
who has participated in an experiment learns from it, and, because of this,
will possibly respond differently in a subsequent experiment (see §5.4, under
History). This means that any results obtained in this subsequent experiment
will generalize less well to other participants who have a different history, and
have not yet participated in a study.

Given its great cost, research has to be thought through and designed in such
a way that its expected benefits are reasonably balanced by its expected cost
(Rosenthal and Rosnow, 2008, Ch.3). If the chance that a study will yield valid

https://www.vsnu.nl/en_GB/research-integrity
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conclusions is very low, it is better not to go ahead with this study, which will
save on both direct expenses and indirect cost.

Example 3.2: Suppose that we would like to examine whether 4-
year-old bilingual children might have a cognitive advantage over
monolingual children of the same age. Based on earlier research, we
expect a different of at least 2 points (on a 10 point scale) between
both groups (with a “pooled standard deviation” 𝑠𝑝 = 4, hence
𝑑 = 0.5, §13.6.2 and §13.8).

We then compare two group of 𝑛 = 4 children each. Even if there
were actually a difference of 2 points between both groups (meaning,
if the hypothesis were true), this study would still have a mere 51%
chance of yielding a significant difference: the power of the exper-
iment is only .51 (Chapter 14), because the two groups contain so
few participants. It would be better for the four-year-olds and their
parents to do engage in other activities (at school, at home, or at
work) instead of participating in this study.

However, if 𝑛 = 30 children would participate in each of the two
groups, and if there were indeed a 2 point difference between both
groups (meaning, if the research hypothesis were true), then the
power of the experiment would be .90. This means that bigger
groups lead to a much better chance of confirming our study’s hy-
pothesis. This elaborate research design will cost more (for the re-
searchers and the children and their parents), but presumably it
will also yield much more: a valid conclusion with great impact on
society.

A study’s design (see Chapter ??) has to be as efficient as possible, and the
researcher has to start thinking about it at an early stage. First of all, efficiency
depends on choices regarding how the independent variables are manipulated.
Is there a separate group of participants for each condition of the independent
variable (meaning that conditions vary “between subjects”, like in example 3.2
above)? In a between-subjects design that involves two groups, we need about
𝑛 = (5.6/𝑑)2 subjects in each group (for further explanation of this, see Gel-
man and Hill (2007), and see §13.8). Or are all participants involved in all
conditions (meaning that conditions vary “within subjects”)? A within-subjects
design with two conditions requires only 𝑛 = (2.8/𝑑)2 subjects in each condi-
tion, and the study will therefore also have lower expenses and indirect cost for



44 CHAPTER 3. INTEGRITY

a much smaller number of participants. In general, this means that, if possi-
ble, it is more efficient (and hence better) to manipulate independent variables
within subjects than it is to vary them between subjects.This is not always pos-
sible, however, firstly because by definition, individual characteristics only dif-
fer between subjects (for example: female/male sex, multilingual/monolingual
background, aphasia/no aphasia, etc.). Secondly, we must take proper care
to recognize effects of so-called transfer between conditions, which threaten our
study’s validity (for example: experience, learning, fatigue, maturation); we will
discuss such effects further in §5.3. The design choice of “between” vs “within”
variation is further discussed in §6.2 below.

Being multilingual or being female are characteristics that may only vary be-
tween individuals. But other conditions may also vary within individuals, for
instance, the day on which a cognitive measurement is taken. Suppose that we
expect a difference of 𝐷 = 2 points between cognitive measurements taken on
Monday and on Friday, respectively (with 𝑠 = 4 and 𝑑 = 0.5, see example 3.2).
If we manipulate the day of measurement between subjects, meaning we make
separate groups for children tested on Monday and those tested on Friday, this
entails that we need 𝑛 = (5.6/0.5)2 = 126 children in each group, yielding a
total of 𝑁 = 252. However, if we manipulate the day of measurement within
subjects, meaning that we observe each participant on Monday and also on Fri-
day, this entails that we need a total of just 𝑁 = (2.8/0.5)2 = 32 children.
The within-subjects design means that far fewer children’s routines will need to
be disturbed for our cognitive measurements. However, we must be properly
aware of learning effects between the first and second measurement, and take
appropriate precautionary measures. For instance, we can no longer use the
same questionnaires in both conditions.

A study’s efficiency also depends on the dependent variable, in particular, on
the observations’ level of measurement (Chapter 4), accuracy, and reliability
(Chapter 12). The lower the level of measurement, the lower also the study’s
efficiency. As accuracy goes down, the study’s efficiency also goes down, and
more participants (subjects) and observations will be needed to be able to draw
valid conclusions.

Example 3.3: Suppose that we would like to examine a difference
between two within-subjects conditions, and suppose that the actual
difference between them is 2 points (which yields 𝑠𝐷 = 4 and 𝑑 = 0.5,
see example 3.2). However, suppose that we decide to look only at
the direction and not at the size of the difference between the two
observations for each participant: does the participant have a pos-
itive or negative difference between the first and second condition?
This binomial dependent variable contains less information than the
original point score (it contains just the direction and not the size
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of the difference), making the study less efficient. For this specific
example, this means we would need 59 instead of 34 participants.

Thus, researchers are responsible for diligently and honestly considering and
balancing their study’s cost and benefits, and they need to have a sufficient
methodological background to be able to choose a proper research design, tak-
ing in account time constraints, the available participants and instruments of
measurement, etc.

3.3 Participants and informants

Scientific research is done by human beings: researchers are but human. In the
realm of humanities, these researchers themselves study (other) human beings’
behaviour and intellectual products. These activities are governed by laws, rules,
guidelines, and codes of conduct that researchers (and students!) must follow,
stemming from the aforementioned principles of diligence and responsibility.
A study and the data collected for it may not lead to any kind of harm or
significant loss of privacy for the parties involved.

For research in the humanities in the Netherlands, two laws are relevant:

• The General Data Protection Regulation (GDPR), see https://
autoriteitpersoonsgegevens.nl/nl/onderwerpen/avg-europese-privacywetgeving
(in Dutch) or https://ec.europa.eu/info/law/law-topic/data-protection/
data-protection-eu_en,

• Wet Medisch-wetenschappelijk Onderzoek met mensen (WMO;
English: Medical Research Involving Human Subjects Act), see
https://wetten.overheid.nl/BWBR0009408/2019-04-02 (in Dutch) or
https://english.ccmo.nl/investigators/legal-framework-for-medical-
scientific-research/laws/medical-research-involving-human-subjects-act-
wmo

It is compulsory to ask participants (or their legal guardians) for their explicit
informed consent. This means that participants are fairly informed about the
study, about its cost and benefits, and about their remuneration, and that,
after this, they explicitly consent to participate. For researchers and students
at Utrecht University, helpful examples of informed consent (information letters
and consent statements) can be found on the website of the Faculty Ethics
Review Committee for the Humanities (FETC-GW, discussed in more detail
below), via https://fetc-gw.wp.hum.uu.nl.

https://autoriteitpersoonsgegevens.nl/nl/onderwerpen/avg-europese-privacywetgeving
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https://english.ccmo.nl/investigators/legal-framework-for-medical-scientific-research/laws/medical-research-involving-human-subjects-act-wmo
https://fetc-gw.wp.hum.uu.nl


46 CHAPTER 3. INTEGRITY

All data that may be used to identify an individual are considered to be personal
data, which may only be collected and processed according to the GDPR. It
is advisable to separate one’s research data from any personal data as early
as possible, which means anonymizing the data. Any information that links
personal data and research data (e.g., a list with participants’ names and their
corresponding anonymous personal code) is, itself, confidential and must be
saved and stored with care. Do not keep personal data any longer than necessary.
Research data may only be used for the (scientific) goal for which they were
collected. Make sure that participants and informants are not recognizable in
reports and publications on the study (i.e., use anonymous codes).

Photos and recordings of individuals (including audio, video, physiological data,
and EEG) are subject to what we call portrait rights. This means that photos
and other identifying recordings are considered on a par with portraits. When
such a photo or recording is published, the person shown or represented may
appeal to their portrait rights and claim damages for the harm done to them
by this publication. This means that, if you might be interested in publishing a
recording from which someone could be recognized, you must ask the individual
who was recorded or their legal guardian for explicit consent beforehand (see
above for the notion of informed consent). This also applies if you intend to
demonstrate or show a fragment of such a recording at a conference presentation
or on a website.

The Dutch WMO law (see above) states that any research involving human
subjects (participants) must first be approved by a special committee; for the
Faculty of Humanities at Utrecht University, this is the Medical Ethics As-
sessment Committee (Medisch-Ethische Toetsingscommissie or METC), which
is administered by the University Medical Centre (UMC). This committee as-
sesses whether the possible benefits of a study are reasonably balanced against
the costs and possible harm done to participants.

However, most research in languages and communication at Utrecht Univer-
sity is exempt from review by the METC, which would otherwise be time-
consuming, but it must be submitted to the Faculty Ethics Review Committee
for the Humanities (Facultaire Ethische Toetscommissie - Geesteswetenschap-
pen or FETC-GW, see https://fetc-gw.wp.hum.uu.nl/en/). This obligatory eth-
ical assessment or review does not apply to research done by students, provided
that some conditions apply. You can find more information on the FETC-GW
website. When in doubt, always consult with your supervisor or teacher. This
ethics assessment is also compulsory for students and researchers in other fields
(literature, history, media & culture) who plan to do research with human par-
ticipants (subjects).

https://fetc-gw.wp.hum.uu.nl/en/
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3.4 Data

The data collected form the motivation and empirical basis for the conclusion
drawn from scientific research. These data therefore have an essential impor-
tance: no data means no valid conclusions. Moreover, as we saw above (§??),
these data are very costly (in terms of time, money, privacy, etc.). This means
that we should treat them very diligently. We must be able to convince others
of our conclusions’ validity based on these data, and we must be able to share
the underlying data with other researchers, if asked.
Thus, diligence requires, at the very least, making a sufficient number of backup
copies as soon as possible. Think of what might happen if a fire or flood would
completely destroy the place where you work or live, or if your laptop would be
stolen during your thesis project (this actually happened to one of our students!).
If so, would proper and recent copies of the data be stored in other locations?
For storing backup copies, a sufficiently secured cloud service2 is a good option.
Diligence also requires a proper record of what the data stand for, and how they
were collected. Data without a matching description are practically useless for
scientific research. Charles Darwin carefully noted down which bird found on
which of the Galapagos Islands had which beak shape, and these observations
later formed (a part of) the motivation for his theory of evolution. In the same
way, we strongly encourage you to keep a log (on paper or digitally) of all steps
of your research study, including motivations for these steps, if needed. Also
note the brand, type, and settings used for any equipment you use, and note the
version and settings for any software used. Keep a record of which processing
steps were applied to the data, and why, and which file contains which data.
If you are working with digitized data (e.g., in Excel, or SPSS, or R), make sure
to carefully keep track of which variable is stored in which column, using which
unit of measurement and which coding scheme.

Example 3.4: The file found at <http://tinyurl.com/nj4pjaq. con-
tains data from 80 speakers of Dutch, partially taken from the Cor-
pus of Spoken Dutch (Corpus Gesproken Nederlands or CGN). The
first line contains the variable names. Each subsequent line corre-
sponds to one speaker. The pieces of data on each line are separated
by spaces. The first column contains the anonymized speaker ID
code, as used in the CGN. In the fifth column, the speaker’s region
of origin is coded with a single letter: W for Western region (Rand-
stad), M Central (Mid), N North, S South) (Quené, 2008). Because of
the careful annotation, these data may still be used with no problem,
even if they were collected over 20 years ago by fellow researchers.

2Students and employees of most Dutch educational institutions can use SurfDrive (https:
//www.surfdrive.nl) for easy data storage on secured servers.

http://tinyurl.com/nj4pjaq
https://www.surfdrive.nl
https://www.surfdrive.nl
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Data remain the intellectual property of those who collected them. Use of other
researchers’ data with no citation may be seen as theft or plagiarism.

Data fraud (fabricating data, meaning, coming up with data out of thin air,
instead of observing them) is obviously at odds with multiple principles in the
code of conduct mentioned above (VSNU, 2018). Fraud harms the mutual trust
on which science is based. It misleads other researchers who might be building
on the fictional results, and any research funds allotted to a fraudulent line of
research are taken away from other, non-fraudulent research – in other words,
it is a mortal sin of academia. If you would like to discuss any questions or
dilemmas around this topic, please contact prof.dr. Christoph Baumgartner,
confidential advisor on academic integrity for the Humanities at Utrecht Uni-
versity (c.baumgartner@uu.nl).

3.5 Writing

Scientific research only really reaches its purpose once its results are being di-
vulged. Research that is not reported on could as well not have been conducted
at all, and the cost associated with this research was, basically, spent in vain.
For this reason, reporting research results is an important part of academic
work. Publications (as well as patents) form a very important part of the “out-
put” of scientific research. Researchers are measured by the number of their
publications and these publications’ “impact” (the number of times these pub-
lications are cited by others who build upon them). This great importance is
one of the reasons we ought to be diligent in treating others’ writings, as well
as our own.

The researchers involved in a study must discuss amongst each other who will
be listed as authors of a report or publication, and in which order. Those listed
as co-authors of a research report have to satisfy three conditions (Office of
Research Integrity, 2012, Ch.10). Firstly, the must have made a substantial
academic contribution to one or more phases of the study: think of the original
idea, setting up and designing the study, collecting the data, or analysing and
interpreting the data. Secondly, they must have been a part of writing up the
report, either by doing part of the writing or by providing comments on it.
Thirdly, they must have approved the final version of the report (most often
implicitly, sometimes explicitly), and they must also have consented to being a
co-author. It is best practice for the researchers to come to a mutual agreement
on the order in which their names are listed. Usually, names are ordered by
decreasing importance and extent of each author’s contribution. If the lead
researcher is the main investigator and also a co-author, this person is often
listed last.
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Example 3.5: A, a student research assistant, helped collect data,
but has made no other contributions, and is not entirely sure what
the research is about. This means that A need not be listed as a
co-author on the report, but the authors do have to describe and
acknowledge A’s contribution in their report.

B, another student, conducted one of the parts of the research
project supervised by researcher C. Supervisor C thought of the
entire project, but B has collected literature, set up and conducted
one part of the study, collected, analysed, and interpreted data,
and reported on this all in a paper. Because of this, B and C are
both co-authors of a publication on B’s part of the research project.
They come to an agreement on the order in which authors are
listed. Because student B was the most prominent person in the
work, while C was the main investigator, they agree that B will be
first author and C will be second (and last) author.

Researchers build upon their predecessors’ work (see example 3.1). This may
also involve building upon their arguments and even their writing, but these
cases do require that we always correctly refer to the appropriate source, i.e.,
to these predecessors’ work. After all, if we did not do this, we could no longer
distinguish who is responsible for which thought or which fragment of writing.
Plagiarism is “copying others’ documents, thoughts, arguments, and passing
them off as one’s own work” (Van Dale, 12th edition [our translation]). This
form of fraud is also a mortal sin of academia that may lead to substantial
sanctions. The Faculty of Humanities at UU has the following to say about it:

Plagiarism is the appropriation of another author’s works, thoughts,
or ideas and the representation of such as one’s own work. The
following are some examples of what may be considered plagiarism:

• Copying and pasting text from digital sources, such as ency-
clopaedias or digital periodicals, without using quotation marks
and referring to the source;

• Copying and pasting text from the Internet without using quo-
tation marks and referring to the source;

• Copying information from printed materials, such as books,
periodicals or encyclopaedias, without using quotation marks
and referring to the source;

• Using a translation of the texts listed above in one’s own work,
without using quotation marks and referring to the source;
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• Paraphrasing from the texts listed above without a (clear) ref-
erence: paraphrasing must be marked as such (by explicitly
linking the text with the original author, either in text or a
footnote), ensuring that the impression is not created that the
ideas expressed are those of the student;

• Using another person’s imagery, video, audio or test materials
without reference and in so doing representing them as one’s
own work;

• Resubmission of the student’s own earlier work without source
references, and allowing this to pass for work originally pro-
duced for the purpose of the course, unless this is expressly
permitted in the course or by the lecturer;

• Using other students’ work and representing it as one’s own
work. If this occurs with the other student’s permission, then
he or she may be considered an accomplice to the plagiarism;

• When one author of a joint paper commits plagiarism, then all
authors involved in that work are accomplices to the plagiarism
if they could have known or should have known that the other
was committing plagiarism;

• Submitting papers provided by a commercial institution, such
as an internet site with summaries or papers, or which have
been written by others, regardless of whether the text was pro-
vided in exchange for payment.

https://students.uu.nl/en/practical-information/policies-and-
procedures/fraud-and-plagiarism

In the case of self-plagiarism, the fragments or writing or thoughts in question
are not taken from others, but from one of the authors. There are various
schools of thought on self-plagiarism; however, it is advisable to be sure to cite
the relevant source if one is to take ideas from one’s own work, building on the
principles of diligence, reliability, transparency, and responsibility.

A reference or citation is a shortened mention of a source in the body of the
text; you might have seen these quite a few times in this syllabus already. At
the end of the report or text, a full list of sources follows, which is usually
given the heading, “Sources”, “Sources consulted”, “References”, “Literature”,
or “Bibliography”. A mistake in the references may be seen as a form of plagia-
rism (Universiteitsbibliotheek, Vrije Universiteit Amsterdam, 2015) because the
reader is directed towards an incorrect source. For this reason, it is imperative
that researchers cite their sources correctly. Various conventions, depending
on the area of study, have been developed for this. Usually, instructors will
indicate which style or convention is to be used for citing one’s sources. In
this textbook, we have intended to follow the style described by the American
Psychological Association (2010), a style commonly used in the social sciences

https://students.uu.nl/en/practical-information/policies-and-procedures/fraud-and-plagiarism
https://students.uu.nl/en/practical-information/policies-and-procedures/fraud-and-plagiarism
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and some disciplines within the humanities. (For technical reasons, references
may deviate slightly from the APA style.)

The rules for citing sources may sometimes be complex. In addition, au-
thors must make sure that the citations in the body of the text correspond
to the list of full references at the end. These tasks are best performed by
a so-called “reference manager”, a program that collects references or cita-
tions, and correctly inserts them into the body of the text. An overview of
such programs can be found at https://en.wikipedia.org/wiki/Comparison_of_
reference_management_software. In writing this textbook we have used Zotero
(https://www.zotero.org), combined with BibTeX (https://www.bibtex.org).

https://en.wikipedia.org/wiki/Comparison_of_reference_management_software
https://en.wikipedia.org/wiki/Comparison_of_reference_management_software
https://www.zotero.org
https://www.bibtex.org
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Chapter 4

Levels of measurement

4.1 Introduction

In Chapter 2, we were already introduced to variables: properties that can take
different values. As we know, a variable’s value is a way of indicating a property
or quality of an object or person. If we are dealing of a dependent variable, this
value may also be called a score or response, often represented with the symbol
𝑌 . The way in which a property is expressed in a measurable value is called
the variable’s level of measurement; thus, level of measurement is an inherent
property of the variable itself! We distinguish four levels of measurement, in
order of increasing informativeness: nominal, ordinal, interval, ratio. For the
former two levels of measurement, only discrete categories are distinguished,
with or without ordering. The latter two levels of measurement use numerical
values, with or without a zero point. We will discuss the levels of measurement
in more detail below. Insight into a variable’s level of measurement is important
for interpreting scores for that variable, and – as we will see later – for choosing
the correct statistical test to answer a research question.

4.2 Nominal

We speak of a nominal variable (or a nominal level of measurement) when a
property is categorized into separate (discrete) categories that have no order
between them. Well-known examples include a participant’s nationality, a car’s
make, the colour of someone’s eyes, the flavour of a tub of ice cream, one’s living
arrangements (with one’s family, with housemates, living independently, living
with a partner, other), etc. Scores may only be used to distinguish between the
categories (a statement like, “vanilla is different from strawberry” does make
sense). We can, indeed, count how often each category occurs, but there is no
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interpretable order (the statement, “vanilla is larger than strawberry” does not
make sense), and we can also not do any arithmetic on the values measured for a
nominal variable. For instance, we can determine the most frequently occurring
nationality, but we cannot calculate the average nationality.

4.3 Ordinal

We speak of an ordinal variable (or an ordinal level of measurement) when
a property is categorized into separate categories that do have an order or
ranking between them. However, in the case of an ordinal variable, we do not
know anything about the distance between the various categories. Well-known
examples include level of education (primary education, secondary education,
bachelor’s degree, master’s degree/PhD, …), answer on a scale question (agree,
do not know, disagree), position within a ranking, order of elimination in a
talent show, clothing size (XS, S, M, L, XL, …), or military rank (soldier, major,
general, …). Here, as well, we can count how often each category occurs, and
we can even sensibly interpret the rank order (whoever is eliminated last has
performed better than whoever is eliminated first, size L is greater than size
M, a general outranks a major). However, we still can do no arithmetic on
the values measured for an ordinal variable. We may determine the bestselling
clothing size, but we cannot calculate the average clothing size sold1.

4.4 Interval

We speak of an interval variable (or an interval level of measurement) when
a property is expressed as a number on a continuous scale for which there is
no zero point. Because of the scale, we know what the distances or intervals
are between the various values of an interval variable. Well-known examples
include temperature in degrees Celsius (the zero point is arbitrary) or calendar
year (ditto for this zero point). We can count how often each category occurs,
we can sensibly interpret the rank order (in our Gregorian calendar, the year
1999 preceded the year 2000), and we can also sensibly interpret the intervals
(the interval between 1918 and 1939 is just as long as that between 1989 and
2010). We may, indeed, do arithmetic on the values of an interval variable, but
the only operations that make sense are addition and subtraction. These are
enough to calculate an average, e.g., the average year in which the individuals
in the sample obtained their first mobile phone.

1If half of our respondents answers agree, and the other half answers disagree, it does not
make sense to conclude that the responses are neutral on average.
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4.5 Ratio

The fourth and highest level of measurement is the ratio level. We speak of a
ratio variable (or a ratio level of measurement) when a property is expressed as
a number on a continuous scale for which there is, indeed, a zero point. Because
of the scale, we know what the distances or intervals are between the various
values of a ratio variable. In addition, because of the zero point, we know what
the proportions or ratios are between the various values (hence the name of this
level). Well-known examples include temperature in degree Kelvin (measured
from absolute zero), response time2 in thousandths of a second (ms), your height
in centimetres (cm), your age in years, the number of errors made on a test, etc.
When we are dealing with a ratio variable, we can count how often each category
occurs, we can sensibly interpret the rank order (someone whose height is 180
cm is taller than someone whose height is 179 cm), we can sensibly interpret
intervals (the increase in age between 12 and 18 is two times as large as that
between 9 to 12), and we can also sensibly interpret proportions between the
values (the age of 24 is twice as great as the age of 12). We may do arithmetic on
the values of a ratio variable, which includes not just addition and subtraction,
but also division and multiplication. Here, as well, it is possible to calculate an
average, e.g., the average age at which the individuals in the sample obtained
their first mobile phone.

4.6 Ordering of levels of measurement

In the above, we have discussed the levels of measurement in order of increas-
ing informativeness or strength. A nominal variable contains the least amount
of information and is considered the lowest level of measurement, while a ra-
tio variable contains the greatest amount of information and is considered the
highest level of measurement.

It is always possible to reinterpret data measured at a high level of measurement
as if they had been measured at a lower level. For instance, if, for each individual
in a sample, we had measured their monthly income at a ratio level (in €), we
would be able to make an ordinal variable out of this with no problem (e.g. less
than average, average to twice the average, more than twice the average). This
would mean discarding information: the original measurements in terms of €
contain more information than the classification into three ordered categories
derived from it.

Of course, the opposite is not possible: a variable at a low level of measurement
cannot be reinterpreted at a higher level. We would have to add, after the
fact, information that we did not collect during the original measurement of
this variable. It is therefore imperative to observe the relevant variables at the

2The zero point is the moment in time when the event begins that the participant is to
respond to.
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correct level of measurement. Supposed we wanted to compare body height in
adult men and women. If we measure body height at an ordinal level (having
defined three categories, short, medium, and tall, equally for all individuals), this
means that we cannot calculate the average body length, and we can also not use
any statistical test that would refer to the average body length. This does not
have to be a problem, but it is a good idea to think through the consequences of
using a particular level of measurement in advance of the actual measurement.



Chapter 5

Validity

5.1 Introduction

The goal of experimental research is to test a hypothesis. Hypotheses may also
be tested in other, non-experimental research, but in the following, we will re-
strict ourselves to experimental research, i.e., research that uses the experiment
as its methodology, for the sake of clarity. In experimental research, we attempt
to argue for the plausibility of a causal relationship between certain factors. If an
experiment study has results that confirm the research hypothesis (i.e., the null
hypothesis is rejected), it is plausible that a change in the independent variable
is the cause of a change, or effect, in the dependent variable. In this manner,
experimental research allows us to conclude with some degree of certainty that,
for instance, a difference in medical treatment after a stroke is the cause, or
an important cause, of a difference in patients’ language ability as observed 6
months post-stroke. The experiment has made it plausible that there is a causal
relationship between the method of treatment (independent variable) and the
resulting language ability (dependent variable).

5.2 Causality

A causal relationship between two variables is distinct from ‘just’ a relationship
or correlation between two variables. If two phenomena correlate with one
another, one does not have to be the cause of the other. One example can
be seen in the correlation between individuals height and their weight: tall
people are, in general, heavier than short people (and vice versa: short people
are generally lighter than tall people). Does this mean that we can speak of a
causal relationship between height and weight? Is one property (partially) cause
by the other? No: in this example, there is, indeed, a correlation, but no causal
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relationship between the properties: both height and weight are “caused” by
other variables, including genetic properties and diet. A second example is the
correlation between motivation and language ability in second language learners:
highly motivated students learn to speak a new second language better and more
fluently than those with low motivation do, but here, also, it is unclear which
is the cause and which is the effect.
A causal relationship is a specific type of correlation. A causal relationship is
a correlation between two phenomena or properties, for which there are also
certain additional requirements (Shadish et al., 2002). Firstly, the cause has
to precede the effect (it is after treatment that improvement occurs). Sec-
ondly, the effect should not occur if the cause is not there (no improvement
without treatment). Moreover, the effect – at least, in theory – should always
occur whenever the cause is present (treatment always results in improvement).
Thirdly, we cannot find any plausible explanation for the effect’s occurrence,
other than the possible cause we are considering. When we know the causal
mechanism (we understand why treatment causes improvement), we are better
able to exclude other plausible explanations. Unfortunately, however, this is
very rarely the case in the behavioural sciences, which include linguistics. We
do determine that a treatment results in improvement, but the theory that ties
cause (treatment) and effect (improvement) together is rarely complete and has
crucial gaps. This means that we must take appropriate precautionary mea-
sures in setting up our research methodology in order to exclude any possible
alternative explanations of the effects we find.

5.3 Validity

A statement or conclusion is valid whenever it is true and justified. A true
statement corresponds to reality: the statement that every child learns at least
one language is true, because this statement appropriately represents reality. A
justified statement lends its validity from the empirical evidence upon which is
it based: every child observed by us or by others is learning or has learned a
language (except for certain extraordinary cases, for which we need a separate
explanation). A statement’s justification becomes stronger with an increasingly
stronger and more reliable method of (direct or indirect) observation. This also
means that a statement’s validity is not a categorical property (valid/not valid)
but a gradual property: a statement can be relatively more or less valid.
Three aspects of a statement’s validity may be distinguished:

1. To which degree are the conclusions about the relationships between the
dependent and independent variable valid? This question pertains to in-
ternal validity.

2. To which degree are the operationalizations of the dependent and inde-
pendent variable (the ways in which they are worked out) adequate? This
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question pertains to construct validity.

3. To which degree can the conclusions reached be generalized to other par-
ticipants, stimuli, conditions, situations, observations? This question per-
tains to external validity.

These three forms of validity will be further illustrated in the following sections.

5.4 Internal validity

As you already know, it is our aim in an experimental study to exclude as
many alternative explanations of our results as possible. After all, we must
demonstrate that there is a causal relationship between two variables, X and
Y, and this means keeping any confounding factors under control as much as
possible. Let us take a look at example 5.1.

Example 5.1: Verhoeven et al. (2004) investigated (among others)
the hypothesis that older individuals (above 45 years old) speak more
slowly than younger individuals (under 40 years old). To do this,
they recorded speech from 160 speakers, divided equally between
both age groups, in an interview that lasted about 15 minutes. After
a phonetic analysis of their articulation rate, it turned out that the
younger group spoke relatively fast at 4.78 syllables per second, while
the older group spoke remarkably slower at 4.52 syllables per second
(Verhoeven et al., 2004, p.302). We conclude that the latter group’s
higher age is the cause of their lower rate of speaking – but is this
conclusion justified?

This question of a conclusion’s justification is a question about the study’s in-
ternal validity. Internal validity pertains to the relationships between variables
that are measured or manipulated, and is not dependent on the (theoretical)
constructs represented by the various variables (hence the name ‘internal va-
lidity’). In other words: the question of internal validity is one of possible
alternative explanations of the research results that were found. Many of the
possible alternative explanations can be pre-empted by the way in which the
data are collected. In the following, we will discuss the most prominent threats
to internal validity (Shadish et al., 2002).
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1. History is a threat to internal validity. The concept of ‘history’ includes,
among others, events that took place between (or during) pretest and
posttest; here, ‘history’ refers to events that are not a part of an experi-
mental manipulation (the independent variable), but that might influence
the dependent variable. For instance, a heat wave can influence partici-
pants’ behaviour in a study.

In a laboratory, ‘history’ is kept under control by isolating participants from
outside influences (such as a heat wave), or by choosing dependent variables that
could barely be influenced by external factors. In research performed outside of
a laboratory, including field research, it is much more difficult and often even
impossible to keep outside influences under control. The following example
makes this clear.

Example 5.2: A study compares two methods to teach students at a
school to speak a second language, in this case, Modern Greek. The
first group is to learn Greek words and grammar in a classroom over
a period of several weeks. The second group goes on a field trip to
Greece for the same period of time, during which students have to
converse in the target language. The total time spent on language
study is the same for both groups. Afterwards, it turns out that
the second groups’ language ability is higher than that of the first
group. Was this difference in the dependent variable’s value indeed
caused by the teaching method (independent variable)?

2. Maturation stands for participants’ natural process of getting older, or
maturing, during a study. If the participants become increasingly older,
more developed, more experienced, or stronger during a study, then, un-
less this maturation was considered in the research question, maturation
forms a threat to internal validity. For instance, in experiments in which
reaction times are measured, we usually see that a participant’s reaction
times become faster over the duration of the experiment as a consequence
of training and practice. In such cases, we can protect internal validity
against this learning effect by offering stimuli in a separate random order
for each participant.

In most cases, maturation occurs because participants perform the same task
or answer the same questions many times in a row. However, maturation can
also happen when participants are asked to provide their answers in a way they
are not used to, e.g., because of an unexpected way of asking the question, or
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through an unusual type of multiple choice question. During the first few times
a participant answers a question in such a study, the method of answering may
interfere with the answer itself. Afterwards, we could compare, e.g., the first
and the last quarter of a participant’s answers to check whether there might
have been an effect of experience, i.e., maturation.

3. The instrumentation or instruments used for a study may also form a
threat to internal validity. Different instruments that are deemed to be
measuring the same construct should always produce identical measure-
ments. Conversely, the same instrument should always produce identical
measurements under different circumstances. For experiments adminis-
tered by a computer, this is usually not a problem. However, in the case
of questionnaires, or the assessment of writing assignments, internal va-
lidity may, indeed, be under threat.

In many studies, observations are made both before a treatment and after.
Identical tests could be used for this, but that might lead to a learning effect (see
above). For this reason, researchers often use different tests between pretest and
posttest. However, this might lead to an instrumentation effect. The researcher
has to consider the possible advantages and disadvantages of each option.

Example 5.3: Rijlaarsdam (1986) investigated the effect of peer eval-
uation on the quality of writing. The setup of his study was as follows
(with some simplifications): first, students write an essay on topic A,
followed by writing instruction that includes peer evaluation, after
which the students write another essay – this time, on topic B. The
writing done in the pretest and posttest is assessed, after which the
researchers test whether average performance differs between both
measurements.

In this study, it is not only the intervention (writing instruction)
that forms a clear difference between the pretest and posttest: the
writing assignment’s topic (A or B) differs, as well. It is doubtful
whether both writing assignments measure the same thing. This dif-
ference of instrumentation threatens internal validity because it may
well be that, at different moments, a (partially) different aspect of
writing ability was measured. Instrumentation (here: the difference
between the writing assignments’ topics) provides a plausible alter-
native explanation for the difference in writing ability, which may
add to or replace the explanation given by the independent variable
(here: the writing instruction provided between measurements).
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4. An additional threat to internal validity is known as the effect of regres-
sion to the mean. Regression to the mean may play a role whenever the
study is focussed on special groups, for instance, bad readers, bad writ-
ers, but to an equal extent: good readers, good writers, etc. Let us first
give an example, since the phenomenon is not immediately clear from an
intuitive point of view.

Example 5.4: There is some controversy about the use of illustrations
in children’s books. Some argue that books used to teach children
how to read should contain no illustrations (or as few as possible):
illustrations distract the child from features of words they should be
learning. Others argue that illustrations may provide essential in-
formation: illustrations serve as an additional source of information.

Donald (1983) investigated how illustrations influenced the under-
standing of a text. The researcher selected 120 students (of a student
body of 1868) from the 1st and 3rd year of primary/elementary ed-
ucation; 60 from each year. According to their performance on a
reading test administered earlier, it turned out that, of the 60 stu-
dents in each year, 30 could be classified as strong readers, and 30
could be classified as less strong readers. Each student was shown
the same text, either with or without illustrations (independent vari-
able), see Table 5.1.

The results turned out to mainly support the second hypothesis:
illustrations improve the understanding of a text, even with inexpe-
rienced readers. The illustrated text was better understood by the
less strong readers, and younger readers, too, showed improvement
when illustrations were added.

Table 5.1: Conditions in the study by Donald (1983).

group reading ability condition 𝑛
1 weak without 15
1 weak with 15
1 strong without 15
1 strong with 15
3 weak without 15
3 weak with 15
3 strong without 15
3 strong with 15
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So, what is wrong with this study? The answer to this question can be found in
how students were selected. Readers were classified as ‘strong’ or ‘less strong’
based on a reading ability test, but their performance on this test are always
influenced by random factors that have nothing to do with reading ability:
Tom was not feeling well and did not perform well on the test, Sarah was not
able to concentrate, Nick was having knee troubles, Julie was extraordinarily
motivated and outdid herself. In other words: the assessment of reading ability
was not entirely reliable. This means that (1) the less strong readers who
happened to have performed above their level were unjustly classified as strong
readers instead of as less strong readers; and, conversely, (2) strong readers who
happened to have performed below their level were unjustly deemed to be less
strong readers. Thus, the group of less strong readers will always contain some
readers that are not that bad at all, and the group of strong readers will always
contain a few that are not so strong, after all.

When the actually-strong readers that were unjustly classified as non-strong
readers are given a second reading test (after having studied a text with or
without illustrations), they will typically go back to performance at their usual,
higher level. This means that a higher score on the second test (the posttest)
might be an artefact of the method of selection. The same is true, with the
necessary changes, for the actually-less-strong readers that have unjustly been
selected as strong readers. When these students are given a second reading
test, they, too, will typically go back to performance at their usual (lower) level.
Thus, their score on the posttest will be lower than their score on the pretest.

For the study by Donald (1983) used as an example here, this means that
the difference found between strong and less strong readers is partially due to
randomness. Even if the independent variable has no effect, the group of ‘strong’
readers will, on average, perform worse, while the group of ‘less strong’ readers
will, on average, perform better. In other words: the difference between the two
groups is smaller during the posttest than during the pretest, as a consequence
of random variation: regression to the mean. As you may expect, research
results may be muddled by this phenomenon. As we saw above, an experimental
effect may be weakened or disappear as a consequence of regression to the mean;
conversely, regression to the mean can be misidentified as an experimental effect
(for extensive discussion, see Retraction Watch (2018)).

Generally speaking, regression to the mean may occur when a classification is
made based on a pretest whose scores are correlated with the scores on the
posttest (see Chapter 11). If there is no correlation at all between pretest and
posttest, regression to the mean even plays the main role: in this case, any
difference between pretest and posttest must be the consequence of regression
to the mean. If there is a perfect correlation, regression to the mean does not
play a role, but the pretest is also not informative, since (after the fact) it turned
out to be completely predictable from the posttest.

Regression to the mean may offer an alternative explanation for an alleged sub-
stantial score increase between pretest and posttest for a lower performing group
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(e.g., less strong readers) compared to a smaller increase for a higher performing
group (e.g., strong readers). Conversely, it might also offer an alternative ex-
planation for an alleged score decrease between pretest and posttest for a higher
performing group (e.g., strong readers) compared to a lower performing group
(e.g., less strong readers).

It is better when groups are not composed according to one of the measurements
(pretest or posttest), but, instead, on the basis of on some other, independent
criterion. In the latter case, the participants in both groups will have a more or
less average score on the pretest, which minimizes the effect of regression to the
mean. Each group will have about equal numbers of participants whose scores
fell out too high by accident and those whose scores fell out too low, both on
the pretest and the posttest.

5. A fifth threat to internal validity comes in the form of selection. This
refers (mainly) to a distribution of participants between various conditions
under which the groups are not equivalent at the beginning of the study.
For instance, when the experimental condition contains all the smarter
students, while the control condition contains only the less bright ones,
any effect that is found may no longer be attributed to manipulation of the
independent variable. The difference in initial levels (here: in intelligence)
will provide a plausible alternative explanation that threatens internal
validity.

Example 5.5: To make a fair comparison between schools of the same
type1, we must consider differences between schools regarding their
students’ level at entry. Imagine that school A has students that
start at level 50, and perform at level 100 on their final exams (we
are using an arbitrary scale here). School B has students that start
at level 30, and perform at level 90 on their final exams (on the same
scale). Is school B worse than A (because of lower final performance),
or is school B better than A (because final performance shows a
smaller difference)?

Research in education often does not provide the opportunity to randomly as-
sign students in different classes to various conditions, because this may lead
to insurmountable organizational problems. These organizational problems in-
volve more than just (randomly) splitting classes, even though the latter may

1The secondary school system in the Netherlands distinguishes three major types (VMBO,
HAVO, VWO), which differ in the length of the curriculum and in whether they are geared
more towards practical or academic learning.
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already be difficult to put into practice. The researcher also has to account for
possible transfer effects between conditions: students will talk to one another,
and might even teach each other the essential characteristics of the experimental
condition(s). This is at least one way in which the absence of an effect could
be explained. Because of the problems sketched out here, it often occurs that
entire classes are assigned to one of the conditions. However, classes consist of
students that go to the same school. When students (and their parents) choose
a school, self-selection takes place (in the Dutch education system), which leads
to differences between conditions (that is, between classes within conditions)
in terms of students’ initial performance. This means that any differences we
find between conditions could also have been caused by students’ self-selection
of schools.

In the above, we have already indicated the most straightforward way to give dif-
ferent conditions the same initial level: assign students to conditions by chance,
or, at random. This method is known as randomization (Shadish et al., 2002,
p.294 ff). For instance, we might randomize participants’ assignment to con-
ditions by giving each student a random number (see Appendix A)), and then
assigning ‘even students’ to one condition and ‘odd students’, to the other. If
participants are randomly assigned to conditions, all differences between partic-
ipants within the various conditions are based on chance, and are thus averaged
out. In this way, it is most likely that there are no systematic differences be-
tween the groups or conditions distinguished. However, this is only true if the
groups are sufficiently large.

Randomization, or random assignment of participants to conditions, is to be
distinguished from random sampling from a population (see §7.3) below). In the
case of random sampling, we randomly select participants from the population
of possible participants to be included in our sample; our goal in this case is that
the sample(s) resemble the population from which they are drawn (it is drawn).
In the case of randomization, we randomly assign the participants within the
sample to the various conditions in the study; our goal in this case is that the
samples resemble each other.

One alternative method to create two equal groups is matching. In the case
of matching, participants are first measured on a number of relevant variables.
After this, pairs are formed that have an equal score on these variables. Within
each pair, one participant is assigned to one condition, and the other, to the
other condition. However, matching has various drawbacks. Firstly, regression
to the mean might play a role. Secondly, matching is very labour-intensive when
participants have to be matched on multiple variables, and it requires a sizeable
group of potential participants. Thirdly matching only reckons with variables
that the researcher deems relevant, but not with other, unknown variables.
Randomization does not only randomize these relevant variables, but also other
properties that might potentially play a role without the researcher’s realizing
this. In short, randomization, even if it is relatively simple, is far preferable to
matching.
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6. Attrition of respondents or of participants is the final threat to internal
validity. In some cases, a researcher will start with a sizeable number
of participants, but, as the study continues, participants drop out. As
long as the percentage of drop-out (attrition) remains small, there is no
problem. However, a problem does arise when attrition is selective to one
of the conditions distinguished. In the latter case, we will not be able to
say much about this condition at all. The problem of attrition is mainly
relevant to longitudinal research: research in which a small number of
respondents is followed over a longer period of time. In this case, we
might be confronted with people’s moving house, or passing away over the
course of the experiment, or participants that are no longer willing to be
a part of the study, etc. This may lead to a great reduction in the number
of respondents.

In the preceding paragraphs, we discussed a number of frequently occurring
problems that may threaten a study’s internal validity. However, this list is by
no means an exhaustive one. Each type of research has problems of its own,
and it is the researcher’s task to remain aware of possible threats to internal
validity. To this end, always try to think of plausible explanations that might
explain a possible effect to the same extent as, or maybe even better than, the
cause you are planning to investigate. In this manner, the researcher must adopt
the mindset of their own greatest sceptic, who is by no means convinced that
the factor investigated is truly the cause of the effect found. Which possible
alternative explanations might this sceptic come up with, and how would the
researcher be able to eliminate these threats to validity through the way the
study is set up? This requires an excellent insight into the logical relationships
between the research questions, the variables that are investigated, the results,
and the conclusion.

5.5 Construct validity

In an experimental study, an independent variable is manipulated. Depend-
ing on the research question, this may be done in many different ways. In
the same manner, the way in which the dependent variable(s) is/are measured
may take different shapes. The way in which the independent and dependent
variables are formulated is called these variables’ operationalization. For in-
stance, students’ reading ability may be operationalized as (a) their score on
a reading comprehension test with open-ended questions; (b) their score on a
reading comprehension test with multiple choice questions; (c) their score on
a so-called cloze test (fill in the missing word); or (d) as the degree to which
students can execute written instructions. In most cases, there are quite a few
ways to operationalize a variable, and it is rarely the case that a theory would
entail just one possible description for the way the independent or dependent
variables must be operationalized. Construct validity, or concept validity, refers
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to the degree to which the operationalization of both the dependent variable(s)
and the independent variable(s) adequately mirrors the theoretical constructs
that the study focuses on. In other words: are the independent and dependent
variables properly related to the theoretical concepts the study focuses on?

Example 5.6: Infants’ and toddlers’ language development is difficult
to observe, especially in the case of auditory and perceptual devel-
opment in these participants, who can barely speak, if at all. One
often used method is the Head Turn Preference Paradigm (Johnson
and Zamuner, 2010). In this method, each trial starts by having the
infant look at a green flashing light straight ahead. Once a child’s
attention has thus been captured, the green light is extinguished,
and a red light starts flashing at the participant’s left or right hand
side. The child turns their head to be able to see the flashing light. A
sound file containing speech is then played on a loudspeaker placed
next to this peripheral flashing light. The dependent variable is the
period of time during which the child keeps looking to the side (with
less than 2 seconds of interruption). After this, a new trial is started.
The time spent looking at the light is interpreted as indicating the
degree to which the child prefers the spoken stimulus.

However, interpreting the looking times obtained is difficult, be-
cause children sometimes prefer new sound stimuli (e.g., sentences
in an unknown language) and sometimes prefer familiar stimuli (e.g.,
grammatical vs. ungrammatical sentences). Even when the stimuli
have been carefully adjusted to the participant’s level of develop-
ment, it is still difficult to relate the dependent variable (looking
time) to the intended theoretical construct (the child’s preference).

Example 5.7 : As indicated above, the concept of reading ability may
be operationalized in various ways. Some argue that reading ability
cannot be properly measured by multiple choice questions (Houtman
1986, Shohamy 1984). In multiple choice questions, answers are very
strongly influenced by other notions, such as general background,
aptitude at guessing, experience with earlier tests, and the way the
question itself is asked, as is illustrated in the following question:

Who of the following individuals published an autobiography within
the last few years?
a. Joan of Arc (general background)
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b. my neighbour (way the question is asked, experience)
c. Malala Yousafzai (general background)
d. Alexander Graham Bell (general background)

This question is clearly lacking in construct validity for measuring
knowledge on autobiographies.

Of course, the problems with construct validity mentioned above arise not only
for written questions or multiple choice questions, but also for questions one
might ask participants orally.

Example 5.8: If we orally ask parents the question, How often do
you read to your child?, this question in itself suggests to them that
it is desirable to read to one’s child, and parents might overestimate
how often they do this. This means that we are not only measuring
the construct of ‘behaviour around reading to one’s child’, but also
the construct of ‘propensity towards socially desirable answers’ (see
below).

A construct that is notably difficult to operationalize is that of writing ability.
What is a good or bad product of writing? And what exactly is writing ability?
Can writing ability be measured by counting relevant content elements in a text,
should we count sentences or words, or perhaps mainly connectives (therefore,
because, since, although, etc.), should we collect multiple judgments that readers
have about the written text (regarding goal-orientedness, audience-orientedness,
and style), or should we collect a single judgment from readers regarding the
text’s global quality, should we count spelling errors, etc? The operationaliza-
tion problems arise from the lack of a theory of writing ability, from which we
might derive a definition of the quality of writing products (Van den Bergh and
Meuffels, 1993). This makes it easy to criticize research into writing quality, but
makes it difficult to formulate alternative operationalizations of the construct.

Another difficult construct is the intelligibility of a spoken sentence. Intelli-
gibility may be operationalized in various ways. The first option is that the
researcher speak the words or sentences in question, and the participant repeat
them out loud, with errors in reproduction being counted; one disadvantage of
this is that there is hardly any control over the researcher’s model pronunciation.
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A second option is that the words or sentences be recorded in advance and the
same procedure be followed for the rest; one disadvantage that remains is that
responses are influenced by world knowledge, grammatical expectations, famil-
iarity with the speaker or their use of language, etc. The most reliable method
is that of the so-called ‘speech reception threshold’ (Plomp and Mimpen, 1979),
which is described in the next example. However, this method does have the
disadvantages of being time-consuming, being difficult to administer automati-
cally, and requiring a great amount of stimulus material (speech recordings) for
a single measurement.

Example 5.9: We present a list of 13 spoken sentences masked with
noise. The speech-to-noise ratio (SNR) is expressed in dB. A SNR
of 0 dB means that speech and noise are equally loud, a SNR of
+3 dB means that the speech is 3 dB louder than the noise, while a
SNR of -2 dB means that the speech is 2 dB less loud than the noise,
etc. After each sentence, the listener has to repeat the sentence he
or she just heard. If this is done correctly, then the SNR for the
next sentence is decreased by 2 dB (less speech, more noise); if the
response had a error, the SNR for the next sentence is increased by
2 dB (more speech, less noise). After a few sentences, we see little
variation in the SNR, which starts swinging back and forth around
an optimal value. The average SNR over the last 10 sentences played
to the participant is the so-called ‘speech reception threshold’ (SRT).
This SRT may also be interpreted as the SNR under which half of
the sentences was understood correctly.

So far, we have only talked about problems around the construct validity of
the dependent variables. However, the operationalization of the independent
variable is also often questioned. After all, the researcher has had to make
many choices while operationalizing their independent variable (see §2.6)), and
the choices made can often be contested.
A study is not construct valid, or concept valid, if the operationalizations of the
independent variables cannot withstand the test of criticism. A study is also
not construct valid if the independent variable is not a valid operationalization
of the theoretical-concept-as-intended. If this operationalization is not valid,
we are, in fact, manipulating something different from what we intended. In
this case, the relationship between the dependent variable and the independent
variable-as-intended that was manipulated is no longer unambiguous. Any ob-
served differences in the dependent variable are not necessarily caused by the
independent variable-as-intended, but could also be influenced by other factors.
One well-known effect of this kind is the so-called Hawthorne effect.
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Example 5.10: Management at the Hawthorne Works Factory (West-
ern Electric Company) in Cicero, Illinois, USA was alarmed by the
company’s bad performance. A team of researchers scrutinized the
way things were done, investigating more or less anything one can
think of: working hours, salary, breaks, lighting, heating, staff and
management meetings, management style, etc. This results of this
study (from 1927) showed that productivity had increased by leaps
and bounds – but there was no correlation with any of the inde-
pendent variables. In the end, the increase in productivity was at-
tributed to the increased attention towards the employees.

Thus, we observe the Hawthorne effect when a change in behaviour does not
correlate with the manipulation of any independent variable, but this change in
behaviour is the consequence of a psychological phenomenon: participants who
know they are being observed are more eager to show (what they think is) the
desired behaviour.

Example 5.11: Richardson et al. (1978) compared the effectiveness
of two methods for improving reading ability in less strong readers.
Students were selected based on their scores on three tests. The
72 students selected were randomly assigned to one of two method
conditions (structured teaching of reading skills versus programmed
instruction). In the first condition, the structured teaching was de-
livered by four instructors, who taught a small group (of four stu-
dents). This, in fact, leads to a student-teacher of 1 : 1. In the
second condition (programmed instruction), the teachers left the
students to their own devices as much as possible. The experiment
ran for 75 sessions of 45 minutes each. After the second observation,
it turned out that the students who were taught according to the
first (structured) method had made more progress than the students
taught using the second method (programmed instruction).

So far, there are no problems with this study. However, a prob-
lem does arise if we concluded that the structured method is better
than the programmed instruction. An alternative explanation, one
that cannot be excluded in this study, is that the effect found does
not (exclusively) follow from the method used, but (also) from the
greater individual attention in the first condition (structured teach-
ing).
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Just like for internal validity, we can also mention a number of validity-
threatening factors for construct or concept validity.

1. One threat to concept validity is mono-operationalization. Many stud-
ies operationalize the dependent variable in one way only. The participants
are only asked to perform one task, e.g., a single auditory task with mea-
surement of reaction times (over multiple trials), or a single questionnaire
(with multiple questions). In this case, the study’s validity rests entirely
on this specific operationalization of the dependent variable, and no fur-
ther data are available on the validity of this specific operationalization.
This means that the researcher leaves room for doubt: strictly speaking,
we have nothing but the researcher’s word as evidence for the validity of
their way of operationalizing the variable. There is a much better way
to carry out this kind of research, namely, by considering different opera-
tionalizations of the construct to be measured. For instance, this can be
done by having participants perform multiple auditory tasks, while count-
ing erroneous responses in addition to measuring reaction times; or by
not only having participants fill out a questionnaire, but also observing
the construct intended through other tasks and methods of observation.
When participants’ performance on the various types of response is highly
correlated, this can be used to demonstrate that all these tests represent
the same construct. This is called convergent validity. We speak of con-
vergent validity when performance on instruments that represent the same
theoretical construct is highly correlated (or, converges).

However, it is not sufficient to demonstrate that tests meant to measure the
same concept or construct are, indeed, convergently valid. After all, this does
not show what construct they refer to, or whether the construct measured is ac-
tually the intended construct. Did we actually measure a speaker’s ‘fluentness’
using multiple methods, or did we, in reality, measure the construct of ‘atten-
tion’ or ‘speaking rate’ each time? Did we actually measure ‘degree of reading
comprehension’ using different converging methods, or did we, in reality, mea-
sure the construct of ‘performance anxiety’ each time? To ensure construct
validity, we really have to demonstrate that the operationalizations are diver-
gently valid compared to operationalizations that aim to measure some other
aspect or some other (related) skill or ability. In short, the researcher must be
able to show that performance on instruments (operationalizations) that rep-
resent a single skill or ability (construct) is highly correlated (is convergent),
while performance on instruments that represent different skills or abilities is
hardly correlated, if at all (is divergent).

2. The researcher’s expectations – which are manifested in both con-
scious and unconscious behaviour – may also threaten a study’s construct
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validity. The researcher is but human, and therefore by no means im-
mune to the influence their own expectations might have on the outcome
of their study. Unfortunately, it is difficult to ascertain after the fact how
the researcher might have influenced an experiment.

Example 5.12: Clever Hans (in German: Kluger Hans) was a horse
with alleged arithmetic skills. When Clever Hans was asked, how
much is 4 + 4?, the horse stomped its right front hoof 8 times,
and when asked, how much is 3 – 1?, Hans stomped his front hoof
twice. Clever Hans caused quite a stir and became the object of
various studies. In 1904, a committee determined that Clever Hans
was, indeed, able to do arithmetic (and communicate with humans).
Later, however, Carl Stumpf, a member of the research committee,
together with his assistant, Oskar Pfungst, established that “the
horse fails to solve the problem posed when the solution is not known
to any of those present” (Pfungst, 1907, p.185, vert. AN), or when
the horse cannot see the person who does know the solution. “Thus,
[the horse] required optical help” (idem). After careful observation,
it turned out that Clever Hans’ owner (and any other people present)
showed very slight signs of relaxation as soon as Hans had stomped
his right front leg the correct number of times. This unintentional
sign was a sufficient incentive for Clever Hans to stop stomping (i.e.,
to keep his front hoof down), in order to receive his reward of carrots
and bread (Pfungst, 1907) (Watzlawick, 1977, p.38–47).

A more recent, perhaps comparable case is that of Alex, a parrot
with extraordinary cognitive skills, see, a.o., Boswall (zj) and Ale
(2015).

This famous example illustrates how subtle a researcher’s or experimenter’s2 in-
fluence on the object of study can be. It goes without saying that this influence
threatens construct validity. For this reason, it is better when the researcher
does not also function as the experimenter. Studies in which the researcher
also is the one who administers the treatment or teaches the students or judges
performance may be criticized, because researcher (and their expectations) may
influence the outcome, which threatens the independent variable’s construct va-
lidity. Researchers may, however, defend themselves against this ‘experimenter

2The experimenter is the person who administers an experiment to a participant or in-
formant. The experimenter may be a person distinct from the researchers who devised the
research hypotheses, constructed stimuli, and/or recruited participants.
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bias’. For instance, in the Head Turn Preference Paradigm (example 5.6), it
is customary that the experimenter does not know which group a participant
belongs to, and does not hear which sound file is being played (Johnson and
Zamuner, 2010, p.74).

3. Another threat to construct validity may be summarized by the term
motivation. There are at least two facets to the validity threat of mo-
tivation. If (at least) one of the conditions in a study is very taxing or
unpleasant, participants may lose motivation and put in less effort into
their tasks. Their performance will be less strong, but this is an effect of (a
lack of) motivation, rather than a direct effect of the independent variable
(here: condition). This means that the effect is not necessarily caused
by manipulation of the intended construct, but may (also) be caused by
unintentional manipulation of participants’ motivation. The opposite sit-
uation could, of course, also be a threat to construct validity. If one of the
conditions is particularly motivating for the participants, any potential
effect may be attributed to matters of motivation. In this case, we may
also be looking at an effect of an unintentionally manipulated variable.

4. Yet another threat to validity has to do with the choice of the range of
values of an independent variable, i.e., its ‘dosage’, that will be consid-
ered. If the independent variable is ‘the number of times participants are
allowed to read a poem silently before reading it aloud’, the researcher
has to determine which values of the variable will be included: one time,
two, three times, more times? If the independent variable is ‘the time
participants may spend studying’, the researcher must choose how long
each group of participants will be allowed to study: five minutes, fifteen
minutes, two hours? The researcher makes a choice out of the possible
dosages of the independent variable, ‘study time’. On the basis of this
dosage, the researcher might conclude that the dependent variable is not
influenced by the independent variable. In fact, however, the researcher
should conclude that there seems to be no correlation between the de-
pendent variable and the chosen dosage of the independent variable. A
possible effect might be concealed by the choice of dosage (values) of the
independent variable.

Example 5.12: If a passenger car and a pedestrian collide, there is
a risk of this being fatal to the pedestrian. This risk of pedestrian
fatality is relatively small (less than 20%) when the speed of collision
is smaller than about 50 km/h (about 31 mph). If we limited our
research into the relationship between speed of collision and risk
of pedestrian fatality to such small ‘dosages’ of collision speed, we
might conclude that collision speed has no influence on the risk of
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pedestrian fatality. This would be an erroneous conclusion (which
type of error?), because, at higher speeds of collision, the risk of
pedestrian fatality increases to almost 100% (Rosén et al., 2011;
SWOV, 2012).

5. A further threat to construct validity is caused by the guiding influence
of pretests. In many studies, the independent variable is measured re-
peatedly, both before and after manipulation of the dependent variable:
the so-called pretest and posttest. However, the nature and content of the
pretest can leave an imprint upon participants. In this manner, a partici-
pant may lose his/her naïveté, which lessens the effect of the independent
variable (e.g., treatment). Any difference in scores between experimental
conditions can thus be explained in several ways. This is because we may
be purely dealing with an effect of the independent variable, but we may
also be dealing with an effect of the pretest and the independent variable
combined. Moreover, sometimes we can explain the lack of an effect by
the fact that a pretest has been performed (see the Solomon four group
design, in Chapter 6, for a design that takes this possibility into account).

Example 5.14: We can compare the effects of two treatments in an
experiment in which participants are divided into two groups by
random assignment. The first group (E) is first given a pretest, then
treatment, then a posttest. The second group (C) is given no pretest
and no treatment, only a posttest, which, for this group, is the only
measurement.

If we find a difference between the two groups during the posttest,
this may not automatically be attributed to the difference in treat-
ment. The difference may also be (partially) caused by the pretest’s
guiding influence, e.g., as a consequence of a guiding choice of words
or sentence structure in the questions or tasks in the pretest. Per-
haps the participants in group E have learnt something during the
pretest, i.e., not during treatment, which makes them perform better
or differently on the posttest compared to the participants in group
C.

6. Another problem that may influence construct validity is participants’
tendency to answer in a socially desirable way. This is simply people’s
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inclination to give an answer that is desirable in a given social situation,
and will therefore not lead to problems or loss of face. An example may
clarify this.

Example 5.15: In opinion polls before elections, respondents are
prone to giving socially desirable answers, which is also true for the
question of whether the respondent is planning on actually cast-
ing their vote (Karp and Brockington, 2005). Respondents show a
stronger inclination towards the socially desirable answer (“yes, I
will vote”) with increasing level of education, which leads to over-
estimation of the turnout rate for higher-educated voters compared
to lower-educated ones. This, in turn, has consequences for the poll
results for the various parties, because political parties’ popularity
differs between voters of different levels of education.

This effect was partially responsible for the overestimation of the number of
Clinton votes and underestimation of the number of Trump votes in the opinion
polls prior to the 2016 US presidential election.

7. One last problem regarding construct validity concerns limited general-
izability. When research results are presented, we regularly hear remarks
such as, ‘I do agree with your conclusion that X influences Y, but how
about…’ The dots may be filled out with all types of things: applicability
to other populations, or other genres, or other languages. Whereas these
aspects are important, they do not play a direct role in the study itself:
after all, we carried out our study using a specific choice of population,
genre, language(s), etc.

Nevertheless, we still recommend facing such questions of generalizability. Are
the conclusions reached also applicable to another population or language, and
why (not)? Which other factors might influence this generalizability? Could
it be that a favourable effect for one population or language turns to an un-
favourable effect for some other population or language that was outside the
scope of the study?

5.6 External validity

Based on the data collected, a researcher – barring any unexpected problems
– may draw the conclusion: in this study, XYZ is true. However, it is rarely
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a researcher’s goal to draw conclusions that are true just for one study. A re-
searcher would not just like to show that being bilingual has a positive influence
on language development in the sample of children studied. A researcher would
like to draw conclusions such as: being bilingual has a positive influence on
language development in children. The researcher would like to generalize. The
same holds for daily life: we might taste a single spoonful of soup from an entire
pot, and then express a judgment on the entire pot of soup. We assume that
our findings based on the one spoonful may be generalized to the entire pot,
and that it is not necessary to eat the entire pot before we can form a judgment.

The question of whether a researcher may generalize their results is the question
of a study’s external validity (Shadish et al., 2002). The aspects of a study
generalization pertains to include:

• units: are the results also true for other elements (e.g., schools, individuals,
texts) from the population that did not take part in the study?

• treatment: are the results also true for other types of treatment that are
similar to the specific conditions in this study?

• situations: are the results also true outside the specific context of this
study?

• time: are this study’s results also true at different times?

For external validity, we distinguish between (1) generalization to a specific in-
tended population, situation, and time, and (2) generalization over other pop-
ulations, situations, and times. Generalizing to and over are two aspects of
external validity that must be carefully separated. Generalizing to a population
(of individuals, or often, of language material) has to do with how representative
the sample used is: to which extent does the sample properly mirror the popula-
tion (of individuals, words, or relevant possible sentences)? Thus, “generalizing
to” is tied directly to the goals of the study; a study’s goals cannot be reached
unless it is possible to generalize to the populations defined. Generalizing over
populations has to do with the degree to which the conclusions we formulate
are true for sub-populations we may recognize. Let us illustrate this with an
example.

Example 5.16: Lev-Ari and Keysar (2010) looked into whether lis-
teners found speakers with a foreign accent in their English pronun-
ciation to be less credible. The stimuli were made by having speakers
with no accent, a light accent, or a strong accent pronounce various
sentences (e.g., A giraffe can hold more water than a camel). Listen-
ers (all native speakers of English) indicated to which extent they
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thought the sentence was true. The results showed that the listeners
judged the sentences to be true to a lesser extent when the sentence
had been spoken by a speaker with a stronger foreign accent.

We may assume that this outcome can be generalized to the intended population,
namely, all native listeners of American English. This generalization can be
made despite the possibility that various listeners were perhaps influenced by
the speaker’s foreign accent to different degrees.

Perhaps a later analysis might show that there is a difference between female
and male listeners. It is not impossible that women and men might differ in
their sensitivity to the speaker’s accent. Such an (imagined) outcome would
show that we may not generalize over sub-populations within our population,
even though we may still generalize to the target population.

In (applied) linguistic research, researchers often attempt to simultaneously gen-
eralize to two populations of units, namely, individuals (or schools, or families)
and stimuli (words, sentences, texts, etc.). We want to show that the results are
true not just for the language users we studied, but for other language users,
as well. At the same time, we also want to show that the results are true not
just for the stimuli we investigated, but also for other, similar language material
in the population from which we drew our sample of stimuli. This simultane-
ous generalization requires studies to have a complex design, because we see
repeated observations both within participants (multiple judgments from the
same participant) and within stimuli (multiple judgments on the same stim-
ulus). After the observations have been made, the stimuli, participants, and
conditions are combined in a clever way to protect internal validity as best as
possible. Naturally, generalization to other language material does require that
the stimuli be randomly selected from the (sometimes infinitely large) popula-
tion of all possible language material (see Chapter 7).
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Chapter 6

Design

6.1 Introduction

Many of the problems around validity discussed in Chapter 5 can be avoided by
properly collecting high-quality data. A study’s design indicates which schema
or plan will be used to collect the required data. Using a proper and strong
design allows us to neutralize many of the possible threats to validity, which
increases our study’s strength. Therefore, it is a good idea to spend a good
amount of time thinking through your study’s design in advance! Naturally, a
study’s design must be closely coordinated with the research question at hand:
after all, the data obtained in the study must allow the researcher to give a valid
answer to the research question.
The research designs discussed in this chapter are but a limited selection of
all possible designs. Some designs will be discussed predominantly to indicate
what can go wrong with a “weak” design; conversely, other designs are popular
because they enable us to make our research relatively “strong”.
A research design is composed of various elements:

• time, usually depicted as passing in the direction of reading. Temporal
order is important to be able to establish a causal relationship: the cause
comes first, its effect comes later (§5.2). However, temporal order is a nec-
essary but not a sufficient condition to establish a causal relationship. Put
differently, even when the effect (e.g., recovery) does actually happen after
the cause (e.g., treatment), this does not entail that the treatment actu-
ally caused the recovery. Perhaps the recovery happened spontaneously,
or the recovery is the effect of some other cause not considered in the
study.

79
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Example 6.1: Imagine Gus: whenever someone has a nettle sting, an
insect bite, eczema, or a bruise, Gus sprays some Glassex (Windex)
on it – after a few days, the problem vanishes. Gus is convinced
his Glassex treatment is the cause of recovery. However, this is a
misconception known as “post hoc ergo propter hoc” (“after this,
therefore because of this”; also known as “post hoc fallacy”). It is
most probable that the problem would have healed properly even
without the Glassex treatment. The recovery itself does not prove
that the Glassex treatment is necessary for recovery. (This example
is taken from the 2004 feature film, My Big Fat Greek Wedding).

• groups of units (e.g., participants); a group will usually correspond to a
line in the design.

• treatment, normally depicted as X (as in X-ray). Types of treatment may
also include a lack of treatment (“control”), or non-experimental usual
care.

• observation, normally depicted as O (as in Oscar).

• assignment of participants to groups or conditions of treatment may hap-
pen in various ways. Most often, we will do this at random (indicated
below as “R”), because this usually leads to the best protection of the
study’s validity.

6.2 Between or within ?

For the study’s design it is important whether an independent variable is manip-
ulated between participants (“between subjects”) or within participants (“within
subjects”). In many studies in linguistics, in which multiple texts, sentences,
or words are offered as stimuli, the same is true of distinctions between stimuli
versus within stimuli. Variables that are individual to the participant, such as
sex (boy/girl) or whether they are multilingual, may normally only vary be-
tween participants: the same participant is a member of only one of the groups
(sexes) captured by this variable (sex), and monolingual participants are not
also multilingual participants. However, with other variables, which have to do
with the way in which stimuli are processed, this is, indeed, possible. The same
participant might write with his/her left and right hand, or may be observed
preceding and following treatment. In this case, the researcher must choose in
their researcher design how treatment and observations are combined. We will
return to this in §6.9.
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6.3 The one-shot single-case design

This is a weak design, in which observations are made one single time: after
treatment. This research design may be schematized as follows:

X O

For instance, we might count for all final projects written by students in a partic-
ular cohort of a particular programme how many errors (of a certain type) occur
in these final projects. This may generate some interest, but these data have
very little scientific value. There is no way to compare this to other data (for
other students and/or for other projects by the same students). It is not possi-
ble to draw a valid conclusion about possible effects that “treatment” (studying
in the programme, X) might have on the observations (number of errors, O).

Sometimes, data from a one-shot single-case study are forcibly compared to
other data, for instance, with normative results for a large control group. Imag-
ine we would like to investigate whether a new method of teaching languages
would lead to better language ability in the target language. After a course
that uses the new teaching method, we measure language ability and compare
it to previously published results for a control group that used the traditional
teaching method. This approach is frequently used, but, notwithstanding, there
are various factors that threaten its validity (see §5.4), including history (the
new participants have different histories and biographies compared to the con-
trol group in the past), maturation (the new participants might have undergone
more extensive or less extensive development compare to the control group),
instrumentation (the test might not be equally suitable for individuals taught
by the new teaching method as it is for those taught by the traditional method),
and attrition (attrition of participants prior to the observation is not known,
neither for the traditional method, nor for the new method).

Example 6.2: An interviewer may ask so-called ‘closed’ questions,
which only have a few possible answers (which of these three kinds of
vegetables do you like best: peas, green beans, or broccoli?), or ‘open’
questions, in which the way the question is asked does not limit the
possible answers (what kind of vegetables do you like best?). There
is also a third category, namely, open question with example an-
swers (what kind of vegetables do you like best, for instance, peas,
or green beans, or…?). However, it is not clear whether these ex-
ample answers do or do not have a guiding effect, i.e., whether such
questions are rather comparable with closed questions, or with open
ones. Houtkoop-Steenstra (1991) studied recorded conversations be-
tween doctors and their patients. The doctors would frequently ask
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open questions with example answers. Most of the time, patients
turned out not to have interpreted the question as a guiding one;
they primarily interpreted the question as a prompt for narration.

This study can be seen as a one-shot single-case design, without any
comparison with data from other conditions. While the conclusions
drawn are, indeed, based on empirical observations, we do not know
what answer the interviewee would have given if the question had
been posed differently.

Despite all these drawbacks, a one-shot single-case study may be useful during
the observation phase within the empirical cycle, when the objective is to get
some ideas and to formulate (global) hypotheses, which may be tested later.

6.4 The one-group pretest-posttest design

In a one-group pretest-posttest design, data are collected for one group. At
the first point in time (usually indicated as T1, but sometimes as T0), a first
measurement is carried out (pretest, O1), after which the group is exposed to an
experimental treatment, following which, at a later point in time (T2), a second
measurement is taken (posttest, O2). A one-group pretest-posttest design may
be schematized as follows:

O1 X O2

As shown in the diagram, the treatment, X, does not vary: everyone gets the
same treatment, because there is just one group. The time of measurement,
usually indicated as a pretest, T0 (O1), and a posttest, T1 (O2), varies within
participants.

This design is generally better than the previous one-shot one-case design, and
it is definitely better than having no data at all. Despite this, we still consider
it a weak research design, because it fails to address various threats to validity
(see §5.4). Any difference between O2 and O1 may not exclusively be attributed
to treatment X that was carried out in between: this effect might also be the
consequence of maturation (improvement follows from participants’ maturation)
or of history (improvement follows from one or several events other than X
that occurred between the time of O1 and that of O2). If the treatment, X, or
the posttest, O2, is dependent on participants’ scores on the pretest, O1, then
regression to the mean may also threaten validity. In short, this research design
has various drawbacks because the hypothesis about the independent variable’s
effect cannot always be answered in a valid way.
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6.5 The pretest-posttest-control group design

The problems mentioned above can partially be solved by adding a control group
to the design, which results in a pretest-posttest-control group design. This
means that the study involves two groups of elements (participants), which, in
a diagram, is shown as two lines. This design is used very often. Whenever
possible, researchers try to make the two groups as closely comparable as possi-
ble by assigning participants to the two groups at random. This model can be
schematized as follows (R stands for random assignment to the two groups):

R O1 X O2
R O3 O4

This research design is popular because it can neutralize many threats to internal
validity (see §5.4). The effect of the manipulation or treatment (X) is evaluated
by comparing two differences, (O2 – O1) and (O4 – O3). Strictly speaking, this
research design has not one but two independent variables that may influence
measurements: (1) the manipulation or treatment, X or not X, varying between
participants (“between subjects”), and (2) the time of measurement, usually
indicated as a pretest, T0, and a posttest, T1, varying within subjects.

This design does take effects of history into account, at least, to the degree that
such effects may have occurred equally for both groups. It does not take into
account events that might have influenced just one of the groups (conditions).
This does means that, if such an event has occurred for one group and not
the other, this difference in history might also be responsible for an unequal
difference between pretest and posttest in one group compared to the other.

Threats to internal validity coming from maturation can be easily eliminated in
this research design. After all, we expect any effect of maturation to be equally
manifested in both groups, which is why it cannot be of any influence on the
difference between (O2 – O1) and (O4 – O3). Of course, this does presume
that the pretest was administered to both groups at the same time, and that
the same holds for the posttest.

Any disruptive effect of instrumentation is likewise neutralized, as long as the
requirements on comparable conditions of measurement are satisfied, and mea-
surements are taken with the same instrument, for instance, the same device,
computer program, or printed test. However, if observers or raters are recruited,
like in the case of research into writing ability, instrumentation becomes a more
complicated factor. In this case, it is highly important that these raters do not
know which participants produced the fragments or responses to be judged, or
under which condition this happened. Otherwise, the raters may (unwittingly
and unintentionally) allow their expectations to play a role in the formation of
their judgment. In this latter case, we would not be showing an effect of the
independent variable, but an effect of the raters’ bias.
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The problem of regression to the mean also plays a smaller role in this design.
In case the participants have been randomly assigned to one of two groups, and
all participants’ data are entered into an analysis at the same time, regression
to the mean does not play any role, since regression to the mean is expected to
take place at equal rates in both groups, so that it does not have any influence
on our analysis of the difference between (O2 – O1) and (O4 – O3).

The problem of participant selection is excluded in this design by randomly
choosing the sample of participants from of the entire population, and by then
randomly assigning participants to one of both groups or conditions. Naturally,
the law of large numbers is at work here: if a larger sample is randomly split
into two groups, there is a greater chance that the two groups will be equivalent
compared to when the same is done for a smaller sample.

However, attrition can actually be a reason for a difference between (O2 – O1)
and (O4 – O3). This threat to validity is difficult to control. After all, we
cannot force a participant to keep participating in a study, and we cannot stop
them from moving or passing away. Therefore, attrition may form a problem,
especially when attrition rates differ between the two groups or conditions. It is
best practice to report any attrition in the research report, and to discuss any
potential consequences it may have.

Summarizing, we can say that this pretest-posttest control group design allows
us to control the various factors that threaten internal validity reasonably well.
But how about construct validity (see §5.5))? These threats were not touched
upon earlier in our discussion of the one-shot one-case design and the one-group
pretest-posttest design, because these designs already generated serious doubt
regarding their internal validity.

It must be said that not all aspects of construct validity have repercussions for a
study’s design. Some aspects that concern manner of operationalization, such as
convergent and divergent validity, are irrelevant to choosing a research design.
However, other aspects are, indeed, relevant: the researcher’s expectations, at-
tention, motivation, and the guiding influence of pretests.

The pretest-posttest control group research design does not provide adequate
guarantees for any of these four threats to construct validity. The researcher’s
expectations may play a role both in the experimental and control conditions,
even if it is a different role. This because there are two measurements at two
points in time. Moreover, any difference between (O2 – O1) and (O4 – O3)
might be attributable to the (additional) attention given to the experimental
condition: the so-called Hawthorne effect (see example 5.10 in Chapter 5). This
effect plays a role predominantly if participants in one condition (group) receive
more attention compared to the other condition (group), as is the case in the
Hawthorne effect.

A third threat to construct validity is formed by motivation. Sometimes, one of
the conditions can be so demoralizing that participants in this condition stop
seriously participating in the study. Just like in the case of attention, the crucial
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factor is not so much the appeal of a particular condition, but any differences
between conditions in terms of their appeal.

In addition, construct validity in the pretest-posttest control group design can
be threatened by the guiding influence of pretests. Because of a pretest (O1
and O3), participants may develop a (greater) awareness of certain aspects of
the study, which means that they will no longer behave like naïve participants.
In such cases, the pretest can be considered to be a type of manipulation (see
example 6.3 below).

6.6 The Solomon-four-groups design

The Solomon four-group design is used much less often than the pretest-posttest
control group design. Despite this, the former design is clearly preferable to the
pretest-posttest control group design: in particular, it allows for better control
of threats to construct validity.

In the Solomon four-group design, four conditions are distinguished, to which
participants are assigned at random. In the first two conditions, a pretest is
administered first, after which one of both groups is given the experimental
treatment. Then, both groups undergo a posttest. Up until this point, the
Solomon four-group design is identical to the pretest-posttest control group
design. However, no pretest is administered in the third and fourth conditions.
In one of the two conditions, participants are given the experimental treatment,
but not in the other condition. Finally, both of these groups are given a posttest.
We may schematize the Solomon four-group design as follows:

O1 X O2
O3 O4

X O5
O6

Summarizing, we can say that the Solomon four-group design is an expansion of
the pretest-posttest control group design by two groups, which do not participate
in the pretest. Because of these two additional conditions with no pretest, we
can take into account the guiding influence of pretests (see example 5.14), since
this guiding influence is absent from the third and fourth groups. In addition,
the effect of manipulating the independent variable, X, is tested several times,
namely, in the four comparisons of O2 versus O1, O2 versus O4, O5 versus O6,
and (O2 – O1) versus (O4 – O3). The effect of the possibly guiding pretest
is tested in the two comparisons of O2 versus O5, O4 versus O6. Thus, we can
show effects of both treatment and pretest in the same study. However, this
does mean we must employ two additional groups of participants (compared to
the pretest-posttest control group design).
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Example 6.3: A study done by Ayres et al. (2000) examined the effect
that habituation training (X) has on fear of public speaking. Fear of
public speaking was measured by having the participant first hold
a speech, and then fill out two questionnaires on fear of (public)
speaking. These together form one measurement. One group re-
ceived habituation training by watching a training video that lasted
about 20 minutes; the second group was given a break of the same
duration, instead. The study used a Solomon four-group design to
allow for studying a possible guiding influence of the pretest. After
all, it is possible that the pretest (of which the talk they gave was
a part) itself forms an instance of training for the participants, so
that any positive effects after “treatment” X (habituation training)
may not be attributed to said treatment, but (also) to the pretest.
However, the results showed that the habituation training, indeed,
did have a strongly favourable effect on fear of public speaking, and
that the pretest alone (with no treatment) had no effect at all on
participants’ degree of fear of public speaking.

6.7 The posttest-only control group design

A great amount of studies feature a pretest, because researchers want to demon-
strate that the two (or more) groups researched do not differ from one another
at the beginning of the study. Nevertheless, an adequate research design does
not have to feature a pretest. If the groups are of sufficient size, and if partici-
pants (or other units of interest) have been assigned to groups in a completely
random way, statistical analysis alone is sufficient to show that the groups are
quite comparable. For instance, if we divide 100 participants between 2 groups
in a completely random way, there is an extraordinarily small chance of the two
groups’ showing a difference on the pretest. Therefore, for many cases like this,
a posttest control group design is sufficient. This design may be schematized as
follows:

X O5
O6

However, this design is only adequate if the groups are large enough, and if
participants have been randomly assigned to the conditions. If these demands
cannot be met, this design is also insufficient.
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Example 6.4: Following up on the study by Houtkoop-Steenstra
(1991) (see example 6.2), Wijffels et al. (1992) investigated to which
extent questions with or without example answers are interpreted as
guiding the listener in an oral (phone) interview. To this purpose,
five questions on crime were constructed. Two versions of each ques-
tion were made: one with example answers, and one without. Each
respondent (in a sample of 50) was asked two to three questions
with example answers, and two to three questions without example
answers. The division of questions between the two types (with or
without example answers) was randomized, which means that we
may assume that the group of respondents that heard a particu-
lar question with example answers does not differ from the group
of respondents that heard the exact same question without exam-
ple answers. If both groups answer the same or similarly, we may
assume that example answers have no guiding effect, but if respon-
dents often use example answers to respond to a question, we may
assume that the example answers do have a guiding effect. Analysis
revealed that such a guiding effect did, indeed, occur for 4 out of 5
questions.

These two studies, Houtkoop-Steenstra (1991) and Wijffels et al. (1992), illus-
trate the gradual progress of scientific knowledge. Houtkoop-Steenstra (1991)
establishes that the professional literature has predominantly looked at written
interviews, and asks whether the same effects are seen in oral face-to-face in-
terviews. She concludes that, in face-to-face conversations, example answers do
not have a guiding influence. Wijffels et al. (1992) investigate the same hypoth-
esis in an experiment that uses oral interviews over the phone, and conclude
that example answers do have a guiding influence in these phone conversations.

6.8 Factorial designs

So far, we have talked about experimental designs in which one single indepen-
dent variable is manipulated. However, many researchers are (also) interested in
the effect of simultaneously manipulating multiple independent variables. De-
signs in which several factors are varied at the same time are called factorial
designs. We already saw an example of this in our discussion of the pretest-
posttest control group design (§6.5), in which both time and treatment were
varied.
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Example 6.5: Drake and Ben El Heni (2003) investigated the percep-
tion of musical structure. We may indirectly measure this perception
by asking listeners to tap along with the music. If a listener does not
understand or recognize the structure of a musical fragment, they
will tend to tap every beat (analytical listening). The better a lis-
tener understands and recognizes a fragment’s structure, the more
they will tend to tap along with higher-level units (synthetic or pre-
dictive listening): they will not tap once every beat, but once every
measure or once per musical phrase. The time interval between taps
(called the inter-onset interval or IOI) thus forms an indication of
the perceived musical structure. Two groups of listeners participated
in the study: one in France and one in Tunisia1. All participants lis-
tened to 12 pieces of music, of which 6 derived from French musical
culture, and the other 6, from Tunisian musical culture (the pieces
of music differed in terms of time signature, tempo, and degree of
popularity). Results are summarized visually in Figure 6.1.

Figure 6.1: Average time interval between taps (IOI, in ms) for two groups of
listeners and two types of music (from Drake and Ben El Heni, 2003, Fig.2).

These results show that there is no difference between both groups
1Note that participants are not randomly assigned to one of these two groups, which,

strictly speaking, makes this a quasi-experimental study (see Chapter 1).
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(French vs. Tunisian listeners; both groups have the same IOI on
average), and that there is also no difference between both types
of music (French vs. Tunisian music; both types of music result in
the same IOI on average). Does this mean that the two independent
variables have no effect at all? They absolutely do: it turned out that
French listeners produced longer IOIs between taps when listening to
French music, while, on the other hand, Tunisian listeners produced
longer IOIs when listening to Tunisian music. Thus, all listeners
produced longer IOIs when listening to a type of music they knew,
and shorter IOIs when listening to a type of music they did not
know. Drake and Ben El Heni (2003) conclude that listeners are
better able to recognize and understand musical structure in music
from their own musical culture compared to music from another
culture. This pattern is a classic crossover interaction effect, in which
one independent variable’s effect is exactly opposite in the various
conditions defined by the other independent variable.

If it turns out that there is an interaction effect, we cannot sensibly interpret any
main effects. This was already illustrated in example 6.5: we cannot conclude
that there is no difference between the types of music. However, the size (and
direction) of the difference depends on the other independent variable(s), in
this case, group/nationality of listeners. Many studies are specifically aimed at
demonstrating interaction effects: it is not main effects that are the topic of
research, but their interaction, precisely as in example 6.5 above.

It is difficult to schematize a factorial research design, because it features mul-
tiple independent variables (with multiple levels each). We could schematically
represent these by indexing the manipulation, which was previously shown sim-
ply as X. The first index (subscript) indicates the level for the first independent
variable or factor, while the second index indicates the second factor’s level.
Following this system, we can schematize the design from example 6.5 as fol-
lows:

R X_{1,1} O1
R X_{1,2} O2
R X_{2,1} O3
R X_{2,2} O4

Combining many factors into one big factorial design may often seem seductive:
why not investigate how all these factors interact with one another? However,
the most sensible option is not to do this, and, instead, limit the number of
factors. Firstly, as we will see later, the number of observation has to keep up
with the number of possible combinations of factors. Adding more factors means
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that many more participants (or other units) are needed. Secondly, it is more
difficult to guarantee that all combinations of factors are perfectly comparable
(Shadish et al., 2002, p.266): may we reasonably compare Tunisian participants
listening to Tunisian music in Tunisian with French participants listening to
French music in France? The more combinations of factors are featured in the
study, the trickier it becomes to ensure that these combinations are comparable.
Thirdly, interactions are notoriously difficult to interpret, which also becomes
trickier as interactions become more complex and span a greater number of
factors. For all of these reasons, it is better to study the effects of multiple
factors in separate individual studies (Quené, 2010).
We will come back later to the analysis and interpretation of data from factorial
experimental designs (Chapter 15). In the meantime, we will concentrate on
designs that have just one independent variable.

6.9 Within-subject designs

At the outset of the chapter, we spoke about manipulating an independent
variable either between or within participants (§6.2). In most designs discussed
above, a separate group was formed for each value of the independent variable(s);
we call this a “between-subjects” design2. The independent variable’s value
differs between participants.
However, some independent variables may also be manipulated within partici-
pants. In such cases, we take repeated measures for (within) the same partici-
pants from the same group, switching out different conditions of the independent
variable. In the example below, the independent variable, ‘language’ (native or
non-native), is varied within participants. We call this a “within-subjects” de-
sign.

Example 6.6: De Jong et al. (2015) investigated the fluency of partic-
ipants’ speech in their native language (Turkish) and in a non-native
language (Dutch). The participants first performed a number of
speech production tasks in their native language, a few weeks after
which they did the same for Dutch. One of the dependent vari-
ables was the number of filled pauses (e.g., uh, uhm) per second of
speech: the greater the prevalence of pauses, the lesser the degree of
fluency. As we might expect, the speakers did turn out to produce
more pauses (i.e., speak less fluently) in the non-native language
compared to their native language. However, one of the goals of this
study was to investigate to which extent we may trace back indi-
vidual fluency differences in the non-native language to individual

2Even though the term “participant” is nowadays preferred over “subject”.
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fluency differences in the native language. These two measurements
turned out to be highly correlated (𝑟 = 0.73; see Chapter 11 for
more on this). Speakers who produce many pauses in their non-
native language tend to have many pauses in their native language
too. The researchers argue that we must take this correlation into
account when teaching and testing speaking ability in a non-native
language.

The research design described here can be schematized as follows:

X1 O1 X2 O2

Despite the many threats it poses to internal validity (including history, matura-
tion, guiding influence of pretests), such a design is often useful. In the example
above, it is essential that it is the same participants that carry out speaking
tasks in both languages (conditions) – no other method will be adequate for
answering the research questions.

6.10 Designing a study

A researcher who intends to carry out a study has to settle on a way of collecting
data: they have to choose a particular design for their study. Sometimes, a
standard designed may be chosen, for instance, one of the designs discussed
above. In other cases, the researcher will have to devise their own design.
Naturally, the design chosen should fit well with the research question (Levin,
1999), and it should exclude as many disruptive, potentially validity-threatening
variables as possible. Designing a study is a skill that researchers hone with
practice. In the example below, we will try to show to you which reasoning and
arguments play a role in developing a design for a study.

Suppose that we would like to investigate whether the way in which test ques-
tions are asked, as open vs. closed questions, influences students’ scores on the
relevant test. If we use a simple design, we will first administer a test with
open questions to a group of respondents, and then, a comparable test with
closed questions to the same respondents. If the resulting scores are sufficiently
correlated, we conclude that both tests measure the same thing, and that per-
formance on the test is not significantly influenced by the way questions are
asked. This design can be schematized as follows:

Open O1 Closed O2
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However, this research design does have various weaknesses. Firstly, it is not
prudent to first administer all open question tests at the first time point, and
leave all closed question tests for the second time point. This is because perfor-
mance on the second test will always be influenced by effects of ordering (transfer
effects): respondents remember and, thus, learn something from the first mea-
surement. However, this transfer always works in one direction, which means
that we expect relatively higher performance on the test with closed questions
(at the second time point). Because of this, it is better to randomly distribute
the open question and close question tests between the first and second time
point.

Secondly, all respondents might have been influenced by any events that took
place between the two time points (history), for instance, by some instruction
relevant to the subject matter of the test. Because there is no control group, we
cannot take this type of effect into account.

A third problem lies in the way in which the reasoning from findings to con-
clusions is constructed. For the current example, we defined this reasoning as
follows: if scores on both tests are sufficiently correlated, both tests measure
the same thing. If you stop and think about it, you might agree with us that
this is a strange bit of reasoning. The underlying research question really seems
to be whether the correlation between performance on different tests with dif-
ferent types of questions is the same as the correlation between performance on
different tests with the same types of questions, since we do assume that the
latter group of tests measure the same thing. This, in itself, defines a control
group: respondents who, at both points in time, write tests with the same types
of questions. Just to be sure, let us add not one, but two control groups: one
with open questions at both time points, and one with closed questions at both
time points.

By doing this, we have improved the design in at least two ways: (1) tests are
randomized between times of measurement, and (2) relevant control groups have
been added. At this point, we may schematize our design as follows:

Exp. group 1 Open O1 Closed O2
Exp. group 2 Closed O3 Open O4
Control group 1 Open O5 Open O6
Control group 2 Closed O7 Closed O8

For all four groups, we may now determine the correlation between their per-
formance at the first and the second time point. We can subsequently compare
these correlation results between the four groups, and use this to answer the
research question. This example shows us that the conclusions that can be
draw from research results are directly dependent on the design that was chosen
(Levin, 1999). In the first design, a low correlation would lead to a conclusion
that the two types of testing investigated do not test for the same intellectual
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skills in our respondents. However, in the second design, the same low corre-
lation in the first group (experimental group 1) does not have to lead to the
same conclusion! This is because the conclusion also depends on the degree of
correlation that was found in the other groups.

6.11 In conclusion

Despite all the books, manuals, websites, and other instructional materials that
are available, it is still much too often that we encounter studies with method-
ological problems in their research questions, operationalization, design, drawing
of samples, and/or data collection. Not only do these problems cause a waste
of time, money, and energy, but they also yield knowledge that is less reliable,
valid, and robust than would otherwise have been possible. The following check-
list for good research practice (partly taken from https://www.linkedin.com/
groups/4292855/4292855-6093149378770464768) may preempt many problems
during a study’s later stages.

1. Give your research questions plenty of thought, and formulate them fully
into the smallest detail. If the questions have not been formulated clearly,
or if there are many sub-questions, keep working on the questions.

2. Arrange the research questions according to their priority. This will help
in making good choices regarding design, sampling, operationalization,
etc.

3. Think long and hard about your study’s design. According to an informal
rule of thumb, each hour spent thinking about your study’s design will
save you 10 hours of additional data analysis and interpretation in the
future. Put differently: spending an hour less on thinking about your
design will cost you 10 hours of work down the road.

4. Think of various alternative designs for your study, and think about each
possible design option’s advantages and disadvantages.

5. Imagine the future: you have completed your research project, analysed
your data, and written your report or thesis. Which message would you
like to impart upon the readers of your report? How does your study’s
design contribute to this message? What might you change in your design
to make this message even clearer? Think of the direction you would like
to take, not just of where you are now.

6. Write a research plan in which you describe the various methodological as-
pects of your study. Explain the details of and the reasoning behind your
research questions, design, sample, method of measurement, data collec-
tion, instruments of measurement (e.g., questionnaire, software), other

https://www.linkedin.com/groups/4292855/4292855-6093149378770464768
https://www.linkedin.com/groups/4292855/4292855-6093149378770464768
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requirements (e.g., laboratory environment, transportation), and statisti-
cal processing. You will be able to reuse parts of this research plan in your
report. When writing your plan, make sure to include a schedule: when
will which milestone be reached?

7. Write out what statistical analyses you will use on your data before your
actually start collecting any data. Again, be as explicit as possible (using
a script, step-by-step plan, or similar). Make up a miniature collection of
fake observations, or real observations from the pilot phase of your study,
and analyse these data as if this were your definitive collection of data.
Make adjustments to your research plan as needed.

8. Once you are collecting data, do not make any changes to your research
plan. Keep to this plan and the schedule you made. Analyse your data in
the way specified in the (previously adjusted) research plan. Do discuss in
your report any problems that arose during the study. If serious problems
occur, halt your project, and consider starting anew with an improved
version of your study.



Chapter 7

Samples

In generalizing the outcome of a study to the population or the sample, the
quality of the sample is all-important. Does the sample adequately reflect the
population? To give an extreme example of this: if a sample consists of girls in
the last year of primary education, we cannot properly generalize the results to
the population of students in primary education, because the sample does not
form a good reflection of this population (which consists of boys and girls in all
years of the curriculum).

Depending on the method used by the researchers to select participants, many
kinds of samples may be distinguished. In this chapter, we make a rough dis-
tinction between: (1) convenience samples, (2) systematically drawn samples,
and (3) samples drawn at random. For further discussion of the way in which
samples may be drawn and the problems that play a role in this, we refer the
reader to standard reference works on this topic (Cochran, 1977; Thompson,
2012).

7.1 Convenience samples

Work in the social sciences often uses samples that happen to present themselves
to the researcher, so-called convenience samples. The researcher carries out the
experiment with individuals that happen to be available to them more or less by
chance. Some studies use paid or unpaid volunteers. In other studies, students
are recruited, who are required to log some number of hours as participants as
a part of their studies, or, sometimes, a colleague of the researcher”s sends their
own students to participate in the study. A sample of this kind is not without
its dangers. The researcher has no control whatsoever over the degree to which
results can be generalized to the population. Of course, the researcher does have
a population in mind, and will exclude participants that do not form a part of
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the intended population (such as non-native speakers) from the study, but the
researcher cannot say anything about how representative the sample is.

It is especially in psychology that this convenience sampling has led to heated
discussion. For instance, a survey showed that 67% of samples used in pub-
lished studies in psychology performed in the US was exclusively composed of
undergraduate students enrolled in Psychology courses at American universities
(Henrich et al., 2010). Naturally, samples like this are hardly representative.
As a consequence, the theories based on these data have but a limited scope:
they are likely to apply predominantly to the type of individuals (first world,
young, highly educated, white) that are also highly represented in the samples
(Henrich et al., 2010). Research in linguistics often also uses a convenience
sample. Children that participate as participants often have highly educated
parents (who often tend to have a linguistics background themselves, which
likely means that they have above-average verbal skills), and adult participants
are often students from the researchers’ environment, who, therefore, also have
above-average levels of education and verbal skill.

Despite the valid objections raised against this type of sample, practical consid-
erations often force researchers to use a convenience sample that presents itself.
In such cases, we recommend keeping track of the extent to which this conve-
nience sample distinguishes itself from the population over which the researcher
would like to generalize. To conclude this discussion of samples that present
themselves naturally, we provide an example of the dangers this type of sample
carries.

Example 7.1: Some years ago, there was a televised contest in which
nine candidates competed on their singing skills. Viewers were in-
vited to announce their preference by phone. For each of the nine
candidates, a separate phone line had been opened. For each call,
the corresponding candidate received one point. The person with the
greatest number of points within a set time limit would win. The
audience’s response was overwhelming: large swaths of the Dutch
phone network were over capacity. Very soon, one of the candidates
turned out to have a considerable lead over the others. However, in
the course of the evening, this lead became smaller and smaller. In
the end, there was only a few calls’ difference between the top two
candidates. It was striking to see that, as the evening progressed,
the relative differences between participants gradually diminished.

We may see this voting procedure as drawing a sample of callers or voters.
However, this sample is far from representative. If many voters would like to
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vote for the same candidate, the phone line dedicated to this candidate will
reach and exceed its capacity. This means that singers who drew many callers
will receive relatively fewer votes than singers who draw few callers, because the
latter singers’ phone lines will not be over capacity. It is precisely for the most
popular candidates that a voter is most likely to be unable to cast their vote.
Because of this, the real difference in the number of calls per candidate will
be far greater than what the organizers measured. The organizers themselved
caused this systematic distortion of the results (bias) by opening a separate
phone line for each of the nine candidates. The data could have been much
more representative if the organizers had opened nine phone lines accessible
through one single phone number. In such a scenario, the sample of callers who
were able to cast their vote would have been representative for the population
of all callers, which was not the case in reality.

7.2 Systematic samples

When the elements in the sampling space (i.e., the set of possible elements in
a sample) are systematically ordered in some way, a reasonably representative
sample can be obtained using a systematic sampling procedure. Ordering may,
for instance, involve a list of names.

Example 7.2: Let us assume for the moment that we would like
to make study of language ability in students in the third year of
secondary education. However, the entire population of third year
students is far too great to measure all third year students’ lan-
guage ability (reading, writing, speaking, and listening): this group
contains about 200,000 students. Consequently, we need to draw a
sample. The Dutch Ministry of Education, Culture, and Science has
a system in which a list of all schools with third year students is in-
cluded. An obvious way of proceeding would be to take this list and
include each 100th school on the list into the sample. This procedure
will presumably result in a reasonably representative sample.

However, two factors may muddle the waters in drawing such a systematic
sample, the first of which is the response rate. If a considerable proportion of
schools that were contacted do not cooperate, we are actually dealing with self-
selection (see §5.4 point 5) and, thus, with a convenience sample that presents
itself (see §7.1). This is an unwanted situation, since the schools that did co-
operate presumably have a greater ‘sense of duty’ than the schools that refused
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participation or than the average school. Moreover, students in the responding
and non-responding schools may differ from one another (see §5.4 point 5). This
means that the eventual sample may perhaps be no longer representative of the
population of all third year students. This, in turn, has as a consequence that
the results measured cannot be properly generalized to other third year students
at other schools.
The second factor that may influence whether a systematic sample is represen-
tative is the presence of a disruptive trend effect. We speak of a disruptive trend
effect when elements of the population have a greater chance of ending up in the
sample if they have a certain characteristic, compared to population elements
that do not have this characteristic. In our example of measuring language abil-
ity in third year students, we are dealing with a disruptive trend effect. This
is because not all students have an equal chance of being in the sample. After
all, it is each individual school (not: each individual student) that has an equal
chance of being in the sample. The consequence of this is that the sample will
contain relatively many third year students from small schools with relatively
few students, while, conversely, there will be relatively few third year students
from large schools with relatively many students. Thus, third year students
from large schools will be underrepresented. Is this a bad thing? It might be,
because language ability (dependent variable) is partially influenced by the type
of instruction, and type of instruction is influenced by the size of a school. This
means that the sample described above is not representative for the population
of third year students. Once again, this means that the results measured cannot
be properly generalized to other third year students at other schools.

7.3 Random samples

The disruptive trend effect described above can be avoided by random sampling.
Random sampling may happen in various ways, of which we will discuss three.
The first type is simple random sampling: in this procedure, all elements of the
population have an equal chance of being drawn. This may, for instance, be re-
alized by giving all elements a random number and, depending on the size of the
sample, selecting each 𝑛-th element. For choosing random numbers, researchers
can make use of tables of random numbers (see Appendix A). Random numbers
can also be generated by calculators, computers, spreadsheet programs, etc.
(Using this type of random numbers is advisable, since a “random” order cre-
ated by humans is not truly random.) However, one condition for applying this
method is that the elements of the population (sampling space) are registered
in advance, so that they may all be given numbers in some way.

Example 7.3: We would like to draw a sample of n = 400 primary
schools, which is about 4% of the population of primary schools in
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the Netherlands. To do this, we request from the Dutch Ministry of
Education, Culture, and Science a list of all 9,000 primary schools;
this list is the sampling space. After this, we number all schools
with subsequent numbers (1, 2, 3 … , 9000). Finally, we select all pri-
mary schools whose number happen to end in 36, 43, 59, or 70 (see
Appendix A, first column, last two digits). Using this procedure, we
randomly select 4 of 100 possible last-two-digit combinations, or 4%
of all schools.

The second type of random sampling is stratified random sampling. We are
dealing with this type of sampling when we know the value of a particular
characteristic (e.g., religious denomination) for each element of the population,
and we make sure that elements within the sample are divided equally according
to this characteristic. To do this, we divide the sample into so-called ‘strata’ or
layers (Lat. stratum, ‘cover, layer,’ related to English street, originally meaning
‘paved road’). Let us return to our primary school example to clarify a few
things. Suppose that, for whatever reason, we are now interested in making the
sample (still 4% of the population of primary schools) such that public, catholic,
and protestant schools are represented in equal amounts. We therefore devise
three lists, a separate one for each type of school. Within each list, we proceed
just like for simple random sampling. Eventually, our three sub-samples from
the three strata are combined.

Quota sampling goes one step further compared to stratified random sampling:
we now also take advantage of the fact that we know the distribution of a
certain characteristic (e.g., denomination) within the population. From the list
of primary schools, we might have gleaned that 35% of schools is public, 31%
is catholic, 31% is protestant, and 3% has some other denomination. From this
sampling space, we now draw multiple ‘stratified’ random samples such that the
proportion of schools in each stratum correctly reflects the proportions of this
characteristic in the sampling space (35 ∶ 31 ∶ 31 ∶ 3).

7.3.1 SPSS

In order to create a column containing random numbers;

Transform > Compute...

Select an existing variable (drag to Variables panel) or enter the name of a
new variable. From the panel “Function Group”, choose “Random numbers”,
and choose RV.UNIFORM. This function samples random values from a flat or
uniform probability distribution, meaning that each number between the lower
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and upper limit has an equal chance of being sampled. Enter 0 as lower limit
and 9999 as upper limit, or use other limits as appropriate. Confirm with OK.
This results in a (new or overwritten existing) column with random numbers.

If you wish to sample random numbers from a normal density distribution (see
§10.3), then use the function RV.NORMAL(mean,stdev).

We may provide a starting value for the random number generator, in order to
make reproducible analyses (and examples):

Transform > Random Number Generators...

In the panel “Active Generator Initialization”, check the option Set Starting
Point, and enter a starting value, such as your favourite number. Confirm with
OK.

You can use the resulting random numbers for randomly selecting units (e.g. par-
ticipants, stimuli) for a sample, and also for randomly assigning the selected
units to conditions, treatments, groups, etc.

7.3.2 JASP

In JASP, a column of random numbers can be created by first creating a new
variable (column) and subsequently filling that column with random numbers.

To create a new variable, click on the + button to the right of the last column
name in the data tab. A “Create Computed Column” panel appears, where
you can enter a name for the new variable. You can also choose between R and
a pointer. These are the two options in JASP to define formulas with which
the new (empty) variable is filled; using R code, or manually using JASP. The
paragraphs below explain how random numbers can be generated using these
two options. Finally, you can check which measurement level the new variable
should be (see Chapter 4). For random numbers, you can leave this at Scale.
Next, click on Create Column to create the new variable. The new variable
(empty column) appears as the rightmost variable in the data set.

If the R option is chosen to define the new variable, a field with “#Enter your R
code here :)” appears above the data. Here you can enter R code that generates
random numbers using R functions. Enter the R code (see below) and click on
Compute column at the bottom of the field to fill the empty variable with the
numbers generated by this R code.
The predefined R function runif may be used to generate random values from a
flat or uniform probability distribution, meaning that each number between the
lower and upper limit has an equal chance of being sampled. The default limits
are (0, 1). You may round off the resulting random values to integer numbers,
using the predefined R function round. This snippet of R code generates 5
integer numbers between 0 and 9999:



7.3. RANDOM SAMPLES 101

round( runif(5, 0, 9999) )

If you wish to sample random numbers from a normal density distribution (see
§10.3), then use the predefined R function rnorm(n,mean,sd).
Setting the initial value of the “random number generator”, in order to perform
reproducible analyses, is not possible in JASP. Each run of the R code snippet
will generate fresh random numbers.

If the pointer or manual option is chosen to define the new variable, a
work sheet will appear above the data. To the left of the work sheet are the
variables, above it are math symbols, and to the right of the work sheet are
several functions. From those functions you can pick one to generate your
random numbers. If something goes wrong, items on the work sheet can be
erased by dragging them to the trash bin on the lower right bottom. After
you have completed the specification on the work sheet, then click on the
button Compute column under the work sheet, to fill the new variable with the
generated numbers.
In order to generate random values from a flat or uniform probability
distribution (meaning that each number between the lower and upper limit has
an equal chance of being sampled), pick the function named unifDist() from
the list of functions on the right. Replace min and max by your limits to the
generated numbers. You may round off the resulting random values to integer
numbers, by picking function round() with n=0 decimal digits. Eventually the
work sheet should contain the instruction ‘round(unifDist(0,9999),0); this
will generate integer numbers between 0 and 9999.
If you wish to sample random numbers from a normal probability distribution
(see §10.3), then pick the function normalDist from the list of functions on the
right, and replace mean and sd by your values.

Setting the initial value of the “random number generator”, in order to perform
reproducible analyses, is not possible in JASP. Each time you press on the
Create column button, fresh random numbers will be generated.

You can use the resulting random numbers for randomly selecting units (e.g. par-
ticipants, stimuli) for a sample, and also for randomly assigning the selected
units to conditions, treatments, groups, etc.

7.3.3 R

In R we may generate random numbers using the predefined function runif.
This function samples random values from a flat or uniform probability distri-
bution, meaning that each number between the lower and upper limit has an
equal chance of being sampled. The default limits are (0, 1). You may round off
the resulting random values to integer numbers, as was done in Appendix A.
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If you wish to sample random numbers from a normal density distribution (see
§10.3), then use the function rnorm(n,mean,sd).

We may provide a starting value (called a “seed”) for the random number genera-
tor, in order to make reproducible analyses (and examples), using the predefined
function set.seed:

set.seed(20200912) # reproducible example, number is date on which this chunk was added
round ( runif( n=5, min=0, max=9999 ) ) # similar to Appendix A

## [1] 8193 7482 4206 1684 5653

You can use the resulting random numbers for randomly selecting units (e.g. par-
ticipants, stimuli) for a sample, and also for randomly assigning the selected
units to conditions, treatments, groups, etc.

7.4 Sample size

When you read various research articles, one of the first things that catches the
eye is the enormous variation in the number of respondents. In some studies,
several thousands of participants are involved, while others only have several
multiples of 10, or even fewer. Here, we will discuss two aspects that influence
the required size of one’s sample: the population’s relative homogeneity, and
the type of sampling. In the chapters that follow, we will discuss two more
aspects that influence the desired sample size: the desired precision (effect size,
§13.8) and the desired likelihood to demonstrate an effect if it is present in the
population (power, §14.2).

Example 7.4: When cars are tested (for magazines or television),
only one car of each type is tested. The results of this tested token
are generalized without reservation to all cars of the same type and
make. This is possible because the population of cars to which gen-
eralization is made is especially homogenous, since the manufacturer
strives to make the various tokens of a car type they sell maximally
identical.

Firstly, the required sample size depends on the population’s homogeneity. If
a population is homogeneous, like the cars in example 7.4, a small sample will
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suffice. Things are different when, for instance, we would like to analyse conver-
sation patterns in pre-schoolers. When looking at pre-schoolers’ conversation
patterns, we come across great differences; conversation patterns exhibit a very
high degree of variation. (Some children speak in full sentences, others mainly
remain silent. Moreover, there are great individual differences in children’s
linguistic development.) This means that, to obtain a reasonable picture of
language development in pre-schoolers, we need a much bigger sample. Thus,
the required sample size increases as the population to which we would like to
generalize is less homogeneous (more heterogeneous).

Secondly, the required sample size also depends on the nature of the sample.
If a population contains clear strata, but – for whatever reason – we do not
apply stratified or quota sampling, then we will need a larger sample compared
to a situation where we had, indeed, applied one of these two methods. This is
because, in these two latter methods, the researcher actively ensures that strata
are represented in the sample either to equal extents, or according to the correct
proportions; in simple random sampling, this is left to chance. We must then
appeal to the “law of large numbers” to make sure that a sufficient number of
elements from each stratum makes its way into the sample, in order to justify
generalization of the results to these various strata. Obviously, this law only
works with a sufficiently large sample. When the sample is small, we can in no
way be sure that the various strata are represented in the sample to a sufficient
extent.

Returning to our primary school example, if we selected three primary schools
according to simple random sampling, the chance that this would lead to ex-
actly one public, one catholic, and one protestant school is, no doubt, present.
However, other outcomes are quite likely, as well, and even much more likely.
If we use stratified or quota sampling, we are guaranteed to have one element
(school) of each denomination in our sample. This improves our grounds for
generalization, and strengthens external validity.

After all these recommendations that are worth taking to heart, it is now time
to discuss how we can describe and analyse research data to properly answer
our research questions. This will be done in the next part of this book.
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Chapter 8

Frequencies

8.1 Introduction

When analysing data, a distinction is often made between qualitative and quan-
titative methods. With the first method, observations (e.g. answers in inter-
views) are represented in words, and with the second method, observations
(e.g. speech pauses in interviews) are represented in numbers. In our opin-
ion, the difference between qualitative and quantitative methods lies in how
observations are represented, and how arguments are made on the basis of
these observations. Sometimes it is also possible to analyse the very same data
(e.g. interviews) both qualitatively and quantitatively. The major advantages
of quantitative methods are that the data can be summarised relatively straight-
forwardly (this is the subject of this part of the syllabus), and that it is relatively
simple to draw meaningful conclusions on the basis of the observations.

8.2 Frequencies

Quantitative data can be reported in various different ways. The most straight-
forward way would be to report the raw data, preferably sorted according to the
observed variable’s value. The disadvantage of this is that a potential pattern
in the observations will not be easily visible.

Example 8.1: Students (𝑁 = 50) in a first year course reported the
following values for their shoe size, a variable of an interval level of
measurement:
36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39,
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Table 8.1: Frequency distribution of the phonological class of speech sounds
in the *Corpus of Spoken Dutch* (C=consonant, V=vowel; lang=long vowel,
kort=short vowel).

main.class sub.class count
C plos 585999
C fric 426097
C liq 249275
C nas 361742
C glide 146344
V lang 365887
V kort 428832
V schwa 341260
V diph 61638
V rest 1146

39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40,
40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 43, 43, 44, ??.
One of the students did not provide an answer; this missing answer
is shown here as ??.

It is usually more insightful and efficient to summarise observations and report
them in the form of a frequency for each value. This frequency indicates the
number of observations which have a certain value, or which have a value in
a certain interval or class. In order to get the frequencies, we thus count the
number of observations with a certain value, or the number of observations in a
certain interval. These frequencies are reported in a table. We call such a table
a frequency distribution.

As a first example, Table 8.1 provides a frequency distribution of a discrete vari-
able of nominal level of measurement, namely the phonological class of sounds
in Dutch (Luyckx et al., 2007). #52-56

As a second example, Table 8.2 provides a frequency distribution of a continuous
variable of interval level of measurement, namely the aforementioned shoe size
of first year students (Example 8.1).

Table 8.2: Frequency distribution of the self-reported shoe sizes of
𝑁 = 50 students in a first year course (see Example 8.1 above).

Shoe size 36 37 38 39 40 41 42 43 44 ??
Number 2 6 6 19 6 5 2 2 1 1

Nevertheless, when a numerical variable is able to assume a great many different
values, the frequency distribution thus consequently becomes large and confus-
ing. We then add together values in a certain interval, and afterwards make a
frequency distribution on the smaller number of intervals or classes.

Example 8.2: When Queen Beatrix of the Netherlands was giving
her last Queen’s Speech, on 18th September 2012, she paused some
305×. The frequency distribution of the pause length (measured in
seconds) is shown in Table 8.3.
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Table 8.3: Frequency distribution of the length of speech pauses
(seconds) in the Queen’s Speech of 18th September 2012, given by
Queen Beatrix of the Netherlands (𝑁 = 305).

Interval Number
4.50–4.99 1
4.00–4.49 0
3.50–3.99 2
3.00–3.49 7
2.50–2.99 4
2.00–2.49 25
1.50–1.99 32
1.00–1.49 16
0.50–0.99 67
0.00–0.49 151

8.2.1 Intervals

For a variable of nominal and ordinal level of measurement, we generally use the
original categories to make the frequency distribution (see Table 8.1), although
it is possible to add categories together. For a variable of interval or ratio level of
measurement, a researcher can choose the number of intervals in the frequency
distribution themself. Sometimes that is not necessary, for instance because the
variable has a clear number of different discrete values (see Table 8.2). However,
sometimes, as a researcher you have to decide for yourself how many intervals
you should distinguish, and how to determine the interval boundaries (see Table
8.3). In this instance, the following are recommended (Ferguson and Takane,
1989, Ch.2):

• Ensure that all observations (i.e. the entire range) fall into roughly 10 to
20 intervals.

• Ensure that all intervals are equally wide.

• Make the lower limit of the first or second interval the same as the width
of the intervals (see Table 8.3: every interval is 0.50 s wide, and the second
interval’s lower limit is also 0.50).

• Order the intervals in a frequency distribution from bottom to top in
increasing order (i.e. from top to bottom in descending order), see Table
8.3).

The wider we make the intervals, the more information we lose about the precise
distribution within each interval.
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8.2.2 SPSS

Analyze > Descriptive Statistics > Frequencies...

Select variable (drag to the “Variable(s)” panel).
Tick: Display frequency tables.
Choose Format, choose: Order by: Descending values.
Confirm with OK.

8.2.3 JASP

From the top bar, choose

Select the variable(s) to summarize and place them into the field "Variables". Check the option `Frequency tables (nominal and ordinal variables)` (below the field with Variables) to obtain frequency tables for all selected variables.

If a variable has higher measurement level ("Scale", i.e. interval or ratio, Chapter \\ref{ch:levelsofmeasurement}), and you nevertheless want a frequency table of that variable, then you need to adjust the measurement level of that variable to "Nominal" or "Ordinal". In JASP, you can do so by clicking on the icon for measurement level, preceding the variable name in the column header in the data window.

You may also want to divide or "cut up" the continuous variable into discrete intervals. This is achieved by first creating a new empty variable, and subsequently filling that variable with the discrete interval values. The resulting variable will be of ordinal measurement level.

To create a new variable, click on the **+** button to the right of the last column name in the data tab. A "Create Computed Column" panel appears, where you can enter a name for the new variable, e.g. `troon12_ordinal`. You can also choose between `R` and a pointer. These are the two options in JASP to define formulas with which the new (empty) variable is filled; using `R` code, or manually using JASP. The paragraphs below explain how to create an interval variable using these two options. Finally, you can check which measurement level the new variable should be (see Chapter \\ref{ch:levelsofmeasurement}), this should be `Ordinal`. Next, click on `Create Column` to create the new variable. The new variable (empty column) appears as the rightmost variable in the data set.

If the **R** option is chosen to define the new variable, a field with "#Enter your R code here :)" appears above the data. Here you can enter R code that generates random numbers using R functions. Enter the R code (see below) and click on `Compute column` at the bottom of the field to fill the empty variable with the numbers generated by the R code.\
This snippet of R code cuts up the continuous variable `troon12` into the discrete intervals shown in Table \\ref{tab:queensspeech2012pauses}:

cut( troon2012, breaks = seq(0, 5, 0.5) )

Parse this snippet from the innermost brackets outwards:
(i) `seq`: make a sequence from 0 to 5 (units, here: seconds) in increments of 0.5 seconds,
(ii) `cut`: cut up the variable (troon2012) in intervals based on this sequence.

If you do not know the width and range of the intervals, but instead you wish to obtain a particular number (say 10) of equal intervals, then use the following snippet:

cut( troon2012, 10 )

The first interval starts at the lowest score, and the last interval ends at the highest value of `troon12`, yielding `10` intervals in total.

If the **pointer** or **manual** option is chosen to define the new variable, a work sheet will appear above the data. To the left of the work sheet are the variables, above it are math symbols, and to the right of the work sheet are several functions. From those functions you can pick one to generate your random numbers. If something goes wrong, items on the work sheet can be erased by dragging them to the trash bin on the lower right bottom. After you have completed the specification on the work sheet, then click on the button `Compute column` under the work sheet, to fill the new variable with the ordinal values.\
In order to cut up a continuous variable into equal and discrete intervals, pick the function `cut(y)` from the right. Drag the input continuous variable to the "values" field and enter the number of resulting intervals as "numBreaks" value. If you want to specify the width and number of intervals yourself, then use the R code option (see above).

Now, at last, you can make the frequency table of the ordinal variable created above, as described in the first paragraph of this subsection. Select the newly created ordinal variable(s) to summarize and place them into the field "Variables". Check the option `Frequency tables (nominal and ordinal variables)` (below the field with Variables) to obtain frequency tables for all selected variables.
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### R

```r
enq2011 <- read.table(

file=url("http://www.hugoquene.nl/R/enq2011.txt"),
header=TRUE )

table( enq2011$shoe, useNA="ifany" )

The output of the above table command is shown in Table 8.2. The code NA
(Not Available) is used in R to indicate missing data.

table( cut( troon2012, breaks=seq(from=0,to=5,by=0.5) ) )

Parse this task from the innermost brackets outwards: (i) seq: make a sequence
from 0 to 5 (units, here: seconds) in increments of 0.5 seconds, (ii) cut: cut up
the dependent variable length in intervals based on this sequence, (iii) table:
make a frequency distribution of these intervals.

This task’s output is shown (in edited form) in Table 8.3.

8.3 Bar charts

A bar chart is the graphical representation of the frequency distribution of a
discrete, categorical variable (of nominal or ordinal level of measurement). A
bar chart is constructed of rectangles. All rectangles are equally wide, and the
rectangle’s height corresponds with the frequency of that category. The surface
area of each rectangle thus also corresponds with that category’s frequency. In
contrast to a histogram, the rectangles are not joined up to each other along
the horizontal axis, to show that we are dealing with discrete categories.

A bar chart helps us to determine at a glance the most important distributional
characteristics of a discrete variable: the most characteristic (most frequently
occurring) value, and the distribution across categories. For the sound frequen-
cies in Dutch (Figure 8.1), we see that amongst the consonants the plosives
occur the most, that amongst the vowels the short vowels occur the most, that
diphthongs are not used much (the sounds in Dutch ei, ui, au), and that more
consonants are used compared with vowels.

Tip: Avoid shading and other 3D-effects in a bar chart! These make the width
and height of a rectangle less readable, and the visible surface area of a shaded
rectangle or of a bar no longer corresponds well with the frequency.
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Speech sound frequencies in Dutch (N=2968220 sounds)
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Figure 8.1: Bar chart of the frequency distribution of phonological class of
speech sounds in the Corpus of Spoken Dutch (C=consonant, V=vowel).

8.4 Histograms

A histogram is the graphical representation of a frequency distribution of a
continuous, numerical variable (of interval or ratio level of measurement). A
histogram is constructed of rectangles. The width of each rectangle corresponds
with the interval width (a rectangle can also be one unit wide) and the height
corresponds with the frequency of that interval or value. The surface area of
each rectangle therefore corresponds with the frequency. In contrast to a bar
chart, the rectangles do join up to each other along the horizontal axis.

A histogram helps up to determine at a glance the most important distributional
characteristics of a continuous variable: the most characteristic (most frequently
occurring) value, the degree of dispersion, the number of peaks in the frequency
distribution, the position of the peaks, and potential outliers. (see §9.4.2). For
the pauses in the Queen’s Speech of 2012 (Figure 8.2), we see that the majority
of pauses last between 0.25 and 0.75 s (these are presumably pauses for breath),
that there are two peaks in the distribution (the second peak is at 2 s), and that
there is one extremely long pause (with a duration of almost 5 s).

Tip: Avoid shading and other 3D-effects in a histogram! These make the width
and height of a rectangle less readable, and the visible surface area of a shaded
rectangle or of a bar no longer correspond well with the frequency.
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Queen's Speech 2012 (N=305 pauses)
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Figure 8.2: Histogram for the lengths of pauses (in seconds) in the Queen’s
Speech of 18 September 2012, read by Queen Beatrix (N=305).

8.4.1 SPSS

Analyze > Descriptive Statistics > Frequencies...

Select variable (drag to the “Variable(s)” panel).
Choose Charts, then pick Chart type: Bar chart for a bar chart or Chart
type: Histogram for a histogram (see the above text for the difference between
these options).
Confirm with OK.

8.4.2 JASP

From the top bar, choose

Descriptives

Select the variable(s) to summarize and place them into the field “Variables”.
Open the “Plots” field and check the option Distribution plots (under the
header “Basic plots”).
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JASP will automatically make a bar chart if the variable is discrete (nominal or
ordinal), and it will make a histogram if the variable is a scalar, i.e., numerical
and continuous (interval or ratio). Ensure that the correct measurement level
is specified for your variables. In JASP, you can set the measurement level by
clicking on the icon for measurement level, which precedes the variable name in
the column header in the data window.

8.4.3 R

You can make a bar chart like Figure 8.1 in R with the following commands:

# read data
klankfreq <- read.table( file="data/klankfreq.txt", header=T )
# 20201130 column names in English
dimnames(klankfreq)[[2]] <- c("main.class","sub.class","count")
# make barplot from column `count` in dataset `klankfreq`
with( klankfreq, barplot( count, beside=T,

ylab="Frequency",
main="Frequencies of speech sounds in Dutch (N=2968220)",
col=ifelse(klankfreq[,1]=="V","grey40","grey20") ) ) -> klankfreq_barplot

# make labels along the bottommost horizontal axis
axis(side=1, at=klankfreq_barplot, labels=klankfreq$main.class)
axis(side=1, at=klankfreq_barplot, tick=F, line=1, labels=klankfreq$sub.class )
# or simpler: with(klankfreq, barplot(count) ) # all defaults

You can make a histogram like in Figure 8.2 in R with the follow commands:

# read dataset
load(file="data/pauses6.Rda")
# extract pause lengths (columns 12) for the year 2012, into a separate dataset `troon2012`
troon2012 <- pauses6[ pauses6$jaar==2012, 12 ] # save col_12 as single vector
# make histogram
hist( troon2012,

breaks=seq(0, 5, by=0.25),
col="grey80",
xlab="Length of pause (s)", ylab="Frequency",
main="Queen's Speech 2012 (N=305 pauses)" ) -> troonrede2012pauzes_hist



Chapter 9

Centre and dispersion

9.1 Introduction

In the preceding chapter, we learnt to count and classify observations. These al-
low us to summarise a variable’s observations, for example in a table, a frequency
distribution, or in a histogram. We can often summarise the observations even
further, in characteristics which indicate the manner in which the observations
are distributed. In this chapter we will acquaint ourselves with a number of such
characteristics. Some of these characteristics are applicable to variables of all
levels of measurement (e.g. mode), others only to variables of interval or ratio
level (e.g. mean). After an introduction on using symbols, we will firstly discuss
how we can describe the centre of a distribution, and how we can describe the
dispersion.

9.2 Symbols

In descriptive statistics, much work is done with symbols. The symbols are
abbreviated indications for a series of actions. You already know some of these
symbols: the exponent 2 in the expression 𝑥2 is a symbol which means “multiply
𝑥 with itself”, or 𝑥2 = 𝑥 × 𝑥 (where × is also again a symbol).

Often a capital letter is used to indicate a variable (𝑋), and a lower case letter
is used to indicate an individual score of that variable. If we want to distinguish
the individual scores, we do so with a subscript index: 𝑥1 is the first observation,
𝑥2 is the second observation, etc. As such, 𝑥𝑖 indicates the score of participant
number 𝑖, of variable 𝑋. If we want to generalise over all the scores, we can
omit the index but we can also use a dot as an “empty” index: in the expression
𝑥. the dot-index stands for any arbitrary index.

115



116 CHAPTER 9. CENTRE AND DISPERSION

We indicate the number of observations in a certain group with a lower case 𝑛,
and the total number of observations of a variable with the capital letter 𝑁 . If
there is only one group, like in the examples in this chapter, then it holds that
𝑛 = 𝑁 .
In descriptive statistics, we use many addition operations, and for these there is
a separate symbol, ∑, the Greek capital letter Sigma, with which an addition
operation is indicated. We could say “add all the observed values of the variable
𝑋 to each other”, but we usually do this more briefly:

𝑛
∑
𝑖=1

𝑥𝑖, or even shorter ∑ 𝑥

This is how we indicate that all 𝑥𝑖 scores have to be added to each other, for
all values from 𝑖 (from 𝑖 = 1, unless indicated otherwise) to 𝑖 = 𝑛. All 𝑛 scores
of the variable 𝑥 therefore have to be added up.
When brackets are used then pay good attention: actions described within a pair
of brackets have priority, so you have to execute them first. Also when it is not
strictly necessary, we will often use brackets for clarity, like in (2 × 3) + 4 = 10.

9.3 Central tendencies

9.3.1 mean

The best known measure for the centre of a distribution is the mean. The mean
can be calculated straightforwardly by adding all scores to each other, and then
dividing the sum by the number of observations. In symbols:

𝑥 = ∑ 𝑥
𝑛 = 1

𝑛
𝑛

∑
𝑖

𝑥𝑖 (9.1)

Here we immediately encounter a new symbol, 𝑥, often named “x-bar”, which
indicates the mean of 𝑥. The mean is also often indicated with the symbol 𝑀
(mean), amongst others in articles in the APA-style.

Example 9.1: In a shop, it is noted how long customers have to wait
at the checkout before their turn comes. For 𝑁 = 10 customers, the
following waiting times are observed, in minutes:
1, 2, 5, 2, 2, 2, 3, 1, 1, 3.
The mean waiting time is (∑ 𝑋)/𝑁 = 22/10 = 2.2 minutes.
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The mean of 𝑋 is usually expressed with one decimal figure more than the scores
of 𝑋 (see also §9.6.1 below about the number of significant figures with which
we represent the mean).

The mean can be understood as the “balance point” of a distribution: the
observations on both sides hold each other “in equilibrium”, as illustrated in
Figure 9.1, where the “blocks” of the histogram are precisely “in equilibrium”
at the “balance point” of the mean of 2.2. The mean is also the value relative to
which the 𝑁 observations together differ the least, and therefore forms a good
characteristic for the centre of a probability distribution.

The mean can only be used with variables of the interval or ratio level of mea-
surement.
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Figure 9.1: Histogram of N=10 waiting times, with the mean marked.

9.3.2 median

The median (symbol 𝑀𝑑 or ̃𝑥) is the observation in the middle of the order
of observations 1. When we sort the scores of 𝑋 from smallest to largest, the

1In American English, the strip of ground in the middle of a road is called the “median
(strip)” (British English: “central reservation”); this strip splits the road into two equally
large halves.
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median is the midpoint of the sorted sequence. Half of the observations are
smaller than the median, and the other half is larger than the median.

For an odd number of observations, the middlemost observation is the median.
For an even number of observations, the median is usually formed from the
mean of the two middlemost observations.

Example 9.2: The waiting times from Example 9.1 are ordered as
follows:
1, 1, 1, 2, 2, 2, 2, 3, 3, 5.
The median is the mean of the two middlemost (italicised) observa-
tions, so 2 minutes.

The median is less sensitive than the mean to extreme values of 𝑥. In the above
example, the extreme waiting time of 5 minutes has a considerable influence on
the mean. If we remove that value, then the mean changes from 2.2 to 1.9 but
the median is still 2. Extreme values thus have less great an influence on the
median then on the mean. Only if the ordering of the observations changes,
may the median also change.

The median can be used with variables of ordinal, interval or ratio level of
measurement.

9.3.3 mode

The mode (adj. ‘modal’) is the value or score of 𝑋 which occurs the most
frequently.

Example 9.3: In the waiting times from Example 9.1 the score 2
occurs the most often (4×); this is the mode.

Example 9.4: In 2018, the mean income per household in the Nether-
lands was €29,500. The modal income (per household) was between
€18,000 and €20,0002. As such, in 2018, most households in the
Netherlands fell within this income class.

2https://www.cbs.nl/nl-nl/visualisaties/inkomensverdeling

https://www.cbs.nl/nl-nl/visualisaties/inkomensverdeling
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The mode is even less sensitive than the mean to extreme values of 𝑥. In the
Example 9.2 above, it does not matter what the value of the longest waiting
time is: even if that observation has the value 10 or 1, 000, the mode remains
invariably 2 (check it for yourself).
The mode can be used with variables of all levels of measurement.

9.3.4 Harmonic mean

If the dependent variable is a fraction or ratio, like the speed with which a task
is conducted, then the (arithmetic) mean of formula (9.1) does not actually
provide a good indication for the most characteristic or central value. In that
case, it is better for you to use the harmonic mean:

𝐻 = 1
1
𝑛

𝑛
∑
𝑖

1
𝑥𝑖

= 𝑛
𝑛

∑
𝑖

1
𝑥𝑖

(9.2)

Example 9.5: A student writes 𝑛 = 3 texts. For the first text (500
words) (s)he takes 2.5 hours, for the second text (1,000 words) (s)he
takes 4 hours, and for the third text (300 words) (s)he takes 0.6
hours. What is this student’s mean speed of writing? The speeds of
writing are respectively 200, 250 and 500 words per hour, and the
“normal” (arithmetic) mean of these is 317 words per hour. Nev-
ertheless, the “actual” mean is (500 + 1000 + 300)/(2.5 + 4 + 0.6)
= 1800/7.1 = 254 words per hour. The high writing speed of the
short text counts for 1/𝑛 parts in the arithmetic mean, even though
the text only contains 300/1, 800 = 1/6 of the total number of words.

Since the dependent variable is a fraction (speed, words/hour), the
harmonic mean is a better central tendency. We firstly convert the
speed (words per time unit) into its inverse (see (9.2), in denom-
inator, within sum sign), i.e. to time per word: 0.005, 0.004, and
0.002 (time units per word, see footnote3). We then average these
times, to a mean of 0.00366 hours per word, and finally we again
take the inverse of this. The harmonic mean speed of writing is then
1/0.00366 = 273 words per hour, closer to the “actual” mean of 254
words per hour.

3This is comparable with sports like rowing, swimming, cycling, ice skating, etc., where
the time over an agreed distance is measured and compared, rather than the speed over an
agreed time.
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9.3.5 winsorized mean

The great sensitivity of the normal (arithmetic) mean for outliers can be re-
stricted by changing the most extreme observations into less extreme, more
central observations. The mean of these (partially changed) observations is
called the winsorized mean.

Example 9.6: The waiting times from Example 9.1 are ordered as
follows:
1, 1, 1, 2, 2, 2, 2, 3, 3, 5.
For the 10% winsorized mean, the 10% of smallest observations (by
order) are made to equal the first subsequent larger value, and the
10% of largest observations are made to equal the last preceding
smaller value (changed values are italicised here):
1, 1, 1, 2, 2, 2, 2, 3, 3, 3.
The winsorized mean over these changed values is 𝑥𝑤 = 2 minutes.

9.3.6 trimmed mean

An even more drastic intervention is to remove the most extreme observations
entirely. The mean of the remaining observations is called the trimmed mean.
For a 10% trim, we remove the lowermost 10% and the uppermost 10% of
the observations; as such, what remains is then only (1 − (2 × (10/100)) × 𝑛
observations (Wilcox, 2012).

Example 9.7 : The waiting times from Example 9.1 are again ordered
as follows:
1, 1, 1, 2, 2, 2, 2, 3, 3, 5.
For the 10% trimmed mean, the 10% of smallest observations (by
order) are removed,
and likewise the 10% of largest observations are removed:
1, 1, 2, 2, 2, 2, 3, 3.
The trimmed mean over these 10 − (.2)(10) = 8 remaining values
here is 𝑥𝑡 = 2 minutes.
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9.3.7 comparison of central tendencies

Figure 9.2 illustrates the differences between the various central tendencies, for
asymmetrically distributed observations.
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Figure 9.2: Histogram of a variable with positively skewed (asymmetric) fre-
quency distribution, with (1) the median, (2) the 10% trimmed mean, (3) the
10% winsorized mean, and (4) the arithmetic mean, indicated. The observed
scores are marked along the horizontal axis.

The arithmetic mean is the most sensitive to extreme values: the extreme values
“pull” very hard at the mean. This influence of extreme values is tempered in the
winsorized mean, and tempered even more in the trimmed mean. The higher
the trim factor (the percentage of the observations that have been changed
or removed), the more the winsorized and trimmed means will look like the
median. Indeed, with a trim factor of 50%, out of all the observations, only one
(unchanged) observation remains, and that is the median (check it for yourself).
In §9.7 we will look further into the choice for the appropriate measure for the
centre of a distribution.

9.4 Quartiles and boxplots

The distribution of a variable is not only characterised by the centre of the
distribution but also by the degree of dispersion around the centre, i.e. how
large the difference is between observations and the mean. For instance, we not
only want to know what the mean income is but also how large the differences
in income are.
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9.4.1 Quartiles

Quartiles are a simple and useful measure for this (Tukey, 1977). We split
the ordered observations into two halves; the dividing line between these is the
median. We then halve each of these halves again into quarters. The quartiles
are formed by the dividing lines between these quarters; as such, there are three
quartiles. The first quartile 𝑄1 is the lowermost half’s median, 𝑄2 is the median
of all 𝑛 observations, and the third quartile 𝑄3 is the uppermost half’s median.
Half of the observations (namely the second and third quarters) are between 𝑄1
and 𝑄3. The distance between 𝑄1 and 𝑄3 is called the “interquartile range”
(IQR). This IQR is a first measure which can be used for the dispersion of
observations with respect to their central value.

To illustrate, we use the fictive reading test scores shown in Table 9.1.

Table 9.1: The scores of N=10 pupils on three sections of the CITO
test, taken in the final year of primary school in the Netherlands.

Pupil Reading Arithmetic Geography
1 18 22 55
2 32 36 55
3 45 34 38
4 25 25 40
5 27 29 48
6 23 20 44
7 29 27 49
8 26 25 42
9 20 25 57
10 25 27 47

∑ 𝑥 270 270 475
𝑥 27.0 27.0 47.5

Example 9.8: The scores for the reading section in Table 9.1 are
ordered as follows:
18, 20, 23, 25, 25, 26, 27, 29, 32, 45.
The median is 𝑄2 = 25.5 (between the 5th and 6th observation in
this ranked list). The median of the lowermost half is 𝑄1 = 23 and
that of the uppermost half is 𝑄3 = 29. The interquartile range is
IQR = 29 − 23 = 6.
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9.4.2 Outliers

In the reading scores in Table 9.1, we encounter one extreme value, namely the
score 45, which differs markedly from the mean. A marked value like this is
referred to as an “outlier”. The limit for what we consider to be an outlier
generally lies at 1.5× IQR. If a value is more than 1.5× IQR above or under 𝑄1,
we consider that observation to be an outlier. Check these observations again
(recall the principle of diligence, see §3.1).

Example 9.9: For the aforementioned reading scores in Table 9.1, we
found 𝑄1 = 23, 𝑄3 = 29, and IQR = 𝑄3 − 𝑄1 = 29 − 23 = 6. The
uppermost limit value for outliers is 𝑄3 +1.5× IQR = 29+1.5×6 =
29 + 9 = 38. The observation with the score 45 is above this limit
value, and is therefore considered to be an outlier.

9.4.3 Boxplots

We can now show the frequency distribution of a variable with five character-
istics, the so-called “five-number summary”, namely the minimum value, 𝑄1,
median, 𝑄3, and maximum value. These five characteristics are represented
graphically in a so-called “boxplot”, see Figure 9.3 for an example (Tukey, 1977,
§2C).

The box spans (approximately) the area from 𝑄1 to 𝑄3, and thus spans the
central half of the observations. The thicker line in the box marks the median.
The lines extend to the smallest and largest values which are not outliers 4. The
separate outliers are indicated here with a distinct symbol.

9.5 Measures of dispersion

9.5.1 Variance

Another way to show the dispersion of observations would be to look at how
each observation deviates from the mean, thus (𝑥𝑖 − 𝑥). However, if we add up
all the deviations, they always total zero! After all, the positive and negative
deviations cancel each other out (check that out for yourself in Table 9.1).

4In a classic boxplot, the lines extend to the minimum and maximum (Tukey, 1977) and
outliers are not indicated separately.
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Figure 9.3: Boxplots of the scores of 𝑁 = 10 pupils on the Reading and Arith-
metic sections of the CITO test (see Table 9.1), with outliers marked as open
circles. The observed scores are marked along the vertical axes.
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Instead of calculating the mean of the deviations themselves, we thus calculate
the mean of the squares of those deviations. Both the positive and negative
deviations result in positive squared deviations. We then calculate the mean of
all those squared deviations, i.e. we add them up and divide them by (𝑛 − 1),
see Footnote5. We call the result the variance, indicated by the symbol 𝑠2:

𝑠2 = ∑(𝑥𝑖 − 𝑥)2

𝑛 − 1 (9.3)

The numerator of this fraction is referred to as the “sum of squared deviations”
or “sum of squares” (SS) and the denominator is referred to as the number of
“degrees of freedom” of the numerator (d.f.; see §13.2.1).

Nowadays, we always calculate the variance with a calculator or computer.

9.5.2 standard deviation

To calculate the above variance, we squared the deviations of the observations.
As such, the variance is a quantity which is not expressed in the original units
(e.g. seconds, cm, score), but in squared units (e.g. s2, cm2, score2). In order
to return to the original units, we take the square root of the variance. We call
the result the standard deviation, indicated by the symbol 𝑠:

𝑠 =
√

𝑠2 = √∑(𝑥𝑖 − 𝑥)2

𝑛 − 1 (9.4)

Example 9.10: The mean of the previously stated reading scores in
Table 9.1 is 27.0, and the deviations are as follows:
-9, 5, 18, -2, 0, -4, 2, -1, -7, -2.
The squared deviations are 81, 25, 324, 4, 0, 16, 4, 1, 49, 4.
The sum of these squared deviations is 508, and the variance is
𝑠2 = 508/9 = 56.44. The standard deviation is the root of the
variance, thus 𝑠 = √508/9 = 7.5.

The variance and standard deviation can only be used with variables of the
interval or ratio level of measurement. The variance and standard deviation can
also be based again on the winsorized or trimmed collection of observations.

5We divide by 𝑛 − 1 and not by 𝑛, to get a better estimation of the dispersion in the
population. In this way, we take into account the fact that we are using a characteristic of
the sample (namely the mean) to determine the dispersion. If you are only interested in the
dispersion in your sample of observations, and not in the population, divide it by 𝑛.
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We need the standard deviation (a) when we want to convert the raw obser-
vations to standard scores (see §9.8 below), (b) when we want to describe a
variable which is normally distributed (see §10.3, and (c) when we want to test
hypotheses with the help of a normally distributed variable (see §13.2 et seq.).

9.5.3 MAD

Besides standard deviation, there is also a robust counterpart which does not
use the mean. This measure is therefore less sensitive for outliers (robuster),
which is sometimes useful.
For this, we look for the deviation of every observation from the median (not the
mean). We then take the absolute value of these deviations6 (not the square).
Finally, we determine again the median of these absolute deviations (not the
mean). We call the result the “median absolute deviation” (MAD):

MAD = 𝑘 𝑀𝑑(|𝑥𝑖 − 𝑀𝑑(𝑥)|) (9.5)

We normally use 𝑘 = 1.4826 as a constant here; with this scale factor the MAD
usually roughly matches the standard deviation 𝑠, if 𝑥 is normally distributed
(§10.3).

Example 9.11: The median of the previously mentioned reading
scores in Table 9.1 is 25.5, and the deviations from the median are
as follows:
-7.5, 6.5, 19.5, -0.5, 1.5, -2.5, 3.5, 0.5, -5.5, -0.5.
The ordered absolute deviations are
0.5, 0.5, 0.5, 1.5, 2.5, 3.5, 5.5, 6.5, 7.5, 19.5.
The median of these 10 absolute deviations is 3, and MAD =
1.4826 × 3 = 4.4478. Notice that the MAD is smaller than the
standard deviation, amongst others because the MAD is less
sensitive for the extreme value 𝑥3 = 45.

9.6 On significant figures

9.6.1 Mean and standard deviation

A mean result is shown in a limited number of significant figures, i.e. a lim-
ited number of figures, counted from left to right, ignoring the decimal place.

6Positive deviations remain unchanged, negative deviations are reversed.
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The mean result’s number of significant figures must be equal to the number
of significant figures of the number of observations from which the mean is cal-
culated. (Other figures in the mean result are not precisely determined.) The
mean result must firstly be rounded to the appropriate number of significant
figures, before the result is interpreted further, see Table 9.2.

Table 9.2: The number of significant figures in the reported mean
is equal to the number of significant figures of the number of ob-
servations.

Num.obs. Num.signif.figures example mean reported as
1 … 9 1 21/8 = 2.625 3

10 … 99 2 57/21 = 2.714286 2.7
100 … 999 3 317/120 = 2.641667 2.64

1000 … 9999 4 3179/1234 = 2.576175 2.576

The number of significant figures in the reported standard deviation is the same
as in the mean, in accordance with Table 9.2.

9.6.1.1 Background

Let us assume that I have measured the distance from my house to my work
along a fixed route a number of times. The mean of those measurements sup-
posedly amounts to 2.954321 km. By reporting the mean with 7 figures, I am
suggesting here that I know precisely that the distance is 2954321 millimetres,
and at most 1 mm more or less: the last figure is estimated or rounded off.
The number of significant figures (in this example 7) indicates the degree of
precision. In this example, the suggested precision of 1 mm is clearly wrong,
amongst other reasons because the start point and end point cannot be deter-
mined within a millimetre. It is thus usual to report the mean of the measured
distance with a number of significant figures which indicates the precision of
those measurements and of the mean, e.g. 3.0 km (by car or bike) of 2.95 km
(by foot).

The same line of thought is applicable when measuring a characteristic by means
of a survey question. With 𝑛 = 15 respondents, the average score might be
43/15 ≈ 2.86667. However, the precision in this example is not as good as this
decimal number suggests. In fact, here one deviant answer already brings about
a deviation of ±0.06667 in the mean. Besides, a mean score is always the result
of a division operation, and “[for] quantities created from measured quantities by
multiplication and division, the calculated result should have as many significant
figures as the measured number with the least number of significant figures” 7.
In this example, the mean’s numerator (43) and its denominator (15) both

7https://en.wikipedia.org/wiki/Significant_figures

https://en.wikipedia.org/wiki/Significant_figures
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consist of 2 significant figures. The mean score should be reported as 2.9 points,
with only one figure after the decimal point.

9.6.2 Percentages

A percentage is a fraction, multiplied by 100. Use and report a rounded off
percentage (i.e. two significant figures) only if the fraction’s numerator is larger
than 100 (observations, instances). If the numerator is smaller than 100 (obser-
vations, instances), then percentages are misleading, see Table 9.3.

Table 9.3: The number of significant figures in the reported propor-
tion (or percentage) is related to the number of significant figures
of the number of observations in the denominator of the fraction.

num.obs.(denominator) num.signif.figures example fraction report as
1 … 9 1 3/8 = 0.4 3/8

10 … 99 2 21/57 = 0.36 21/57
100 … 999 3 120/317 = 0.378 38%

1000 … 9999 4 12 34/3179 = 0.3882 38.8%

9.6.2.1 Background

The rules for percentages arise from those in §9.6.1 applied to division opera-
tions. If the denominator is larger than 100, the percentage (with two significant
figures) is the result of a scaling “down” (from a denominator larger than 100 to
a denominator of precisely 100 percentage points). The percentage scale is less
precise than the original ratio; the percentages are rounded off to two significant
figures; the percentage’s last significant figure is thus secured.

However, if the denominator is smaller than 100, then the percentage (with
two significant figures) is the result of a “scaling upwards” (from a denominator
smaller than 100 to a denominator of exactly 100 percentage points). The
percentage scale then suggests a pseudo-precision which was not present in the
original fraction, and the precision of the percentage scale is false. As such, if
the denominator is smaller than 100, percentages are misleading.

Example 9.12: In a course of 29 students, 23 students passed. In this
case, we often speak of a course return of 23/29 = 79%. However, a
rendering as a percentage is misleading in this case. To see this, let us
look at the 6 students who failed. You can reason that the number
of 6 failed students has a rounding error of 1/2 student(s); when
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converted to the percentage scale this rounding error is also thereby
increased so that the percentages are less precise than the whole
percentages (2 significant figures) suggest. Or put otherwise: the
number of 6 failed students (i.e. a number with one significant figure)
means we have to render the proportion with only one significant
figure, and thus not as a percentage. It is preferable to report the
proportion itself (23/29), or the “odds” (23/6 = 4) rounded off to
the correct number of significant figures8.

On the basis of the same considerations, a percentage with one decimal place
(i.e. with three significant figures, e.g. “36.1%”) is only meaningful if the ratio
or fraction’s denominator is larger than 1000.

Example 9.13: In 2013, 154 students began a two-year research mas-
ter’s degree. After 2 years, 69 of them had graduated. The nominal
return for this cohort is thus 69/154 = 0.448052, which should be
rounded off and reported as 44% (not as 44.81%).

9.7 Making choices

You can describe the distribution of a variable in various manners. If variable
𝑋 is measured on the interval or ratio level of measurement, always begin with
a histogram (§8.4) and a boxplot (§9.4.3).

The centre measures and dispersion measures can be arranged as in Table 9.4.

Table 9.4: Overview of discussed centre measures and dispersion
measures. For assumptions abbreviated to (a & b & c), see text
below table.

Distribution Centre measure Dispersion measure
all median quartiles, IQR, MAD
… trimmed or wins. mean trimmed or wins.std.dev.
(a & b & c) mean standard deviation

8These “odds” indicate that there are 23 successful students to 6 failed students, i.e.,
rounded up, 4 successful students for every failed student.
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The most robust measures are at the top (median, quartiles, IQR, MAD).
These measures are robust: they are less sensitive for outliers or for potential
asymmetry in the frequency distribution, as the examples in this chapter show.

The most efficient measures are at the bottom of Table 9.4: mean and stan-
dard deviation. These measures are efficient: they represent the centre and the
dispersion the best, they have themselves the smallest standard deviation, and
they need the (relatively) smallest number of observations for this. The other
measures occupy a between position: the trimmed measures are somewhat more
robust, and the winsorized measures somewhat more efficient.

However, the most efficient measures also demand the furthest reaching assump-
tions (and the most robust measures demand the fewest assumptions). These
efficient measures are only meaningful if the distribution of 𝑋 satisfies three
assumptions: (a) the distribution is more or less symmetrical, i.e. the left and
right halves of the histogram and the uppermost and lowermost halves of the
boxplot look like each other’s mirror image, (b) the distribution is unimodal,
i.e. the distribution has a unique mode, and (c) the distribution contains no or
hardly any outliers. Inspect these assumptions in the histogram and the boxplot
of 𝑋. If one of these assumptions is not satisfied, then it is better to use more
robust measures to describe the distribution.

9.8 Standard scores

It can sometimes be useful to compare scores which are measured on different
scales. Example: Jan got an 8 as his final grade for
maths at Dutch secondary school, and his IQ is 136. Is the deviation of Jan with
respect to the mean as large on both of the scales? To answer a question like
this, we have to express the scores of the two variables on the same measurement
scale. We do so by converting the raw scores to standard scores, or z-scores.
For this, we take the deviation of every score with respect to the mean, and we
divide the deviation by the standard deviation:

𝑧𝑖 = (𝑥𝑖 − 𝑥)
𝑠𝑥

(9.6)

The standard score or z-score thus represents the distance of the 𝑖’the observa-
tion to the mean of 𝑥, expressed in units of standard deviation. For a standard
score of 𝑧 = −1, the observed score is precisely 1 × 𝑠 below the average 𝑥. For
a standard score of 𝑧 = +2, then the observed score is precisely 2 × 𝑠 above the
mean9.

Z-scores are also useful for comparing two variables which are in fact measured
on the same scale (for example, a scale of 1 … 100), but which nevertheless have

9Check: 𝑧 = +2 = (𝑥𝑖−𝑥)
𝑠𝑥

, thus 2𝑠 = (𝑥𝑖 − 𝑥), thus 𝑥𝑖 = 𝑥 + 2𝑠.
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different means and/or standard deviations, like the scores in Tabel 9.1. In
Chapter 10, we will work more with z-scores.

The standard score or z-score has two useful characteristics which you should
remember. Firstly, the mean is always equal to zero: 𝑧 = 0, and, secondly, the
standard deviation is equal to 1: 𝑠𝑧 = 1. (These characteristics follow from
the definition in formula (9.6); we omit the mathematical proof here.) Thus,
transformation from a collection of observations to standard scores or z-scores
always yields a distribution with a mean of zero and a standard deviation of one.
Do remember that this transformation to standard scores is only meaningful,
provided that and to the extent that the mean and the standard deviation are
also meaningful measures to describe the distribution of 𝑥 (see §9.7).

9.9 SPSS

For histogram, percentiles and boxplot:

Analyze > Descriptive Statistics > Explore...

Select variable (drag to Variable(s) panel)
Choose Plots, tick: Histogram, and confirm with Continue
Choose Options, tick: Percentiles, and confirm with Continue and afterwards
with OK.
The output comprises descriptive statistics and histogram and boxplot.

For descriptive characteristic values:

Analyze > Descriptive Statistics > Descriptives...

Select variable (drag to Variable(s) panel)
Choose Options; tick: Mean, Sum, Std.deviation, Variance, Minimum,
Maximum, and confirm with Continue and afterwards with OK.
The output comprises the requested statistical characteristics of the variable’s
distribution.

For median:

Analyze > Compare Means > Means...

Select variable (drag to Variable(s) panel)
Choose Options; tick: Mean, Number of cases, Standard deviation,
Variance, Minimum, Maximum and also Median, and confirm with Continue
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and afterwards with OK.
The output comprises the requested statistical characteristics of the variable’s
distribution.

Calculate and save Standard scores in a new column:

Analyze > Descriptive Statistics > Descriptives...

Select variables (drag to Variable(s) panel)
Tick: Save standardized values as variables and confirm with OK.
The new variable(s) with z-scores are added as new column(s) to the data file.

9.10 JASP

For histogram and boxplot:
From the top bar, choose

Descriptives

Select the variable(s) to summarize and place them into the field “Variables”.
Open the “Plots” field and check the option Distribution plots (under the
heading “Basic plots”) to obtain a histogram or bar chart (depending on the
measurement level). If desired, check the option Boxplots (with Boxplot
element) under the heading “Customizable plots”.

For summary numbers and quantiles:
From the top bar, choose

Descriptives

Select the variable(s) to summarize and place them into the field “Variables”.
Open the “Statistics” field and check the option Quartiles (under the heading
“Percentile values”) to obtain quartiles. Other quantiles are also possible: check
the option Cut points for: and enter a number, e.g. 6 will produce sextiles.
If you want to know a specific percentile, e.g. the 17th percentile, check the
option Percentiles: and enter the desired percentile value (here 17).

For summaries of central tendency and dispersion, check the options (under the
heading “Central Tendency”) for Mean, Median, Mode en Sum , as well as those
(under the heading “Dispersion”) for Variance, Std.deviation, MAD Robust
(with constant value fixed at 1; see Eq.(9.5) above), IQR, Minimum and Maximum
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. This will produce a summary table showing the requested descriptive statistics
of the variable(s).

In JASP, a column of standard scores can be created by first creating a new
variable (column) and subsequently filling that column with standard scores.

To create a new variable, click on the + button to the right of the last column
name in the data tab. A “Create Computed Column” panel appears, where
you can enter a name for the new variable, e.g. Lezen_Z. You can also choose
between R and a pointer. These are the two options in JASP to define formulas
with which the new (empty) variable is filled; using R code, or manually using
JASP. The paragraphs below explain how standard scores can be computed
using these two options. Finally, you can check which measurement level the
new variable should be (see Chapter 4). For standard scores, you can leave this
at Scale. Next, click on Create Column to create the new variable. The new
variable (empty column) appears as the rightmost variable in the data set.

If the R option is chosen to define the new variable, a field with “#Enter your
R code here :)” appears above the data. Here you can enter R code (see below)
that produces standardized values.
This snippet of R code produces standard scores of the variable Lezen:

((Lezen - mean(Lezen)) / sd(Lezen))

Enter this R code, and click on the button Compute column below the work
sheet to fill the empty variable.

If the pointer or manual option is chosen to define the new variable, a work
sheet will appear above the data. To the left of the work sheet are the variables,
above it are math symbols, and to the right of the work sheet are several func-
tions. From those functions you can pick the ones required to compute standard
scores. If something goes wrong, items on the work sheet can be erased by drag-
ging them to the trash bin on the lower right bottom. After you have completed
the specification on the work sheet, then click on the button Compute column
under the work sheet, to fill the new variable with the generated numbers.
Drag the variable to convert into the empty sheet. Pick function mean(y) from
the right. Drag the variable to convert to “values”. Pick ÷ from the math
symbols at the top. Pick the function 𝜎_y from the right and drag it to the
denominator part of the fraction (below the fraction bar). For this function too,
drag the variable to convert to “values”. Eventually the definition of standard
scores (here for variable named Lezen) should look like this:

(𝐿𝑒𝑧𝑒𝑛 − 𝑚𝑒𝑎𝑛(𝐿𝑒𝑧𝑒𝑛))
𝜎(𝐿𝑒𝑧𝑒𝑛)

Click on the button Compute column below the work sheet to fill the empty
variable with the newly computed standard scores.
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9.11 R

For quartiles and boxplot like Figure 9.3, we use the commands fivenum,
quantile, and boxplot:

require(foreign) # for foreign::read.spss
cito <- read.spss("data/cito.sav")
# Columns in `cito.sav` have Dutch names:
# in Dutch: Leerling Lezen Rekenen Wereldorientatie stadplat rek.f
# in English: Pupil Reading Arithmetic Geography UrbRural Arith.factor
fivenum(cito$Lezen) # minimum, Q1, median, Q3, maximum

## [1] 19 22 26 29 44

quantile(cito$Lezen, c( 1/4, 3/4 ) ) # Q1 and Q3, calculated differently

## 25% 75%
## 22.75 28.75

op <- par(mar=c(4,4,1,2)+0.1) # smaller margins
with(cito,
boxplot(Lezen, Rekenen, col="grey80", lwd=2, lty=1, ylab="Score", ylim=c(17,45) )

)
axis(side=1, at=c(1,2), labels=c("Reading","Arithmetic") )
plotrix::axis.break(axis=2) # break in left Y-aixs
rug(cito$Lezen, side=2) # markings on left Y-axis
rug(cito$rekenen, side=4) # markings on right Y-axis
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Many central tendencies are pre-programmed as functions in R:

mean(cito$Lezen) # mean

## [1] 27.2

psych::winsor.mean(cito$Lezen, trim=.1) # winsorized mean, from psych package

## [1] 26.3

mean(cito$Lezen, trim=.1) # trimmed mean

## [1] 26.125

median(cito$Lezen) # median

## [1] 26

Various dispersion measures are also pre-programmed:

var(cito$Lezen) # variance

## [1] 50.17778
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sd(cito$Lezen) # standard deviation, sd(x) = sqrt(var(x))

## [1] 7.083627

mad(cito$Lezen) # MAD

## [1] 5.1891

In contrast, we have to calculate standard scores ourselves, and save them
ourselves as a new variable, called here zReading (note the parentheses in the
first command line):

# standardized (or z) reading scores
zReading <- (cito$Lezen-mean(cito$Lezen)) / sd(cito$Lezen)
head(zReading) # first few observations of variable zReading

## [1] -1.1575990 0.6776189 2.3716662 -0.3105753 0.1129365 -0.7340872



Chapter 10

Probability distributions

10.1 Probabilities

Calling behind the wheel increases the chance of an accident (Bhargava and
Pathania, 2013). The average chance of precipitation in the Netherlands is
7%. My order has a 10% chance of being delivered a day later than promised.
Chances and probabilities play an important role in our daily lives, and also in
academic research. After all, many hypotheses are probabilistic in nature (see
Chapter 2): hypotheses make statements about a difference in the chances of
outcomes. To be able to draw conclusions with respect to these probabilistic
hypotheses, we need to know something about probabilities and probability
distributions. This is the subject of the present chapter.

As an introduction, let us take a look at a Dutch Scrabble game. The game
contains a bag with 102 tiles inside, each of which has a letter on it 1. Of
the 102 tiles, 6 have the letter A on them. If I take one tile from a full and
well-mixed bag, what is the chance that I draw the letter A? The probability-of-
the-outcome-A is referred to as 𝑃(A), with the 𝑃 of Probabilitas (Lat. “chance,
probability”), and can be determined as

𝑃(A) = number of A’s
total number of tiles = 6

102 = 0.0588 (10.1)

The probability of an event is expressed as a proportion, a number between 0
and 1, or as a percentage, i.e. a proportion in units of 1/100. A probability can
never be smaller than 0 and can never be larger than 1: after all, the proba-
bility is the proportion between the number of specific outcomes (numerator)
and the total number of possible outcomes (denominator) (see formula (10.1)),

1However, two of the tiles are blank (without any letter); later in this section we will remove
these blank tiles from the bag.

137
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where the numerator can never be larger than the denominator (Schuurman and
De Kluiver, 2001).

When two outcomes mutually exclude each other, as is the case for the outcomes
A or B in our Scrabble example, then we may sum up these outcomes (rule of
sum, or addition principle, or OR rule). The probability of outcome A or
outcome B (where outcomes A and B exclude each other), is the sum of 𝑃(A)
and 𝑃(B):

𝑃(A or B) = 𝑃(A) + 𝑃(B) (10.2)

Example 10.1: In our Scrabble example, 𝑃(A) = 6
102 and 𝑃(B) =

2
102 . As such, the probability of outcome A-or-B is 𝑃(A or B) =
𝑃(A) + 𝑃(B) = 6/102 + 2/102 = 8/102 = .0784.

If I take one tile from a full and well-mixed bag, then two complementary out-
comes are possible: Either I draw an A, or I do not draw an A. The outcomes
again mutually exclude each other so we may sum up the probabilities too.
Moreover, the outcomes are complementary, i.e the outcome can only have one
of these two possible outcomes. The respective probabilities of these comple-
mentary events are also complementary, i.e. these respective probabilities sum
up to precisely 1 =100% (complement rule). After all, there is a 100% proba-
bility that the outcome is one of the two possible outcomes of the draw. If we
already know 𝑃(A), we can easily calculate the probability of the complemen-
tary outcome:

𝑃(A) + 𝑃(not-A) = 1 (10.3)
𝑃(A) = 1 − 𝑃(not-A) (10.4)

𝑃(not-A) = 1 − 𝑃(A) (10.5)

Example 10.2: In our Scrabble example, 𝑃(A) = 6
102 . As such, the

probability of the not-A outcome is 𝑃(not-A) = 1−𝑃(A) = 1− 6
102 =

96
102 = .9412.

As a thought experiment, let us now take a second Scrabble game, and, from it,
take a second tile bag which is equally full and well-mixed. Without looking, we
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will now take a letter tile from each bag. There are now two events or outcomes,
namely the outcome of the first draw (from the first bag), and the outcome of
the second draw (from the second bag). These two outcomes do not mutually
exclude each other, since they have no mutual influence on each other. After all,
the second bag’s outcome is not influenced by the first bag’s outcome, and vice
versa. As such, we say that these outcomes are independent of each other. When
the outcomes are indeed independent of each other, we calculate the probability
of a combination of the outcomes by multiplication (multiplication principle, or
product rule, or AND rule).
The probability of the combination of outcome A and outcome B (where out-
comes A and B are independent of each other), is the product of 𝑃(A) and
𝑃(B):

𝑃(A and B) = 𝑃(A) × 𝑃(B) (10.6)

Example 10.3: In our Scrabble example, 𝑃(A) = 6
102 and 𝑃(B) =

2
102 . The probability of outcome A with the first bag and B with
the second bag is 𝑃(A and B) = 𝑃(A) × 𝑃(B) = 6

102 × 2
102 = .0012.

Example 10.4: In our Scrabble game, 𝑃(vowel) = 38
102 . The proba-

bility of drawing a vowel (A, E, I, O, U, Y) from the first bag and a
vowel from the second bag is 𝑃(vowel-and-vowel) = 𝑃(first vowel)×
𝑃(second vowel) = 38

102 × 38
102 = ( 38

102 )2 = .1388.

10.2 Binomial probability distribution

For the remainder of this chapter, we will adopt two changes to the Scrabble
game. Firstly, we will remove the 2 blank, letter-less titles from the bag. There
are now precisely 100 tiles left, of which 38 have a vowel (𝑉 ) and 62 have a
consonant (𝐶). Accordingly, there are only two possible outcome categories left
and these mutually exclude each other. We call such a variable of the nominal
level of measurement, with precisely two categories, binomial (‘two-named’).
We regard the vowels as hits, and the consonants as misses. These two possible
outcomes are complementary: 𝑃(𝑉 ) = .38 (abbreviated as 𝑝) and 𝑃(𝐶) = .62
(abbreviated as 𝑞 = 1 − 𝑝).

Secondly, from now on, we will put the drawn letter tile back into the bag,
once we have noted down the drawn letter. We also mix the bag again. In this
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way, we do not require multiple complete letter bags, but only one letter bag
which, after each draw with replacement, is once again complete and mixed.
We consider the outcomes of consecutive draws to be independent.

An aside: The outcome of a certain draw is thus independent of the outcome
of previous draws. If a vowel has just been drawn 100× in a row, then that
has no influence at all on (the outcome of) the next draw from the letter bag.
After all, the letter bag, or the hand of the person drawing tiles does not have
any memory. At each draw, the probability of a hit is 𝑝 = .38, even if a vowel
has just been drawn 100× or $1000×. The same is the case for consecutive
outcomes with roulette: in each round, the probability of a hit is 1/37, even if
the ball has just landed on the same number 100×2.

With the aforementioned changes, let us now conduct 𝑛 = 3 draws (with re-
placement, see above), and for each possible outcome determine the probability
of the outcome, see Table 10.1.

Table 10.1: Probabilities of possible outcomes of 𝑛 = 3 vowel draws,
𝑝 = .38, with replacement (see text).

Outcome Number of vowels Probabilitiy
CCC 0 𝑞𝑞𝑞 = 𝑞3

VCC 1 𝑝𝑞𝑞 = 𝑝𝑞2

CVC 1 𝑞𝑝𝑞 = 𝑝𝑞2

CCV 1 𝑞𝑞𝑝 = 𝑝𝑞2

VVC 2 𝑝𝑝𝑞 = 𝑝2𝑞
VCV 2 𝑝𝑞𝑝 = 𝑝2𝑞
CVV 2 𝑞𝑝𝑝 = 𝑝2𝑞
VVV 3 𝑝𝑝𝑝 = 𝑝3

The number of hits (vowels) in the 𝑛 = 3 draws has the probability distribution
summarised in Table 10.2 (first and last column) and Figure 10.1 (horizontal and
vertical axes). In such a probability distribution, we can see, for each possible
outcome of 𝑥 (here: number of vowels), how high the probability of the outcome
is.

Table 10.2: Probability distribution of a binomial variable with
𝑛 = 3 and 𝑝 = .38.

Number of vowels Probability Probability
0 1𝑞3 = .2383
1 3𝑝𝑞2 = .4383
2 3𝑝2𝑞 = .2686

2Roulette players can gamble on 36 of the 37 possible outcomes, so in the long term the
casino receives a 1/37 share of all bets.
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Number of vowels Probability Probability
3 1𝑝3 = .0549
total (𝑝 + 𝑞)3 = 1.0000
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Figure 10.1: Probability distribution of a binomial variable with 𝑛 = 3 and
𝑝 = .38.

We call the probability distribution of a binomial variable the binomial probabil-
ity distribution, also referred to as the binomial distribution. You can calculate
the precise probabilities of the binomial probability distribution with the for-
mula (10.7) below.

10.2.1 formulas

The probability of an 𝑥 number of hits in 𝑛 draws is given as

𝑃(𝑥 hits) = (𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥 (10.7)
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in which 𝑛 is the number of draws or attempts, 𝑥 is the number of hits (between
0 and 𝑛), and 𝑝 is the probability of a hit.

The coefficient (𝑛
𝑥) indicates the number of different orderings in which we can

choose a combination (syllable) of 𝑥 elements from
𝑛. With 𝑥 = 1 vowel from 𝑛 = 3 draws, there are three possibilities: one vowel
might have been drawn in the first draw, or the second draw, or the third draw,
see Table 10.1. The number of different possible orderings is indicated as

(𝑛
𝑥) = 𝑛!

𝑥!(𝑛 − 𝑥)! (10.8)

in which 𝑥! = 𝑥(𝑥 − 1)(𝑥 − 2) ⋯ × 2 × 1, thus 4! = 4 × 3 × 2 × 1 = 24.

Example 10.5: There are 4 chairs for 2 persons. A maximum of
1 person is allowed to sit down on one chair. How many different
orderings of 𝑥 = 2 persons are possible over 𝑛 = 4 chairs?

Answer: There are (4
2) = 4×3×2×1

2×1×2×1 = 24
4 = 6 possible orderings,

namely 1100, 1010, 1001, 0110, 0101, and 0011.

These binomial coefficients indicating the number of different possible orderings
can quickly be retrieved from Pascal’s so-called triangle, depicted in Table 10.3.
We can find the number of different orderings of 𝑥 = 2 persons over 𝑛 = 4 chairs
in row 𝑛 = 4. The uppermost row is that for 𝑛 = 0. The fifth row is that for
𝑛 = 4 and we can see the binomial coefficients for 𝑥 = 0, 1, 2, 3, 4 there one after
another. For (4

2), we find there the binomial coefficient 6. Every coefficient is
the total of the two coefficients above3, and every coefficient can be understood
as the number of possible routes descending from the top of the triangle to the
cell.

Table 10.3: Pascal’s triangle: Binomial coefficients for the number
of possible orderings for a combination of 𝑥 elements from 𝑛 (see
text).

𝑛 = 0: 1
𝑛 = 1: 1 1
𝑛 = 2: 1 2 1
𝑛 = 3: 1 3 3 1
𝑛 = 4: 1 4 6 4 1

3Thus, (𝑛
𝑥) = (𝑛−1

𝑥 ) + (𝑛−1
𝑥−1) (Weisstein, 2015).
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Table 10.3: Pascal’s triangle: Binomial coefficients for the number
of possible orderings for a combination of 𝑥 elements from 𝑛 (see
text).

𝑛 = 5: 1 5 10 10 5 1
𝑛 = 6: 1 6 15 20 15 6 1
𝑛 = 7: 1 7 21 35 35 21 7 1

The mean and the standard deviation of the binomial probability distribution
are

𝜇 = 𝑛𝑝
𝜎 = √𝑛𝑝(1 − 𝑝)

Example 10.6: The binomial probability distribution for 𝑥 hits from
𝑛 = 3 draws with 𝑝 = .38 probability of a hit is shown in Figure 10.1.
This binomial probabilitydistribution has an average 𝜇 = 𝑛 × 𝑝 =
3 × .38 = 1.14, and a standard deviation 𝜎 = √𝑛 × 𝑝 × (1 − 𝑝) =√

3 × .38 × .62 = 0.84.

10.2.2 JASP

The binomial probability distribution such as shown in Figure 10.1 may be
obtained in JASP by selecting the following option in the top menu bar:

Distributions > Discrete: Binomial

If the Distributions option is not shown in the top bar, then you can add the
option by clicking on the blue +-button in the top right corner, and checking
option Distributions.
In the “Binomial” input, there is an input panel Show Distribution. In that
panel, enter the appropriate values for 𝑝 (under “free parameter”) and for 𝑛
(under “fixed parameter”). In the “Display” input, check option Probability
mass function. The output panel now shows the binomial Probability Mass
Plot.

10.2.3 R
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dbinom( 0:3, size=3, prob=.38 )

## [1] 0.238328 0.438216 0.268584 0.054872

The output is shown in Table 10.2 below.

matrixcalc::pascal.matrix( 10 ) # left under diagonal is Pascal's triangle

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 0 0 0 0 0 0 0 0 0
## [2,] 1 1 0 0 0 0 0 0 0 0
## [3,] 1 2 1 0 0 0 0 0 0 0
## [4,] 1 3 3 1 0 0 0 0 0 0
## [5,] 1 4 6 4 1 0 0 0 0 0
## [6,] 1 5 10 10 5 1 0 0 0 0
## [7,] 1 6 15 20 15 6 1 0 0 0
## [8,] 1 7 21 35 35 21 7 1 0 0
## [9,] 1 8 28 56 70 56 28 8 1 0
## [10,] 1 9 36 84 126 126 84 36 9 1

Pascal’s triangle can be found on the left under the diagonal of this matrix.

10.3 Normal probability distribution

The more the sample size 𝑛 increases, the less gradually the binomial probability
distribution will move up, and the more fluid the probability distribution will
become, as is shown in Figure 10.2.
With an even larger sample, the probability distribution becomes a fluid line.
This probability distribution occurs so often, that it is called the normal proba-
bility distribution or ‘normal distribution’. The distribution is also referred to as
the Gaussian distribution (named after the mathematician Carl Friedrich Gauss,
1777–1855), or the ‘bell curve’ (after the shape). Many variables approximately
follow this probability distribution: birth weight, body length, vocabulary size,
IQ, contents of a 1 litre ℮ carton of milk, length of a telephone conversation,
etc. etc. For all of these variables, observations close to the average have a
high probability of occurring, and observations which deviate greatly from the
average are relatively rare (low probability).
The normal probability distribution of a variable 𝑋 with average 𝜇 and standard
deviation 𝜎 has the following characteristics (see Figure 10.3):

• the distribution is symmetrical around the average 𝜇,
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Figure 10.2: Probability distribution of a binomial variable x with n=50 (left)
and n=500 (right) and p=.38.
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Figure 10.3: Normal probability distribution of a variable x with average 0 and
standard deviation 1.
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• the distribution is asymptotic, i.e. the tails go on infinitely,

• the average, the median and the mode coincide,

• the total area under the curve, i.e. the total probability of one of the
possible outcomes, is equal to 1,

• the area under the curve indicates the probability of a value of 𝑋 within
a certain interval,

• the inflection points of the curve (from concave to convex and vice versa)
are at 𝑋 = 𝜇 − 𝜎 and 𝑋 = 𝜇 + 𝜎,

• around 2/3’s of the observations are between 𝑋 = 𝜇 − 𝜎 and 𝑋 = 𝜇 + 𝜎
(dark grey area; 𝑃(−1 < 𝑥/𝜎 < 1) = .6827 or 68%) and around 95%
of the observations are between −2𝜎 and +2𝜎 (dark grey plus light grey
areas; 𝑃(−2 < 𝑥/𝜎 < 2) = .9546), this is known as the Empirical Rule.

A normal probability distribution with 𝜇 = 0 and 𝜎 = 1 is referred to as the
standard normal probability distribution. Just as we saw earlier (§9.8), we can
standardise a normally distributed variable 𝑥, i.e. transform the observations
to a standard score or 𝑧-score: 𝑧 = (𝑥 − 𝑥)/𝑠. The probability distribution in
Figure 10.3 is that of the standard normal probability distribution of 𝑍, or the
probability distribution of (𝑋 − 𝜇)/𝜎.

You could calculate the probability distribution of a normally distributed vari-
able 𝑋 yourself with the help of the formula (10.10) below. However, it is more
convenient to use a table for it; this can be found in Appendix B. Explained in
graphical form, the tables provide you, for different areas or probabilities 𝑝 on
the right-hand side under the curve, the positive value of 𝑍∗ which constitutes
the left-hand limit of the area. This means that you have precisely probability
𝑝 of finding a value 𝑍 which is as large as or larger than this lower limit 𝑍∗

(provided of course that the variable is indeed normally distributed).

Example 10.7: On the right-hand side of Figure 10.3, we can see a
small white area under the curve. This area renders the probability
that 𝑍 > 2. The area has a size of 0.0228. The probability of finding
a value of 𝑍 > 2 is thus 0.0228 or a little less than 2.5%. (Tip: relate
this probability to the aforementioned Empirical Rule).

In Appendix B, you can find for convenience not one but two tables, each
consisting of several column designations and and a row of cells. The first
table provides you, for different ‘rounded’ probabilities 𝑝 (columns), the critical
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values 𝑍∗ (cells), for which the probability 𝑝 of finding a value of 𝑍 which is
as large as or larger than the critical value 𝑍∗, is precisely equal to the value
𝑝 at the top of the column. The second table works the same, but in the case
the ‘rounded’ values of 𝑍∗ are in the cells, and precise probabilities 𝑝 are in the
column designations.

What is the probability 𝑝 that 𝑍 > 1? In the second subtable, second column,
we find 𝑝 = 0.1587. Based on this, we also know that 𝑃(𝑍 < 1) must be
1 − 0.1587 = 0.8413. Moreover, we know that the distribution is symmetric (see
above), so we know that 𝑃(𝑍 < −1) must also be .1587. What is the probability
𝑝 that 𝑍 > 3? In the second subtable, we find for boundary value 𝑍∗ = 3 the p-
value 𝑝 = 0.0013. Thus, for a normally distributed variable 𝑍 there is a p-value
𝑝 = 0.0013 of finding a value of 𝑍 which is at least three standard variations
above the average.

We often want to know the opposite: when we choose a certain p-value, what
should the boundary value 𝑍∗ be? Which boundary value distinguishes the
highest 5% of observations from the lowest 95% (𝑝 = 0.05)? In the first subtable,
we find for p-value 𝑝 = 0.05 the boundary value 𝑍∗ = 1.645. This boundary
value, calculated back to the original variable, is often referred to as the 95th
percentile or ‘P95’ of the distribution. Whoever has achieved at least this score,
is part of the top 5% and has thus performed better than 95% of the participants
(provided again that the variable is indeed normally distributed).

Example 10.8: By definition, extreme values occur infrequently with
a normally distributed variable. But what is the limit for an extreme
value. Let us assume that we want to consider no more than 5% of
all observations as extreme. The normal probability distribution is
symmetric, thus from this 5% we can expect that one half (2.5%)
is at the left extremity of the distribution, and the other 2.5% is
on the right-hand side. Which boundary value 𝑍∗ corresponds with
this p-value 𝑝 = 0.025?

In Appendix B, we take the first subtable. In the column for p-
value 𝑝 = 0.025, we find boundary value 𝑍∗ = 1.960. If we find an
observation with 𝑍 ≥ 1.960 or with 𝑍 ≤ −1.960, then we consider
that to be an extreme, rare observation.

Example 10.9: Intelligence is expressed as an IQ score, a variable
with a normal probability distribution with 𝜇 = 100 and 𝜎 = 15.
“Membership of Mensa is open to persons who have achieved a score
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within the upper two percent of the general population on an ap-
proved intelligence test that has been properly administered and
supervised” (www.mensa.org). What is the minimum IQ score you
must achieve to become a member?

Answer: The 98th percentile from a standard normally distributed
variable is at 𝑍∗ = +2.0537, and thus with 𝑥 = 𝑥 + 2.0537𝑠 =
100 + 30.8 = 130.8. Rounded upwards, you thus have to achieve an
IQ score of 131 points or higher.

Example 10.10: Verify the aforementioned Empirical Rule with the
help of Appendix B.

10.3.1 formulas

If variable 𝑋 has a normal probability distribution, with average 𝜇 and standard
deviation 𝜎, then this is shown as

𝑋 ∼ 𝒩(𝜇, 𝜎) (10.9)

The normal probability distribution of variable 𝑋 with average 𝜇 and standard
deviation 𝜎 is

𝑃(𝑋) = 1
𝜎

√
2𝜋 e

−(𝑋−𝜇)2
2𝜎2 . (10.10)

The standard normal probability distribution of variable 𝑍 with average 𝜇 = 0
and standard deviation 𝜎 = 1 is

𝑃(𝑍) = 1√
2𝜋 e −𝑍2

2 (10.11)

10.3.2 JASP

The normal probability distribution such as shown in Figure 10.3 may be ob-
tained in JASP by selecting the following option in the top menu bar:

Distributions > Continuous: Normal

www.mensa.org
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If the Distributions option is not shown in the top bar, then you can add the
option by clicking on the blue +-button in the top right corner, and checking
option Distributions.
In the “Normal” input panel, there is an input panel Show Distribution. In
that panel, the values of the standard normal distribution are entered by de-
fault, and option Probability density function is checked by default. The
standard normal distribution is shown in the output under Density Plot.
For other normal density distributions, the values of 𝜇 and 𝜎 may be adjusted,
and you may specify the domain shown (under “Options”, then “range of x”).
Note that, under the heading “Parameters”, you should select the option labeled
“𝜇, 𝜎” if you enter the mean and standard deviation (the default option is “𝜇,
𝜎2” using variance; for the standard normal distribution 𝜎 = 𝜎2 = 1).

10.3.3 R

The normal probability distribution in Figure 10.3 may be plotted in R using the
command below. A curve is plotted, with x in the specified domain, and y being
the function which computes the normal probability density using equation
(10.10):

curve( dnorm( x, mean=0, sd=1 ), # function specifying y values, normal density
from=-5, to=+5, # domain of x
lwd=4, # line width is 4x default value
xlab="x", ylab="P(x)" # labels along x and y axes
)
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If used with the additional argument curve( ..., add=TRUE ), then the curve
will be added to the most recent plot (see e.g. Figure 10.5 below).
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10.4 Does my variable have a normal probability
distribution?

The longest song in my digital music library lasts around 50 minutes (it’s a piece
of classical Indian music, a ‘morning raga’). A histogram of all music number
lengths is shown in Figure ??.
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This histogram shows that these lengths clearly do not follow a normal proba-
bility distribution: the distribution is not symmetric, and the lowest tail does
not go on infinitely (there are no music numbers with negative lengths).

The average ̄𝑥 = 4.698 and standard deviation 𝑠 = 5.11 also point to a non-
normal probability distribution: with a normal distribution, we expect that
only (68/2) + 50 = 84% of the lengths last longer than ̄𝑥 − 𝑠 ≈ 0 minutes,
but in reality 100% last longer than 0 minutes (thus a larger proportion than
expected).

A frequently used technique to inspect whether or not a variable 𝑋 has a normal
probability distribution, is to make a graph with the observed values along one
of the axes (here the horizontal axis), and the corresponding 𝑧-scores along the
other axis. A figure like this is called a quantile-quantile plot or Q-Q plot; the
Q-Q plot for the lengths in my music library are shown in Figure 10.4.

If the lengths had a normal probability distribution (were normally distributed),
then the points would cluster around the purple straight line. And there would
have to be a number of negative lengths… The deviations from the purple
straight line in Figure 10.4 thus indicate that the observed lengths do not follow
a normal probability distribution, as we already saw in the histogram (Figure
??).

There are also different statistical tests to investigate whether or not a variable
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Figure 10.4: Quantile-quantile plot of the lengths of music numbers in my digital
library.

has a normal probability distribution. The two most used are the Shapiro-Wilk
test (with test statistic 𝑊 )
for normality, and the Kolmogorov–Smirnov test (with test statistic 𝐷) for nor-
mality. Both tests investigate the H0:𝑋 ∼ 𝒩(𝑋̄, 𝑠) (see formula (10.9)).

10.4.1 SPSS

Analyze > Descriptive Statistics > Explore...

Select the variable Time (drag to the Dependent List panel).
Choose the button Plots, and tick Normality plots with tests, which
means ‘if you make a QQ-plot or Normality plot, you should also then
conduct tests on normality’. Confirm with Continue and afterwards with
OK. The output contains firstly the results of the Shapiro-Wilks test and the
Kolmogorov-Smirnov test. According to both tests, the probability of finding
this distribution, if H0 is true, is almost null – see however the warning in
§@ref(#sec:plargerthannull)! We thus reject H0 and conclude that the lengths
of music numbers are not normally distributed. After these test results, there
is, amongst others, a Q-Q plot.
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10.4.2 R

itunes <- read.table( file="data/itunestimes20120511.txt", header=TRUE )
# Size in bytes, Time in ms
qqnorm(itunes$Time/60000, datax=T, plot.it=FALSE) # normally we'd use plot.it=TRUE
# qqline(itunes$Time/60000, datax=T, col="purple", lwd=T) # see QQ-plot above

shapiro.test(itunes$Time/60000)

##
## Shapiro-Wilk normality test
##
## data: itunes$Time/60000
## W = 0.50711, p-value < 2.2e-16

According to this test, the probability of finding a distribution, if H0 is zero, is
almost null, namely smaller than 2.2×10−16 (i.e. smaller than the smallest num-
ber that the analysis packet can render). We therefore reject H0 and conclude
that the length of music numbers is not normally distributed.

10.5 What if my variable is not normally dis-
tributed?

In Part III, we will discuss various statistical tests. The tests which we discuss
in Chapters 13 and 14 and 15 however require that the independent variable has
a normal probability distribution. If a variable does not have a (approximately)
normal probability distribution, then the variable cannot simply be used for
statistical testing with the statistical tests there, or to be more precise, the
conclusions from such a statistical testing are not valid then. What can be
done? There are then two possibilities.

Firstly, it is possible to transform the dependent variable 𝑦, i.e. to apply an arith-
metic operation to it. If all is well, that results in a variable 𝑦′ which is actually
normally distributed. Much used transformations are: to take the logarithm
(𝑦′ = log 𝑦), take the square root, or invert (𝑦′ = 1/𝑦). Then, the transformed
dependent variable 𝑦′ is used for the statistical testing. Of course, it is impera-
tive to check whether the new dependent variable 𝑦′ is indeed (approximately)
normally distributed. When interpreting the results of the analysis, you should
also take into account the transformation performed!

Secondly, it is sometimes possible to use another statistical test which does not
require that the dependent variable is normally distributed. Those are called
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nonparametric tests. We will look at these in more detail in the chapters 16 and
17. A disadvantage of those tests is nevertheless that they have less statistical
power (for a discussion of power, see Chapter 14): they are less sensitive, and
thus require larger samples to establish an effect.

10.6 Probability distribution of average

In this section, we consider the music numbers in my digital music library as a
population. We now take a random sample of 𝑛 = 50 numbers, and determine
the average length of these 50 music numbers in the sample: let us say ̄𝑥 = 4.401
minutes. Surprisingly enough, the average of this sample is close to the average
of the population (𝜇 = 4.615, see above). We repeat this operation 250×: in
this way, we get 250 sample averages. The frequency distribution of these 250
sample averages are shown in Figure 10.5.
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Figure 10.5: Frequency distribution of 250 averages, each over a random sample
of 𝑛 = 50 music numbers (the dependent variable is the length of a music
number, in minutes). The matching normal distribution is shown as a fluid
curve.

Surprisingly enough, these averages from (the dependent variables 𝑋 in) the
samples do show a more or less normal probability distribution, regardless of
whether the variable 𝑋 in the population is normally distributed or not. Put
otherwise, the probability distribution of a sample average always approximates
the normal probability distribution, regardless of the probability distribution
of the variable in question in the population, provided that the sample was
sufficiently large. (This is known as the Central Limit Theorem). Reread the
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above sentences again carefully. As a rule of thumb, the size of the sample,
𝑛, should be at least 30. The larger the sample is, the less the probability
distribution of the sample averages deviates from the normal distribution.
The normal probability distribution of the sample averages has its own average,
𝜇𝑋̄, and its own standard deviation, 𝑠𝑋̄. For this, the following applies:

𝜇𝑋̄ = 𝜇𝑋 (10.12)

and
𝑠𝑋̄ = 𝑠√𝑛 (10.13)

The standard deviation of the mean, 𝑠𝑋̄, is also known as the ‘standard error
of the mean’. The same averages 𝑋̄ have less dispersion than the separate
observations 𝑋, and the averages also vary less when taken over a larger sample,
as seems to be the case from formula (10.13). You can consider this standard
error of the mean as the ‘margin of error’ in the estimation of the population
average out of the sample average.
What is special now is that we do not have to draw and analyse 250 repeated
random samples. After all, we know that the sample averages have a normal
probability distribution with 𝜇𝑋̄ = 𝜇𝑋 and 𝑠𝑋̄ = 𝑠√𝑛 . We can derive the
probability distribution of the mean from only one sample of 𝑛 observations,
with a sample mean 𝑋̄ and one standard deviation (Cumming, 2012). Reread
this paragraph carefully.

10.7 Confidence interval of the mean

As explained above, we can use the mean of the sample, 𝑋̄, as a good esti-
mate of the unknown mean in the population, 𝜇. On the basis of the Central
Limit Theorem (§??), we also know that the means of repeated samples (of
𝑛 observations) follow a normal distribution: 𝜇𝑋̄ ∼ 𝒩(𝜇𝑋, 𝜎/√𝑛), and thus
that 95% of these repeated sample means will lie between 𝜇𝑋 − 1.96𝜎/√𝑛 and
𝜇𝑋 + 1.96𝜎/√𝑛. This interval is called the 95% confidence interval. We know
with 95% confidence that the population mean 𝜇 lies in this interval — pro-
vided that 𝑛 is sufficiently large, and provided that the standard deviation, 𝜎,
is known in the population.
In practice, this last condition is rarely or never satisfied. The standard devi-
ation in the population is usually not known and this 𝜎 is thus also estimated
from the sample. We use the sample of 𝑛 observations not only to estimate
𝜇𝑋 but also to estimate 𝜎𝑋. We can then no longer determine the confidence
interval on the basis of the standard normal probability distribution. Instead,
we use an adapted version of it, the so-called t-distribution (Figure 10.6). This
probability distribution of 𝑡 is somewhat broader, i.e. with a somewhat lower
peak and with somewhat thicker tails than the standard normal probability dis-
tribution of 𝑍 in Figure 10.3. The thought behind this is that the estimation
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of 𝜇 is a bit more uncertain (thus the probability distribution is wider) since
not only 𝜇 but also the standard error of the mean (𝑠/√𝑛) are estimated on
the basis of the sample. In both estimations, there can be deviations which
mean that there is somewhat more probability of finding a mean which deviates
from the population mean. As we have already seen, the larger 𝑛 is, the better
the estimation of 𝜇: the t-distribution then approximates the standard normal
probability distribution.
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Figure 10.6: Probability distribution according to the t-distribution of a variable
𝑥 with mean 0 and standard deviation 1, for n=600 and n=6.

For the t-distribution, we thus have to know how large the sample was; after
all, this 𝑛 determines the precise probability distribution of 𝑡, and with it the
critical value 𝑡∗. We will go into more detail on that in §13.2.1. Here, a detailed
example will suffice.

Example 10.11: Sometimes a researcher wants to know the speed or
tempo with which Dutch is actually spoken, and how much variation
in this speech rate or tempo there is between speakers. This variable,
speech rate, is expressed as the number of seconds a syllable lasts
(typically about 0.2 second or 200 milliseconds). Although Quené
(2008) estimates that 𝜇 = 0.220 s and 𝜎 = 0.0225 s, we act as if we
do not know these population parameters — just like real researchers
who usually do not know the population parameters.

For a sample of 𝑛 = 30 speakers, we find 𝑥 = 0.215 and 𝑠 = 0.0203
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seconds. From this, we estimate 4 ̂𝜇 = 0.215 and 𝜎̂ = 0.0203. Since
𝜎 is not known, we use the t-distribution to determine the confidence
interval. We use the t-distribution for 𝑛 = 30 and find a critical value
𝑡∗ = 2.05 (see Appendix C, for 𝐵 = 95%). According to formula
(13.2), we know with 95% confidence that the unknown population
mean 𝜇 lies between 𝑥 − 2.05 × 𝑠𝑥̄ and 𝑥 + 2.05 × 𝑠𝑥̄, or between
0.215 − 2.05 × 0.0037 and 0.215 + 2.05 × 0.0037, or between 0.208
and 0.223 seconds. If the true value in the population is within these
limits, then the observed sample value has a probability of 95% of
occurring (Spiegelhalter, 2019, p.241).

In Figure 10.7, you can see the results of a computer simulation to illustrate
this. We have taken 100× imaginary samples of 𝑛 = 30 native speakers of
Standard Dutch, and established the speech tempo of these speakers. For each
sample, we have drawn the 95% confidence interval. For 95 of the 100 samples,
the population mean 𝜇 = 0.220 indeed falls within the interval. But for 5 out of
100 samples, from a population with 𝜇 = 0.220, the sample’s confidence interval
does not contain the population mean (these are marked along the right hand
side).

10.7.1 formulas

The two-sided 𝐵% confidence interval for the population average is

𝑋̄ ± 𝑡∗
𝑛−1 × 𝑠√𝑛 (10.14)

in which 𝑡∗ with 𝑛 − 1 degrees of freedom is found with the help of Appendix
C, see §13.2.1 for more explanation about this.

4Estimations of parameters are indicated with a “circumflex” or “hat” above them.
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Speech tempo (second/syllable)

Speech tempo (syllable/second)
5 4.55 4.17

Figure 10.7: 95% confidence intervals and sample means, over 100 simulated
samples (n=30) out of a population with mean 0.220 and s.d. 0.0225; see text.
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Chapter 11

Correlation and regression

11.1 Introduction

Most empirical research is focused on establishing associations between vari-
ables. In experimental research, this primarily concerns associations between
independent and dependent variables. In the coming section, we will look in
more detail at the distinct ways of establishing whether a “significant” (mean-
ingful, non-accidental) relation exists between the independent and dependent
variables. In addition, the researcher might be interested in the associations
between several dependent variables, for example the associations between the
judgements of several raters or judges (see also Chapter 12).

In quasi-experimental research, the difference between independent and depen-
dent variables is usually less clear. Several variables are observed and the re-
searcher is particularly interested in the associations between the observed vari-
ables. What, for instance, is the association between the scores for reading,
arithmetic, and geography in the CITO study (see Table 9.1)? In this chap-
ter, we will look in more detail into the ways of expressing the association in
a number: a correlation coefficient. There are different correlation coefficients
depending on the variable’s levels of measurement, which we will examine more
in this chapter.

It is advisable to always first make a graphic representation of an association
between the variables, in the form of a so-called scatter plot, like in Figure 11.1.
Each point in this scatter plot corresponds with a pupil (or more generally, with
a unit from a sample). The position of each point (pupil) is determined by the
observed values of two variables (here 𝑋 is the score for the reading test, 𝑌 is
the score for the arithmetic test). A scatter plot like this helps us to interpret
a potential correlation, and to inspect whether the observations indeed satisfy
the preconditions for calculating a correlation from the observations. In any
case, look at (a) the presence of a potential correlation, (b) the form of that

159
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correlation (linear, exponential,…), (c) potential outliers (extreme observations,
see §9.4.2), and (d) the distribution of the two variables, see §9.7.
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Figure 11.1: Scatter plot of the scores of a reading test and an arithmetic test;
see text.

This scatter plot shows (a) that there is a relation between the scores for reading
and arithmetic. The relation is (b) approximately linear, i.e. can be described
as a straight line; we will return to this in §11.3. The relation also helps us
to explain the dispersion in the two variables. After all, the dispersion in the
arithmetic scores can be partially understood or explained from the dispersion
in the reading test: pupils who achieve a relatively good score in reading, also
achieve this in arithmetic. The observations from the two variables thus not only
provide information about the two variables themselves, but moreover about the
association between the variables. In this scatter plot, we can moreover see (c)
that the highest reading score is an outlier (see also Chapter 9, Figure 9.3); such
outliers can have a disproportionately large influence on the correlation found.

11.2 Pearson product-moment correlation

The Pearson product-moment correlation coefficient is referred to with the sym-
bol 𝑟 (in the case of two variables). This coefficient can be used if both variables
are observed on the interval level of measurement (§4.4), and if both variables
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are approximately normally distributed (§10.3). Nowadays, we do this calcula-
tion by computer.

For the observations in the scatter plot in Fig.11.1, we can find a correlation of
𝑟 = +.79. The correlation coefficient is a number that is by definition between
−1 and +1. A positive correlation coefficient indicates a positive relation: a
larger value of 𝑋 corresponds with a larger value of 𝑌 . A negative correlation
indicates a negative relation: a larger value of 𝑋 corresponds with a smaller
value of 𝑌 . A value of 𝑟 which is close to zero indicates a weak or absent
correlation: the dispersion in 𝑋 is not related to the dispersion in 𝑌 ; there
is no or only a weak correlation. We call a correlation of .4 < 𝑟 < .6 (or
−.6 < 𝑟 < −.4) moderate. A correlation of 𝑟 > .6 (or 𝑟 < −.6) indicates a
strong association. If 𝑟 = 1 (or 𝑟 = −1), then all observations are precisely on
a straight line. Figure 11.2 shows several scatter plots with the accompanying
correlation coefficients.
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Figure 11.2: Some scatter plots of observations with accompanying correlation
coefficients.

The correlation we see between the scores of the two variables (like 𝑟 = .79
between scores for the reading test and arithmetic test, Fig.11.1) might also be
the result of chance variations in the observations. After all, it is possible that
the pupils who have a good score on the reading test achieve a good score on the
arithmetic test purely by chance — also when there is actually not a correlation
between the two variables in the population. We refer to the unknown correla-
tion in the population with the Greek letter 𝜌 (“rho”); as such, it is also possible
that 𝜌 = 0. Even if 𝜌 = 0, it is possible to have 𝑛 = 10 pupils in the sample who
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by chance combine high scores on one part with high scores on the other part
(and by chance not have pupils in the sample who combine high scores on one
part with low scores on the other part). We can estimate what the probability
𝑝 is of finding this correlation of 𝑟 = 0.79 or stronger in a sample of 𝑛 = 10
students, if the association in the population is actually nil (i.e. if 𝜌 = 0). We
call this probability 𝑝 the significance of the correlation coefficient; in Chapter
13, we will look in more detail at this term ‘significance’. In anticipation of this:
if this probability 𝑝 is smaller than .05, then we assume that the correlation
found 𝑟 is not by chance, i.e. is significant. We often see a small probability 𝑝
with a strong correlation 𝑟. The correlation coefficient 𝑟 indicates the direction
and strength of the relation, and the significance 𝑝 indicates the probability
of finding this relation by chance if 𝜌 = 0 in the population. We report these
findings as follows1:

Example 11.1: The scores of the 𝑛 = 10 pupils on the CITO test
subparts in Table 9.1 show a strong correlation between the scores
on the Reading and Arithmetic tests: Pearson 𝑟 = 0.79, 𝑝 = .007.
Pupils with a relatively high score on one test generally also achieve
a relatively high score on the other test.

In many studies, we are interested in the correlations between more than two
variables. These correlations between variables are often reported in a so-called
pairwise correlation matrix like Table 11.1, which is a table where the correla-
tions of all pairs of correlations are reported.

Table 11.1: Correlations between the three parts of the CITO test,
as summarised in Table 9.1, with the accompanying significance
level between brackets.

Reading Arithmetic Geography
Reading 1.00
Arithmetic 0.79 (.007) 1.00
Geography -0.51 (.131) -0.01 (.970) 1.00

In this matrix, only the lowest (left) half of the complete matrix is shown. This
also suffices because the cells are mirrored along the diagonal: after all, the

1When the correlation found 𝑟 is not significant, then this can thus be by chance, and then
we discount an interpretation of the correlation. We do then state in our report the correlation
coefficient found and the established significance for it.
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correlation between Reading (column 1) and Arithmetic (row 2) is the same as
the correlation between Arithmetic (row 2) and Reading (row 1). In the cells
on the diagonal, the pairwise correlation matrix always contains the value 1.00,
since a variable always correlates perfectly with itself. We report these findings
as follows:

Example 11.2: The pairwise correlations between scores from the
𝑛 = 10 pupils on the three subparts of the CITO test are summarised
in Table 11.1. We can see a strong correlation between the scores
for the Reading and Arithmetic tests: pupils with a relatively high
score on the Reading test generally also achieve a relatively high
score on the Arithmetic test. The remaining correlations were not
significant.

11.2.1 Formulas

The simplest formula for the Pearson product-moment correlation coefficient 𝑟
makes use of the standard normal scores we already used earlier (§9.8):

𝑟𝑋𝑌 = ∑ 𝑧𝑋𝑧𝑌
𝑛 − 1 (11.1)

Just like when we calculate variance (formula (9.3)), we divide again by (𝑛 − 1)
to make an estimate of the association in the population.

11.2.2 SPSS

For Pearson’s product-moment correlation coefficient:

Analyze > Correlate > Bivariate...

Choose Pearsons correlation coefficient, tick: Flag significant correlations.
Confirm OK. The resulting output (table) does not satisfy the style requirements;
as such, you should take the data into or convert it into a table of your own
which does satisfy these requirements.
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11.2.3 JASP

For Pearson’s product-moment correlation coefficient, go to the top menu bar
and choose:

Regression > Classical: Correlation

In the field “Variables”, select the variables of which you want to know
the correlation. Make sure that under “Sample Correlation Coefficient”,
option Pearson's r is checked. Under “Additional Options”, check Report
significance, Flag significant correlations and Sample size. You
may also check the option Display pairwise to obtain simple table output.
Note that with or without this option checked, the output table does not
adhere to APA guidelines for reporting such tables; hence you’ll need to revise
the table or create your own using the JASP output.

11.2.4 R

cito <- read.table(file="data/cito.txt", header=TRUE)
# variable names are Lezen=Reading, Rekenen=Arithmetic, WO=Geography, ...
dimnames(cito)[[2]] <- c( "Pupil", "Reading", "Arithmetic", "Geography",

"UrbanRural", "Arith.2cat" )
cor( cito[,2:4] ) # correlation matrix of columns 2,3,4

## Reading Arithmetic Geography
## Reading 1.0000000 0.74921033 -0.50881738
## Arithmetic 0.7492103 1.00000000 0.06351024
## Geography -0.5088174 0.06351024 1.00000000

with( cito, cor.test( Reading, Arithmetic ) )

##
## Pearson's product-moment correlation
##
## data: Reading and Arithmetic
## t = 3.1994, df = 8, p-value = 0.01262
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2263659 0.9368863
## sample estimates:
## cor
## 0.7492103
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11.3 Regression

The simplest relation that we can distinguish and describe is a linear relation,
i.e. a straight line in the scatter plot (see Fig.11.2). This straight line indicates
which value of 𝑌𝑖 is predicted, on the basis of the value of 𝑋𝑖. This predicted
value of 𝑌𝑖 is noted as 𝑌𝑖 (“Y-hat”). The best prediction 𝑌𝑖 is based on both
the value of 𝑋𝑖 and the linear relation between 𝑋 and 𝑌 :

𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 (11.2)

The straight line is described with two parameters, namely the intercept (or
constant) 𝑎 and the slope 𝑏 2. The straight line which describes the linear
relation is often referred to as the “regression line”; after all, we try to trace the
observed values of 𝑌 back to this linear function of the values of 𝑋.
The difference between the observed value 𝑌 and the predicted value 𝑌 (𝑌 −𝑌 )
is called the residual (symbol 𝑒). In other words, the observed value is considered
to be the sum of two components, namely the predicted value and the residual:

𝑌 = 𝑌 + 𝑒 (11.3)
= 𝑎 + 𝑏𝑋 + 𝑒 (11.4)

The above rationale is illustrated in the scatter plot in Figure 11.3. The dashed
line indicates the linear relation between the two tests:

̂Arithmetic = 12.97 + 0.52 × Reading (11.5)

This dashed line thus indicates what the value 𝑌 is for each value of 𝑋. For
the second pupil with 𝑋2 = 32, we thus predict 𝑌2 = 12.97 + (0.52)(32) =
29.61 (predicted value, green line fragment). For all observations which are not
precisely on the regression line (dashed line), there is a deviation between the
predicted score 𝑌 and the observed score 𝑌 (residual, red line fragment). For
the second pupil, this deviation is 𝑒2 = (𝑌2 −𝑌2) = (36−29.61) = 6.49 (residual,
red line fragment).
As stated, the observed values of 𝑌 are considered to be the sum of two compo-
nents, the predicted value 𝑌 (green) and the residual 𝑒 (red). In the same way,
the total variance of 𝑌 can be considered to be the sum of the two variances of
these components:

𝑠2
𝑌 = 𝑠2

𝑌 + 𝑠2
𝑒 (11.6)

Of the total variance 𝑠2
𝑌 of Y, one part (𝑠2

𝑌 ) can be traced back to and/or
explained from the variance of 𝑋, via the linear relation described with param-
eters 𝑎 and 𝑏 (see formula (11.2)), and the other part (𝑠2

𝑒) cannot be retraced or
2In some school books, this equation is described as 𝑌 = 𝑎𝑋 + 𝑏, with 𝑎 as the slope and

𝑏 as the intercept; however, we keep to the conventional international notation here.
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Figure 11.3: Scatter plot of the scores of a reading test and an arithmetic test.
The diagram also indicates the regression line (dashed line), the predicted value
(green) and residual (red) of the arithmetic test for pupil 2, the average (plus
symbol), and markings for pupil 2 and 3; see text.
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explained. The second part, the non-predicted variance of the residuals is also
called the residual variance or unexplained variance.

When we are able to make a good prediction 𝑌 from 𝑋, i.e. when the Pearson
product-moment correlation coefficient 𝑟 is high (Fig. 11.2, left), then the resid-
uals 𝑒 are thus relatively small, the observations are close around the regression
line in the scatter plot, and then the residual variance 𝑠2

𝑒 is also relatively small.
Conversely, when we are not able to predict 𝑌 well from 𝑋, i.e. when the corre-
lation coefficient is relatively low (Fig. 11.2, right), then the residuals 𝑒 are thus
relatively large, the observations are widely dispersed around the regression line
in the scatter plot, and then the residual variance 𝑠2

𝑒 is thus also relatively large.
The square of the Pearson product-moment correlation coefficient 𝑟 indicates
what the relative size of the two variance components is, with respect to the
total variance:

𝑟2 =
𝑠2

𝑌
𝑠2

𝑌
(11.7)

= 1 − 𝑠2
𝑒

𝑠2
𝑌

(11.8)

This statistic 𝑟2 is referred to as the “proportion of explained variance” or as
the “coefficient of determination”.

The values of the linear parameters 𝑎 and 𝑏 in formula (11.2) are so chosen that
the collective residuals are as small as possible, i.e. that the residual variance 𝑠2

𝑒
is as small as possible (“least squares fit”), and thus 𝑟2 is as large as possible (see
§11.3.1). In this way, we can find a straight line which best fits the observations
for 𝑋 and 𝑌 .

A linear regression can also be reported as follows:

Example 11.3: Based on a linear regression analysis, it appears that
the score for Arithmetic is related to that for Reading: 𝑏 = 0.51, 𝑟 =
.79, 𝑝𝑟 = .007, over 𝑛 = 10 pupils. This linear regression model
explains 𝑟2 = .51 of the total variance in the arithmetic scores (the
residual standard deviation is 𝑠𝑒 = √82.803/(𝑛 − 1 − 1) = 3.217).

11.3.1 Formulas

For linear regression of 𝑦 on 𝑥, we try to estimate the coefficients 𝑎 and 𝑏
such that (the square of) the deviation between the predicted value ̂𝑦 and the
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observed value 𝑦 is as small as possible, in other words that the square of the
residuals (𝑦− ̂𝑦) is as small as possible. This is called the “least squares” method
(see http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm).

The best estimation for 𝑏 is

𝑏 = ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2

The best estimation for 𝑎 is
𝑎 = 𝑦 − 𝑏𝑥

11.3.2 SPSS

For linear regression:

Analyze > Regression > Linear...

Choose Dependent variable: Arithmetic and choose Independent
variable: Reading. Under the button Statistics, tick Model fit,
tick R squared change, choose Estimates, and afterwards Continue.
Under the button Plot, tick Histogram and tick also Normal probability
plot; these options are required to a get a numerical (!) summary over the
residuals. (already check once) Under the button Options, choose Include
constant to also have the constant coefficient 𝑎 calculated. Confirm all choices
with OK.

The resulting output includes several tables and figures; you cannot transfer
these directly into your report. The table titled Model Summary contains the
correlation coefficient, indicated here with capital letter 𝑅 = .749.
The table titled Coefficients contains the regression coefficients. The line which
has the designation (Constant) states coefficient 𝑎 = 13.25; the line titled
Reading states coefficient 𝑏 = 0.51.
The table titled Residual Statistics provides information about both the pre-
dicted values and the residuals. Check whether the mean of the residual is
indeed null. In this table, we can also see (line 2, column 4) that the standard
variation of the residuals is 3.212.

11.3.3 JASP

For linear regression, go to the top menu bar and choose:

Regression > Classical: Linear Regression

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm
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Choose the variable Arithmetic as “Dependent Variable”, and choose the vari-
able Reading under “Covariates”.
Next, open the menu bar Model, and inspect whether the predictor Reading
is indeed listed under “Model Terms”. The option Include intercept should
be checked, in order to have the constant term or intercept a included in the
regression model (see §11.3.1).
Open the menu bar Statistics, and check the options Estimates, Model fit
and R squared change. Under “Residuals”, check Statistics to obtain a
numerical summary of the residuals. Open the menu bar Plots, and choose
plots for Residuals vs. histogram and Q-Q plot standardized residuals;
these allow visual inspection of the (distribution of) residuals.

The resulting output contains several tables and figure, which do not conform
to APA guidelines and hence cannot be used directly in your report (see also
Example 11.3 above).
The table titled Model Summary reports the correlation coefficient, here re-
ported with capital 𝑅 = .749.
The table titled Coefficients contains the regression coefficients. The row with
indication (Intercept) reports the constant 𝑎 = 13.25; the row with indication
Reading reports the slope or regression coefficient 𝑏 = 0.51.
The table titled Residual Statistics provides information about the predicted
values and residuals. Inspect whether the mean of the residuals is approximately
zero (it should be). We also see here (row 2, column 4) that the standard devi-
ation of the residuals is 3.212.

11.3.4 R

summary( m1 <- lm( Arithmetic~Reading, data=cito ) )

##
## Call:
## lm(formula = Arithmetic ~ Reading, data = cito)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5332 -1.1167 -0.5332 1.7168 6.3384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.2507 4.4910 2.950 0.0184 *
## Reading 0.5128 0.1603 3.199 0.0126 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## Residual standard error: 3.406 on 8 degrees of freedom
## Multiple R-squared: 0.5613, Adjusted R-squared: 0.5065
## F-statistic: 10.24 on 1 and 8 DF, p-value: 0.01262

The command lm specifies a linear regression model, with Arithmetic as the
dependent variable and Reading as the predictor. This model is saved as an
object called m1, and that is used again directly as an argument (input) for
reporting. In the reporting of model m1 the constant coefficient 𝑎 is referred to
as the Intercept.

sd( resid( m1 ) ) # s.d. of residuals according to `m1`

## [1] 3.211533

11.4 Influential observations

In the previous section, we saw that the aim in a correlation analysis or regres-
sion analysis is for a minimal residual variance. Earlier we also already saw that
outliers or extreme observations, by definition, make a relatively large contribu-
tion to variance. Together, this means that outliers or extreme observations can
have a large influence on the size of the correlation or on the regression found
(the linear relation found). Pupil 3 has an extremely high score for Reading
(see also Fig.9.3). If we discount pupil 3, then this would not greatly change
the correlation (𝑟−3 = .79) but it would change the slope of the regression line
(𝑏 = 0.84, more than one and a half times as large as if pupil 3 were in fact
included). This observation thus “pulls” hard on the regression line, precisely
because this observation has an extreme value for 𝑋 and therefore has much
influence.

Non-extreme observations can, however, also have a large influence on the corre-
lation and regression, if they are far away from the regression line and thus make
a large contribution to the residual variance. This too can be seen in Fig.11.3.
Pupil 2 has no extreme scores but does have the largest residual. If we discounted
this pupil 2 then the correlation would be considerably higher (𝑟−2 = .86) but
the slope of the regression line would only change a little (𝑏 = 0.45).

For a correlation analysis or regression analysis you always have to make and
study a scatter plot, in order to see the pattern for yourself (is it linear?) and
to inspect whether and to what extent the results may have been influenced
by one or a few observation(s). Pay particular attention to observations which
are far away from the mean, for each of the two variables, and to observations
which are far away from the regression line.
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11.5 Spearman’s rank correlation coefficient

The variables whose correlation we want to investigate are not always both
expressed on the interval level of measurement (§4.4), regardless whether or
not the researchers want to and are able to assume that both variables are
approximately normally distributed (§10.3). In that case, the product-moment
correlation is less suitable for quantifying the association. If the data is indeed
expressed on an ordinal level of measurement, then we can use other correlation
coefficients to express the association: Spearman’s rank correlation coefficient
(𝑟𝑠) and Kendall’s 𝜏 (the Greek letter “tau”). Both of these coefficients are
based on the ranking of the observations; we can thus always compute these
correlations when we are able to order the observations. Nowadays, we also
perform this calculation by computer. In this chapter, we only discuss the
Spearman’s rank correlation coefficient.

The Spearman’s rank correlation coefficient is equal to the Pearson product-
moment correlation coefficient applied to the ranks of the observations. We
convert every observation from a variable to a rank number, from the smallest
observed value (rank 1) to the largest observed value (rank 𝑛). If two or more
observations have the same value, then they also receive the same (mean) rank.
In Table 11.2, you can see the ranks of the scores for Reading and Arithmetic,
ordered here according to the ranks for Reading.

Table 11.2: Ranks for the scores of 10 pupils on parts of a test, as
summarised in Table 9.1, with difference 𝑣𝑖 between the two ranks
per pupil.

Pupil 1 9 6 4 10 8 5 7 2 3
Reading 1 2 3 4.5 4.5 6 7 8 9 10
Arithmetic 2 4 1 4 6.5 4 8 6.5 10 9
Difference 𝑣𝑖 -1 -2 1 0.5 -2 2 -1 1.5 -1 1

The ranking in Table 11.2 makes it clear at a glance that the three pupils with
the lowest score for Reading (nos. 1, 9, 6) also almost achieved the lowest scores
for Arithmetic. That indicates a positive relation. The two best readers (nos.
2 and 3) are also the two best arithmeticians. That also indicates a positive
relation. However, there is also no question of a perfect positive relation (thus
here 𝑟𝑠 < 1), because then the two rankings would match perfectly.

Think how Table 11.2 would look if there were a perfect negative relation (𝑟𝑠 =
−1) between the scores for Reading and Arithmetic, and how the table would
look if there were no correlation whatsoever (𝑟𝑠 = 0) between these scores.
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11.5.1 Formulas

The association between the rankings of the two variables is expressed in the
Spearman’s rank correlation coefficient:

𝑟𝑠 = 1 − 6 ∑ 𝑣2
𝑖

𝑛(𝑛2 − 1) (11.9)

in which 𝑣𝑖 stands for the difference in rankings on both variables for respondent
𝑖. The fraction in this formula gets larger and 𝑟𝑠 thus gets smaller, the larger
the differences between the ranks are. However, this formula can only be used
if there are no “ties” (shared rankings) in the variables; for the dataset in Table
11.2 with “ties” in both variables we have to use another formula.

As can be seen, the Spearman’s rank correlation 𝑟𝑠 is not equal to the Pearson
product-moment correlation 𝑟 for the scores observed. If the preconditions of the
Pearson coefficient are satisfied, then this Pearson product-moment correlation
coefficient provides a better estimation of the association than the Spearman’s
rank correlation coefficient. However, if the preconditions are not satisfied, then
the Spearman’s coefficient should be preferred again. The Spearman’s coefficient
is, amongst others, less sensitive for influential extreme observations — after all,
such outliers have less weighting once the raw scores have been replaced by the
ranks.

11.5.2 SPSS

For Spearman’s rank correlation coefficient:

Analyze > Correlate > Bivariate...

Choose Spearman rank correlation coefficient, tick: Flag significant
correlations. Confirm with OK. The resulting output (table) does not satisfy
the style requirements; you thus have to take the data into or convert it into a
table of your own which does satisfy these requirements, and report according
to the usual conventions for correlation analysis.

11.5.3 JASP

For Spearman’s rank correlation coefficient, go to the top menu bar and choose:

Regression > Classical: Correlation

In the field “Variables”, select the variables of which you want to know the
correlation. Make sure that under “Sample Correlation Coefficient”, option
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Spearman's rho is checked. Under “Additional Options”, check Report
significance, Flag significant correlations and Sample size. You
may also check the option Display pairwise to obtain simple table output.
Note that with or without this option checked, the output table does not
adhere to APA guidelines for reporting such tables; hence you’ll need to revise
the table or create your own using the JASP output.

11.5.4 R

with(cito, cor.test( Reading,Arithmetic, method="spearman" ) )

## Warning in cor.test.default(Reading, Arithmetic, method = "spearman"): Cannot
## compute exact p-value with ties

##
## Spearman's rank correlation rho
##
## data: Reading and Arithmetic
## S = 25.229, p-value = 0.00198
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.8470988

11.6 Phi

The two variables for which we want to investigate the association are themselves
not always expressed on an ordinal level of measurement (Chapter 4). Even if
both of the variables are measured only on a nominal level of measurement,
then a correlation can still be calculated, namely the phi correlation coefficient
(symbol 𝑟Φ, with Greek letter “Phi”). This correlation coefficient can also be
used if one of the two variables is measured on a nominal level of measurement,
and the other one is measured on an ordinal level of measurement.

With our CITO test example, let us assume that the first five pupils come from
a large city (urban), and the last five from the countryside (rural). The pupil’s
place of origin is a nominal variable, with 2 categories, here randomly referred
to as 1 resp. 0 (see §4.2; a nominal variable with precisely 2 categories is
also called a binomial or dichotomous variable). We now ask ourselves whether
there is some association between a pupil’s place of origin and their score for
the Arithmetic part of the CITO test. The second variable is of interval level of
measurement. We convert this to a nominal level of measurement. That can be
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done in many ways, and it is the researcher’s role to make a wise choice when
doing so. Here, we choose the often used ‘mean split’: one of the categories
(low, code 0) consists of scores smaller than or equal to the mean (§9.3.1), and
the other category consists of scores larger than the mean (high, code 1). We
summarise the number of pupils in each of the 2 × 2 categories in a contingency
table (Tabel 11.3).

Table 11.3: Contingency table of 𝑛 = 10 pupils, subdivided ac-
cording to origin (urban=1, rural=0) and according to category of
score for the Arithmetic part of the CITO test (‘mean split’, low=0,
high=1), with letter designations for the number of observations;
see text.

Origin Low (0) High (1) Total
Rural (0) 5 (A) 0 (B) 5 (A+B)
Urban (1) 2 (C) 3 (D) 5 (C+D)
Total 7 (A+C) 3 (B+D) 10 (A+B+C+D)

The nominal correlation coefficient 𝑟Φ is equal to the Pearson product-moment
correlation coefficient applied to the binomial codes (0 and 1) of the observa-
tions. All 5 pupils from the rural countryside have an Arithmetic score which
is equal to or lower than average (𝑦 = 27.2); out of the pupils from the urban
city, 2 have a score which is (equal to or) lower than average. There is thus an
association
between the binomial codes of the rows (origin) and those of the columns (score
categories) in Table 11.3. This association is quantified in the correlation coef-
ficient 𝑟Φ = 0.65 for this data.

11.6.1 Formulas

The nominal correlation coefficient 𝑟Φ is calculated as follows, where the letters
refer to the numbers in the cells of a contingency table (see Table 11.3):

𝑟Φ = (𝐴𝐷 − 𝐵𝐶)
√(𝐴 + 𝐵)(𝐶 + 𝐷)(𝐴 + 𝐶)(𝐵 + 𝐷)

(11.10)

For the example discussed above we then find

𝑟Φ = (15 − 0)
√(5)(5)(7)(3)

= 15
22.91 = 0.65

11.6.2 SPSS

The dataset cito already contains the variable UrbanRural which indicates the
origin of the pupils. However, for completeness, we will still show how you can
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construct a variable like this for yourself.

11.6.2.1 construct new variable

Transform > Recode into different variables...

Choose Pupil as the old variable and fill in as the new name for the new variable
UrbanRural2. Indicate that the old values in Range from 1 to 5 (old) have to
be transformed to the new value 1, and likewise that pupils 6 to 10 have to get
the new value 0 for the new variable UrbanRural2.

For Arithmetic it is a bit more complex. You firstly have to delete your trans-
formation rules (which relate to UrbanRural). Then, make a new variable again
in the same way as before, named Arithmetic2. All values from the lowest value
to the mean (27.2) are transformed to the new value 0 for this new variable. All
values from the mean (27.2) to the highest value are transformed to the new
value 1.

11.6.2.2 correlation analysis

After this preparatory work, we can finally calculate 𝑟Φ.

Analyze > Descriptives > Crosstabs...

Select the variables UrbanRural2 (in the “Rows” panel) and Arithmetic2 (in
the “Columns” panel) for contingency table @ref(tab: cito-contingency-table).
Choose Statistics… and tick the option Phi and Cramer’s V!
Confirm firstly with Continue and then again with OK.

11.6.3 JASP

The dataset cito already contains a variable UrbanRural which indicates the
pupils’ origins. However, for completeness, let us still see how you can construct
such a variable for yourself.

11.6.3.1 construct new variable

First, create a new variable by clicking the + button which is to the right of
the rightmost column header in the data sheet. A new panel “Create Computed
Column” will appear, in which you can enter a name for the new variable, such
as UrbanRural2. There are two methods to specify the new variable, using R
commands or using a hand pointer sign (manual specification). Below we will
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explain for both options how to specify the new variable. You can also indicate
the measurement level of the new variable; in this example we will use Nominal.
Finally, click on Create Column to create the new variable, which will appear
as a new empty column in the data sheet.

If you chose the R command method to define a new variable, then a new panel
will appear above the data sheet, with the text “#Enter your R code here :)”.
You can enter some R commands and use R functions3 to define the new variable.
Enter your R commands and click on Compute column to fill the empty variable
with the new values.

For the new UrbanRural2 variable in this example we may use this code:

ifelse(Leerling <= 5, 1, 0)

This command means: if the value of ID variable Leerling (Pupil) is less than
or equal to 5 (this if-condition is the first argument), then the new value will
be 1 (the second argument), else the new value will be 0 (the third argument).
In short: if Leerling ≤ 5, then 1, else 0. Note that this R command will only
work in JASP if the variable in the first argument is at the “Scale” level of
measurement; otherwise the <= operator is not defined. If the measurement
level of the source variable is not set to “Scale”, then you may change this by
going to the data sheet, click on the icon that indicates the measurement level,
in the column header, and then select “Scale”.

If you chose the manual specification method (hand pointer) to define the new
variable, then a new panel will appear above the data sheet. The panel has
variables to the left, math symbols at the top, and some functions to the right.
Here you can manually build the expression to define the new variable. After
you have built your expression (see below), click on Compute column to fill the
empty variable with the new values.

For the new UrbanRural2 variable in this example, scroll down through the
functions on the righthandd side, and click on ifElse(y). The function appears
in the working panel. Replace the arguments “test” and “then” and “else” by
appropriate values.
– Click on “test” and select the symbol ≤ from the top. Drag variable Leerling
(Pupil) from the left side to the dots preceding the ≤ operator, and enter the
value 5 following the operator.
– For “then” type 1.
– For “else” type 0.
The complete expression should read ifElse(Leerling <= 5,1,0), and this
expression is equivalent to the R command discussed above.

As explained above for R commands within JASP, the expression built here,
containing a ≤ or <= operator, will only work in JASP if the variable in the

3Only selected R functions from a so-called “whitelist” of functions are allowed.
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first argument is at the “Scale” level of measurement; otherwise the <= operator
is not defined. If the measurement level of the source variable is not set to
“Scale”, then you may change this by going to the data sheet, click on the icon
that indicates the measurement level, in the column header, and then select
“Scale”.

We repeat the same create-and-define steps as above, now for a new version of
the variable Arithmetic: the new variable will be named Arithmetic2 and it
will be at the Nominal level.

First we create a new variable by clicking the + button to the right of the
rightmost column header in the data sheet. A new panel “Create Computed
Column” will appear, in which you can enter a name for the new variable, such
as UrbanRural2. Click on Create Column to create the new variable, which
will appear as a new empty column in the data sheet.

If you chose the R command method to define this new variable, then you may
use this R code:

ifelse(Arithmetic < mean(Arithmetic), 0, 1)

This command means: if the value of the source variable Arithmetic is less
than the mean of the same variable Arithmetic, then the new value will be
zero (mnemonic code for “low”), and else the new value will be one (code for
“high”). In short: if Arithmetic < mean(Arithmetic), then 0, else 1. Enter the
R command given above, and click on Compute column to fill the empty variable
with the specified (nominal) values.

If you chose the manual specification method (hand pointer) to define the
new variable, then you need to select the function ifElse(y) once more. For
“test”, select the < operator from the top, drag the function mean(y) from
the righthand menu to the preceding dots, and drag the variable Arithmetic
from the lefthand menu to the “values” part of the mean(y) function. For
“then” enter 0 and for “else” enter 1. The complete expression should read
ifElse(Arithmetic < mean(Arithmetic), 0, 1), and this expression is
equivalent to the R command discussed above. After you have built your
expression, click on Compute column to fill the empty variable with the new
values.

11.6.3.2 correlation analysis

After all this preparatory work, we can finally calculate 𝑟Φ. From the top menu
bar, choose

Frequencies > Classical: Contingency Tables
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Select the variables UrbanRural2 (for the “Rows” panel) and Arithmetic2 (for
the “Columns” panel) to obtain the contingency table (see Table 11.3) . Open
the Statistics menu bar, and under “Nominal” check Phi and Cramer’s V.
The value of 𝑟Φ is reported in the output under the heading Phi coefficient.

11.6.4 R

The dataset cito already contains a variable UrbanRural which indicates the
pupils’ origins. However, for completeness, let us still see how you can construct
such a variable for yourself.

11.6.4.1 construct new variable

UrbanRural2 <- ifelse( cito$Pupil<6, 1, 0) # 1=urban, 0=rural
Arithmetic2 <- ifelse( cito$Arithmetic>mean(cito$Arithmetic), 1, 0 ) # 1=high, 0=low

Here we build a new variable Arithmetic2, which has the value 1 if the score
for Arithmetic is higher than the average, and otherwise has the value 0.

11.6.4.2 correlation analysis

In R, we also start by making a contingency table (Table 11.3) and we then
calculate the 𝑟Φ over the contingency table.

print( table(UrbanRural2,Arithmetic2) -> citocontingencytable )

## Arithmetic2
## UrbanRural2 0 1
## 0 5 0
## 1 2 3

# make and store a contingency table
if (require(psych)) { # for psych::phi
phi(citocontingencytable) # contingency table made earlier is input here!

}

## Loading required package: psych

##
## Attaching package: 'psych'
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## The following objects are masked from '.hqenv':
##
## harmonic.mean, logit

## [1] 0.65

11.7 Last but not least

At the end of this chapter, we want to emphasise again that an association or
correlation between two variables does not necessarily mean that there is a causal
relation between the variables, in other words a correlation does not mean that
one variable (e.g. treatment) is the consequence of the other variable (e.g. cure).
The common saying for this is “correlation does not imply causation,” see also
Example 6.1 (Chapter 6) and accompanying Figure 11.7.

\begin{figure}

{

}

\caption{Correlation does not imply causation, borrowed with permission from
http://xkcd.com/552.} \end{figure}

http://xkcd.com/552
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Chapter 12

Reliability

12.1 Introduction

In Chapter 5, we talked about, amongst other matters, construct validity, the
distance between the intended (theoretical) concept or construct on the one
hand, and the independent or dependent variable on the other hand. In this

Chapter, we will look at another very important aspect of the dependent
variable, namely its reliability. This reliability can be estimated based on the
association between observations of the same construct. We will also look at

the relations between reliability and construct validity.

Often validity and reliability are mentioned in the same breath, and discussed
in consecutive chapters. There is something to be said for this, since both

concepts are about how you define and operationalise your variables.
Nevertheless, we have chosen a different ordering here. Reliability will only be
discussed following our discussion of correlation (Chapter 11), since reliability

is based on the relation or correlation between observations.

12.2 What is reliability?

A reliable person is stable and predictable: what he or she does today is
consistent with what he or she did last week, you can trust this person — in
contrast to an unreliable person, who is unstable and behaves unpredictably.

According to Collins English Dictionary, someone or something is reliable
when they/it “…can be trusted to work well or to behave in the way that you
want them to”.1 Reliable measurements can form the basis for a “justified true

1https://www.collinsdictionary.com/dictionary/english/reliable
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belief” (see §2.4); conversely, it is not worth giving credence to unreliable
measurements.

Measurements always show some degree of fluctuation or variation or
inconsistency. This variability can partially be attributed to the variation in

the behaviour which is being measured. After all, even if we measure the same
construct for the same person, we still see variance as a result of the
momentary mental or physical state of the participant, which simply

fluctuates. Moreover, there is variation in the measuring device (thermometer,
questionnaire, sensor), and there are probably inconsistencies in the manner of
measurement or evaluation. With the quantification of such consistencies and

inconsistencies, we enter the realms of reliability analysis.

The term ‘reliability’ has two meanings in academic research, which we will
treat separately. Firstly, reliability signifies the precision or accuracy of a

measurement. This aspect concerns the question of the extent to which the
measurement is influenced by chance factors (through which the measurement
does not exclusively render the construct investigated). If we do not measure

accurately then we also know what the measurements actually show —
perhaps they show the construct investigated but perhaps they also do not. If

we do measure accurately then we would expect, if we were to conduct the
same measurement again, that we would then measure the same outcome. The

less precise a measurement is, the more variation or inconsistency there is
between the first measurement and the repeated measurement, and the

measurements are thus less reliable.

Example 12.1: If we want to measure the reading ability of pupils
in their final examinations, then we present them with a reading
comprehension test with a number of accompanying questions. The
degree to which the different questions measure the same construct,
here the construct ‘reading ability’, is called reliability, precision or
homogeneity.

In what follows, to avoid confusion, we will refer to this form of reliability with
the term homogeneity (vs. heterogeneity). With a heterogenous

(non-homogenous) test, the total score is difficult to interpret. With a
perfectly homogenous test, people who have the same total score have also
answered the same questions correctly. However, when we measure human

(language) behaviour, such perfectly homogenous tests never occur:
respondents who do achieve the same total score, have not always answered

the same questions correctly (e.g. in the final examination reading ability test,
Example 12.1). This implies that the questions have not measured exactly the
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same capacity. This is also the case: one question was about paraphrasing a
paragraph, whilst another was related to a relationship between a referential

expression and its antecedent.
As such, the questions or items were not perfectly homogenous!

Secondly, reliability signifies a measurement’s stability. To measure your
weight, you stand on a weighing scale. This measurement is stable: five

minutes later, the same weighing scale with the same person under the same
circumstances will also yield (almost) the same measurement. Stability is
often expressed in a so-called correlation coefficient (a measurement for

association, see Chapter 11). This correlation coefficient can assume all values
between +1 and −1. The more similar the first and second measurement, the
higher the correlation is, and the higher the association between the first and
second measurement. Conversely, the lower the association between the first

and second measurement is, the lower too the correlation is.

Stable measurements nevertheless rarely occur in research on (language)
behaviour. If is a test is taken twice, then there is often a considerable

difference in scores on the first measurement point and scores on the second
measurement point.

Example 12.2: In the final examination for Dutch secondary school,
pupils typically have to write an essay, which is assessed by two
raters. The raters are stable if, after some time, they give the same
judgements to the same essays. Thus: if rater A at first gave a
grade 8 to an essay, and for the second evaluation sometime later,
he/she also gave the same essay an 8, then this rater is (very) stable.
If, however, the same rater A gave this same essay a grade 4 on the
second evaluation, then this rater is not stable in his/her judgements.

Now, grading essays is a tricky task: criteria are not precisely de-
scribed and there is a relatively large amount of room for interpreta-
tion differences. Accordingly, the stability of judgements is also low;
previously, a stability coefficient of even 0.40 has been reported.

To calculate a test’s stability, the same test has to be taken twice; the degree
of association between the first and second measurement is called the

test-retest-reliability. In practice, repeatedly sitting a test like this rarely takes
place due to the relatively high costs and relatively low benefits.
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Example 12.3: Lata-Caneda et al. (2009) developed a Spanish-
language questionnaire consisting of 39 questions, intended for
aphasia patients to determine their quality of life. The quality of
life is described as “the patient perception about, either the effects
of a given disease, or the application of a certain treatment on
different aspects of life, especially regarding its consequences on
the physical, emotional and social welfare” (Lata-Caneda et al.,
2009, p.379). The new questionnaire was taken twice with a
sample of 23 Spanish-language patients with aphasia as a result of
cerebral haemorrhage. The reported test-retest stability for this
questionnaire was 0.95.

Both homogeneity and stability are expressed as a coefficient with a value
between 0 and 1 (in practice, negative coefficients do not occur). How should
we interpret the reported coefficients? Generally, it is of course the case that
the higher the coefficient is, the higher (better) the reliability. But how large
should the reliability minimally be before we can call a test “reliable”? There

are no clear rules for this. However, when considerations have to be made
about people, then the test has to have a reliability of at least 0.90 according

to the Nederlands Instituut van Psychologen ‘Dutch Institute for
Psychologists’ (NIP). This is, for instance, the case for tests which are used to
determine whether or not a child is eligible for a so-called dyslexia declaration.
For research purposes, such a strict requirement for the reliability of a test is

not required. Often, 0.70 is used as the lower limit of the reliability coefficient.

12.3 Test theory

Classical test theory refers to the measurement of variable 𝑥 for the 𝑖-th
element of a sample consisting of random members of the population. Test
theory posits that each measurement 𝑥𝑖 is composed of two components,

namely a true score 𝑡𝑖 and an error score:

𝑥𝑖 = 𝑡𝑖 + 𝑒𝑖 (12.1)

Imagine that you “actually” weigh 𝑡 = 72.0 kg, and imagine also that your
measured weight is 𝑥 = 71.6 kg, then the error score is 𝑒 = −0.4 kg.

A first important assumption in classical test theory is that the deviations 𝑒𝑖
neutralise or cancel each other out (i.e. are zero when averaged out, and thus

do not deviate systematically from the true score 𝑡), and that larger deviations
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above or below occur less often than smaller deviations. This means that the
deviations are normally distributed (see §10.3), with 𝜇𝑒 = 0 as mean:

𝑒𝑖 ∼ 𝒩(0, 𝑠2
𝑒) (12.2)

A second important assumption in classical test theory is that there is no
relation between the true scores 𝑡𝑖 and the error scores 𝑒𝑖. Since the component

𝑒𝑖 is completely determined by chance, and thus does not have any relation
with 𝑥𝑖, the correlation between the true score and the error score is null:

𝑟(𝑡,𝑒) = 0 (12.3)

The total variance of 𝑥 is thus2 equal to the sum of the variance of the true
scores and the variance of the error scores:

𝑠2
𝑥 = 𝑠2

𝑡 + 𝑠2
𝑒 (12.4)

When the observed variance 𝑠2
𝑥 proportionately contains much error variance

(i.e. variance of deviations), then the observed scores have been determined for
the most part by chance deviations. That is of course undesirable. In a such

instance, we say that the observed scores are not reliable; there is much
“noise” in the observed scores.

When the error variance in contrast is relatively small, then the observed
scores provide a good reflection of what the true scores are, and then the

observed differences are indeed reliable, i.e. they are not much determined by
chance differences.

In that case, we can also define reliability (symbol 𝜌) as the proportion
between true score variance and total variance:

𝜌𝑥𝑥 = 𝑠2
𝑡

𝑠2𝑥
(12.5)

However, in practice, we cannot use this formula (12.5) to establish reliability,
since we do not know 𝑠2

𝑡 . We must thus firstly estimate what the true score
variance is — or what the error variance is, which, after all, is the complement

of the true score variance (see formula (12.4))3.

The second assumption (in formula (12.3)), that there is no relation between
true score and error score, is, in practice, not always justified. To illustrate, let

us look at the results of a test on
a scale from 1.0 to 10.0. Students with scores of 9 or 10 have a high true score

too (they master the material very well) and thus usually have a low error
2𝑠2

(𝑡+𝑒) = 𝑠2
𝑡 + 𝑠2

𝑒 + 2𝑟(𝑡,𝑒)𝑠𝑡𝑠𝑒, with here 𝑟(𝑡,𝑒) = 0 according to the formula(12.3).
3An exception to this is a situation in which 𝑠2

𝑥 = 0, and thus 𝑠2
𝑡 = 0, thus reliability 𝜌 = 0;

the dependent variable 𝑥 has then not been operationalised well.
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score. The students with scores of 1 or 2 also have a low true score (they
master the material very badly) and thus also usually have a low error score.
For the students with scores of 5 or 6, the situation is different: perhaps they
master the material fairly well but have just given a wrong answer, or perhaps
they master the material poorly but have by chance given a good answer. For

these students with an observed score in the middle of the scale, the error
scores are relatively larger than for the students with a score at the ends of the

scale. In other domains, e.g. for reaction times, we see other relations,
e.g. that the error score increases more or less equally with the score itself;

there is then a positive relationship between the true score and the error score
(𝜌(𝑡,𝑒) > 0). Nevertheless, the advantages of the classical test theory are so

large that we use this theory as a starting point.

From the formulas (12.4) and (12.5) above, it also follows that the standard
error of measurement is related to the standard deviation and to the reliability:

𝑠𝑒 = 𝑠𝑥√1 − 𝑟𝑥𝑥 (12.6)

This standard error measurement can be understood as the standard deviation
of the error scores 𝑒𝑖, assuming still that the error scores are normally

distributed (formula (12.2)).

Example 12.4: External inspectors doubt whether teachers mark
their students’ final papers well. If a student got a 6, should the
final paper have perhaps actually been judged as a fail?

Let us assume that the given assessment shows a standard deviation
of 𝑠𝑥 = 0.75, and let us equally assume that an analysis of reliability
had shown that 𝑟𝑥𝑥 = 0.9. The standard error measurement is then
𝑠𝑒 = 0.24 points (rounded up). The probability that the true score
𝑡𝑖 is smaller than or equal to 5.4 (the minimum for a fail), with an
observed score of 𝑥𝑖 = 6.0 and 𝑠𝑒 = 0.24, is only 𝑝 = 0.006 (for
explanation, see §13.5 below). The final paper’s assessment as a
pass is with high probability correct.

12.4 Interpretations

Before we look at the different ways of calculating reliability, it is a good idea
to pause on the different interpretations of reliability estimations.
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First, reliability can be interpreted as the proportion of true score variance (see
formula (12.5)), or as the proportion of variance which is “systematic”. This is
different from the proportion of variance resulting from the concept-as-defined,

the “valid” variance (see Chapter 5). The variance resulting from the
concept-as-defined is part of the proportion of true score variance. However,
many other factors may systematically influence respondents’ scores, such as

differences in test experience. If two students 𝑖 and 𝑗 possess a concept (let us
say: language proficiency) to the same degree, then one of the students can
still score more highly because he or she has done (and practiced) language

proficiency tests more often than the other student. Then, there is no
difference in the concept-as-defined (language proficiency 𝑇𝑖 = 𝑇𝑗),

but there is in another factor (experience), and thus a difference arises
between the students in their ‘true’ scores (𝑡𝑖 ≠ 𝑡𝑗) which we measure with a

valid and reliable language proficiency measurement. When measuring,
deviations and measurement errors appear (𝑒𝑖 and 𝑒𝑗), through which the

observed differences between students (𝑥𝑖 − 𝑥𝑗) can be larger or smaller than
their differences in ‘true’ score (𝑡𝑖 − 𝑡𝑗). This is the reason why a reliability

estimate always forms the upper limit of the validity.

A second interpretation of reliability (formula (12.5)) is that of the
theoretically expected correlation (see §11.2) between measurements, when
measurements are replicated many times. For convenience, we assume that

memory and fatigue effects have no effect at all on the second and later
measurements. If we were to measure the same people with the same

measurement three times, without memory or fatigue effects, then the scores
from the first and second measurement, and from the first and third

measurement, and from the second and third measurement would always show
the same correlation 𝜌. This correlation thus indicates the extent to which the
repeated measurements are consistent, i.e. represent the same unknown true

score.

In this interpretation, reliability thus expresses the expected association
between scores from the same test taken repeated times. We then interpret the
reliability coefficient 𝜌 as the correlation between two measurements with the

same instrument.

Thirdly, reliability can be interpreted as the loss of efficiency in the estimation
of the mean score 𝑋 (Ferguson and Takane, 1989, p.474). Imagine that we
want to establish the mean score of a group of 𝑛 = 50 participants, and for

this we use a measurement instrument with reliability 𝜌𝑥𝑥 = 0.8. In this case,
there is uncertainty in the estimation, which come from the chance deviations
𝑒𝑖 in the measurements. If the measurement instrument were perfectly reliable
(𝜌 = 1), we would only need 𝜌𝑥𝑥 × 𝑛 = 0.8 × 50 = 40 participants for the same
accuracy in the estimation of 𝑋 (Ferguson and Takane, 1989, p.474). As such,

we have, as it were, played away 10 participants to compensate for the
unreliability of the measurement instrument.

Above, we spoke about measurements with the help of measurement
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instruments, and below we will talk about ratings done by raters. In these
situations, the approach to the notion of ‘reliability’ is always the same.
Reliability plays a role in all situations where elements from a sample are

measured or assessed by multiple assessors or instruments. Non-final exams
and questionnaires can also be such measurement instruments: a non-final
exam or questionnaire can be thought of as a composite instrument with

which we try to measure an abstract property or condition of the participants.
Each question can then be considered as a “measurement instrument” or

“assessor” of the respondent’s property or condition. For this, all of the above
mentioned insights and interpretations concerning test theory, measurement

error and reliability are equally applicable.

12.5 Methods for estimating reliability

A measurement’s reliability can be determined in different ways. The most
important are:

• The test-retest method
We conduct all measurements twice, and then calculate the correlation
between the first and the second measurement. The fewer measurement
errors and deviations the measurements contain, the higher the correla-
tion and thus also the reliability is. This method is time consuming but
can also be applied to a small portion of the measurements. In speech re-
search, this method is indeed used to establish the reliability of phonetic
transcriptions: part of the speech recordings are transcribed by a second
assessor, and then both transcriptions are compared.

• The parallel forms method
We have a large collection of measurements which are readily comparable
and measure the same construct. We conduct all measurements repeat-
edly, the first time by combining the measurements of several measure-
ment instruments chosen at random (let’s say A and B and C) and the
second time by using other random instruments (let’s say D and E and F).
Since the measurement instruments are ‘parallel’ and the same measure-
ment is considered to be measured, the correlation between the first and
the second measurement is an indication of the measurement’s reliability.

• The split-half method
This method is similar to the parallel forms method. The 𝑘 questions
or instruments are divided into two halves, after which the score is de-
termined within each half. From the correlation 𝑟ℎℎ between the scores
from the two half tests, the reliability of the whole test can be deduced,
𝑟𝑥𝑥 = 2𝑟ℎℎ

1+𝑟ℎℎ
.
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12.6 Reliability between assessors

As an example, let us look at language proficiency measurements from students
in a foreign language. This construct ‘language proficiency’ is measured in this

example by means of two assessors who each, independently of the other,
award a grade between 1 and 100 to the student (higher is better). However,
when assessing, measurement errors also arise, through which the judgements
not only reflect the underlying true score but also a deviation if it, with all the
aforementioned assumptions. Let us firstly look at the judgements by the first
and second rater (see Table 12.1). For the time being, the final judgement of a

student is the mean of the judgements from the first and second rater.

Table 12.1: Judgements about language proficiency from 𝑛 = 10
students (rows) by 𝑘 = 3 raters (columns).

Student B1 B2 B3
1 67 64 70
2 72 75 74
3 83 89 73
4 68 72 61
5 75 72 77
6 73 73 78
7 73 76 72
8 65 73 72
9 64 68 71
10 70 82 69
𝑥𝑖 71.0 74.4 71.7
𝑠𝑖 5.6 7.0 4.7

The judgements of only the first and the second assessor show a correlation of
𝑟1,2 = .75. This means (according to the formula (12.5)) that 75% of the total
variance in the judgements of these two raters can be attributed to differences
between the students rated, and thus 25% of measurement errors (after all, we
have assumed that there are no systematic differences between raters). The
proportion of measurement errors appears to be quite high. However, we can

draw hope from one of our earlier observations, namely that the raters’
measurement errors are not correlated. The combination of these two raters —
the mean score per student over the two raters — thus provides more reliable

measurements than each of the two raters can do separately. After all, the
measurement errors of the two raters tend to cancel each other out (see

formula (12.2)). Reread the last two sentences carefully.
Reliability is often expressed as Cronbach’s Alpha (Cortina, 1993). This

number is a measure for the consistency or homogeneity of the measurements,
and thus also indicates the degree to which the two raters have rated the same
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construct. The simplest definition is based on 𝑟, the mean correlation between
measurements of 𝑘 different raters4.

𝛼 = 𝑘𝑟
1 + (𝑘 − 1)𝑟 (12.7)

Filling in 𝑘 = 2 raters and 𝑟 = 0.75 provides 𝛼 = 0.86 (SPSS and R use a
somewhat more complex formula for this, and report 𝛼 = 0.84). This

measurement for reliability is not only referred to as Cronbach’s Alpha but
also as the Spearman-Brown formula or the Kuder-Richardson formula 20

(KR=20)5.

The value of Cronbach’s Alpha found is a bit tricky to evaluate since it is also
dependent on the number of instruments or raters or questions in the test
(Cortina, 1993; Gliner et al., 2001). For academic research, a lower limit of

0.75 or 0.80 is often used. If the result of the test or measurement is of great
importance to the person concerned, as in the case of medical or psychological

patient diagnosis, or when recruiting and selecting personnel, then an even
higher reliability of 𝛼 = .9 is recommended (Gliner et al., 2001).

If we want to increase reliability to 𝛼 = 0.9 or higher, then we can achieve that
in two ways. The first way is to expand the number of raters. If we combine

more raters in the total score, then the measurement errors of these raters also
better cancel out each other, and then the total score is thus more reliable.
Using the formula (12.7), we can investigate how many raters are needed to

improve the reliability to 𝛼 = 0.90 or better. We fill in
𝛼 = 0.90 and again 𝑟 = 0.75, and then find an outcome of minimally 𝑘 = 3

raters. The increase in reliability levels off, the more raters there are already
participating: if 𝑘 = 2 then 𝛼 = .84, if 𝑘 = 3 then 𝛼 = .84 + .06 = .90, if 𝑘 = 6
then 𝛼 = .90 + .05 = .95, if 𝑘 = 9 then 𝛼 = .95 + .01 = .96, etc. After all, if
there are already 6 raters who are already readily cancelling out each other’s

measurement errors, then 3 extra assessors add little to the reliability.

The second way of increasing reliability is by reducing the measurement error.
We can try to do this, for example, by instructing the raters as well as possible
about how they should rate the students’ language proficiency. An assessment
protocol and/or instruction can make the deviations between and within raters
smaller. Smaller deviations mean smaller measurement errors, and that again

means higher correlations between the raters. For an 𝑟 = 0.8, we already
almost achieve the desired reliability, with only 𝑘 = 2 raters.

A third way of increasing reliability requires a closer analysis of the separate
raters. To explain this, we also now involve the third rater in our

considerations (see Table 12.1). However, the judgements of the third rater
4In our example, there are only 𝑘 = 2 raters, thus there is only one correlation, and

𝑟 = 𝑟1,2 = 0.75.
5The so-called ‘intra-class correlation coefficient’ (ICC) for 𝑘 is likewise identical to the

Cronbach’s Alpha.
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show low correlations with those of the first and second assessor: 𝑟1,3 = 0.41
and 𝑟2,3 = 0.09. As a consequence, the mean correlation between assessors is
now lower, 𝑟 = 0.42. As a result of taking this third rater, the reliability has
not risen but instead actually lowered to 𝛼 = 3×0.42

1+2×0.42 = 0.68. We can thus
perhaps better ignore the measurements of the third rater. Also if we

investigate the reliability of a non-final exam or test or questionnaire it can
seem that the reliability of a whole test increases if some “bad” questions are

removed. Apparently, these “bad” questions measured a construct which
differed from what the remaining questions measured.

12.7 Reliability and construct validity

When a measurement is reliable, then “something” has been measured reliably.
But this still does not show what has been measured! There is a relation

between reliability (how measurements are made) and construct validity (what
is measured, see Chapter 5), but these two terms are not identical. Sufficient
reliability is a requirement for validity, but is not a sufficient condition for it.

Put otherwise: a test which is not reliable can also not be valid (since this test
also measures noise),

but a test which is reliable does not have to be valid. Perhaps, the test used
does measure another construct other than what was intended very reliably.

An instrument is construct valid if the concept measured matches the intended
concept or construct. In Example 12.3, the questionnaire is valid if the score
from the questionnaire matches the quality of life (whatever that actually is)
of the aphasia patients. Only once it has been shown that an instrument is
reliable, is it meaningful to speak about a measurement’s construct validity.
Reliability is a necessary but not a sufficient condition for construct validity.
An unreliable instrument can thus not be valid but a reliable instrument does

not necessarily have to be valid.

To measure reading proficiency, we get the pupils to write an essay. We count
the number of letters e in each essay. This is a very reliable measurement:

different raters arrive at the same number of e’s (raters are homogenous) and
the same rater always also delivers the same outcome (raters are stable). The
great objection here is that the number of e’s in an essay does not or does not

necessarily match the concept of reading proficiency. A pupil who has
incorporated more e’s into his/her essay is not necessarily a better writer.

Whilst researchers know that reliability is a necessary but not sufficient
condition for validity, they do not always use these terms carefully. In many
studies, it is tacitly assumed that if the reliability is sufficient, the validity is
also then guaranteed. In Example 12.3 too, the difference is not made clear

and the researchers do not discuss the construct validity of their new
questionnaire explicitly.
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12.8 SPSS

For a reliability analysis of the 𝑘 = 3 judgements over language proficiency in
Table 12.1:

Analyze > Scale > Reliability Analysis...

Select the variables which are considered to measure the same construct; here
that is three raters. We look at these 𝑘 = 3 assessors as “items” who measure
the property “language proficiency” of 10 students. Drag these variables to the

Variable(s) panel.
As Scale label, fill in an indication of the construct, e.g. language

proficiency.
As a method, choose Alpha for Cronbach’s Alpha (see formula (12.7))

Choose Statistics…, tick: Descriptives for Item, Scale, Scale if item
deleted, Inter-Item Correlations, Summaries Means, Variances, and

confirm with Continue and again with OK.

The output includes Cronbach’s Alpha, the desired inter-item correlations
(particularly high between raters 1 and 2), and (in Table Item-Total Statistics)

the reliability if we remove a certain rater. This last output teaches us that
raters 1 and 2 are more important than rater 3. If we were to replace raters 1
or 2, then the reliability would collapse but if we were to remove rater 3 then
the reliability would even increase (from 0.68 to 0.84). Presumably, this rater

has rated a different concept to the others.

12.9 JASP

For a reliability analysis of 𝑘 = 3 language proficiency judgements in Table
12.1: in the top menu bar, choose

Reliability > Classical: Single-Test Reliability Analysis

Perhaps the button for Reliability is not yet visible in the top menu bar; if
so, you can add it yourself by clicking the huge blue + button at the

righthand side of the top menu bar, and then check the Reliability module.

Select those variables that presumably measure the same construct, in this
example the three raters’ judgements, and put those in the field “Variables”.
We regard the 𝑘 = 3 raters or judges as items (test questions) that measure

the construct of “speaking skill” of 10 students.
Open the menu bar Single-Test Reliability, and under “Scale Statistics”
check Cronbach's a (see equation (12.7)). Aso check the options for Average
interitem correlation, Mean and Standard deviation to inspect these
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properties of the joint scale of speaking skill. (This joint scale is constructed
by averaging the values of the three raters).

Under “Individual Item Statistics” check the options for Cronbach's a (if
item dropped) and Item-rest correlation, as well as Mean and Standard
deviation in order to obtain these values for the separate items (raters).

The output table titled Frequentist Scale Reliability Statistics reports
Cronbach’s Alpha. The output table titled Frequentist Individual Item

Reliability Statistics contains the column “If item dropped” which reports
the Cronbach’s Alpha reliability coefficient if we would drop or ignore a

particular item or rater. In this example, the output shows that raters 1 and 2
are more important and relevant than rater 3. If we would remove either rater
1 or 2 then the reliability would collapse, but if we would remove rater 3 then
the reliability would even improve (from 0.68 to 0.84). Presumably this rater 3

has measured some other construct than the other two raters.

The output does contain the average inter-item correlation (in the table
Frequentist Scale Reliability Statistics), but not the correlations among

all the individual items or raters. We need to obtain these correlations
explicitly (see §11.2), by going to the top menu bar and then choosing:

Regression > Classical: Correlation

In the field “Variables”, select the variables of which you want to know the
correlations (the three raters, in this example). Make sure that under “Sample
Correlation Coefficient”, option Pearson's r is checked. Under “Additional
Options”, check Report significance, Flag significant correlations
and Sample size. You may also check the option Display pairwise to

obtain simple table output. The output confirms that the inter-rater
correlation between raters 1 and 2 is rather high (and significant), and that the
inter-rater correlations involving rater 3 are rather low (and not significant).

12.10 R

For a reliability analysis of 𝑘 = 3 language proficiency judgements in Table
12.1:

raters <- read.table(file="data/beoordelaars.txt", header=TRUE)
if (require(psych)) { # for psych::alpha
alpha( raters[,2:4] ) # columns 2 to 4

}

## Number of categories should be increased in order to count frequencies.
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##
## Reliability analysis
## Call: alpha(x = raters[, 2:4])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.68 0.68 0.74 0.41 2.1 0.17 72 4.6 0.41
##
## lower alpha upper 95% confidence boundaries
## 0.35 0.68 1.01
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## B1 0.15 0.16 0.088 0.088 0.19 0.497 NA 0.088
## B2 0.58 0.58 0.410 0.410 1.39 0.264 NA 0.410
## B3 0.84 0.85 0.745 0.745 5.84 0.095 NA 0.745
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## B1 10 0.93 0.92 0.91 0.81 71 5.6
## B2 10 0.84 0.78 0.72 0.53 74 7.0
## B3 10 0.56 0.64 0.38 0.25 72 4.7

This output includes Cronbach’s Alpha (raw_alpha 0.68), and the reliability
if we would remove or drop a certain rater. If we were to remove rater 3, then
the reliability would even improve (from 0.68 to 0.84). Over all three raters,

average_r=0.41.

The output does contain the average inter-item correlation but not the
correlations among all the individual items or raters. We need to obtain these

correlations explicitly (see §11.2):

cor( raters[ ,c("B1","B2","B3") ] ) # explicit column names

## B1 B2 B3
## B1 1.0000000 0.74494845 0.40979738
## B2 0.7449484 1.00000000 0.08845909
## B3 0.4097974 0.08845909 1.00000000

The output confirms that the inter-rater correlation between raters 1 and 2 is
rather high, and that the inter-rater correlations involving rater 3 are rather

low.
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Chapter 13

Testing hypotheses

13.1 Introduction

From this chapter onwards, we will be concerned with the testing of research
hypotheses and, in particular, with null hypothesis significance testing

(NHST), as explained in Chapter 2.

Over the course of the years, a large number of techniques have been
developed for tests like this. The tests with which we will concern ourselves
are the most used and can be divided into parametric and non-parametric
tests. Parametric tests assume that the dependent variable is (at least)

measured on an interval level of measurement (see Chapter 4), and that the
measured outcomes or scores are normally distributed (see §10.3 and §10.5).
For non-parametric tests, dependent on the technique, fewer assumptions are
made over the level of measurement or over the distribution of the observed
scores; these are so-called distribution free tests. The consequence is that the
testing is a little less ‘sensitive’ under otherwise equal circumstances, i.e. that
the null hypothesis can be rejected less often in otherwise equal circumstances.

These tests therefore have less power (see Chapter 14). Researchers thus
usually prefer parametric tests.

We already discussed the general principle of testing briefly in §2.4 and §2.5.
We will illustrate this again here with an example. We investigate the

statement H1:
‘Linguistics students master traditional grammar better than the average
language student’. As a measurement instrument, we use the so-called

“grammar test”1 which is compulsory for most students in language programs
at Utrecht University. On the basis of previous cohorts (year groups), we
expect a mean score of 73 on this test; this is the mean number of good

1We would like to thank Els Rose for making these data available.
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answers from 100 questions. We thus operationalise this first as 𝜇 > 73, and
from this deduce the accompanying null hypothesis which is actually tested:
𝜇 = 73. (In §13.4 below, we will go into more detail about whether or not to

specify the direction of the difference in H1).

For the first year Linguistics students (𝑛 = 34) from a certain cohort, we find
an average score of 84.4. That is indeed far above the reference value of 73 —

but that might also be a coincidence. Perhaps, H0 is true, and, by chance,
there happen to be many grammar experts in our sample (from the population
of possible first year students in Linguistics). We can calculate the probability
𝑃 of this situation, i.e. the probability 𝑃 of finding a mean score of 𝑥 = 84.4,

given a random sample of 𝑛 = 34 people and given that H0 is in fact true
(i.e. 𝜇 = 73): this probability 𝑃 = .000000001913. This probability 𝑃

represents the probability of finding this data, whilst H0 is true:
𝑃(𝑥 = 84.4|H0, 𝑛 = 34). In this example, the probability 𝑃 is very small.

For the argumentation, it is essential that the data are valid and reliable —
this is precisely the reason why we discussed validity (Chapter 5) and

reliability (Chapter 12). If we have done everything properly, we can, after all,
trust the data obtained. We are then not reasonably able to attribute the low

probability of the data according to H0 to errors in operationalisation, or
measurement errors, or other deviations in the data. The logical conclusion
then must be that the improbable outcome shows that the premise (H0) is
probably not true: we reject H0; H0 has thus been falsified. Thereby, our

knowledge has increased because we can now assume on legitimate grounds
that H0 is untrue (and thus that H1 is true).

If we reject H0 on the basis of the reasoning above which in turn is based on
probability, then we do have to take into account the small probability 𝑃 that
rejecting H0 is an unjustified decision (Type I error; see §2.5). After all, there
is the probability 𝑃 that we find these data when H0 is in fact true (in this
example: when the linguists on average do not score better than 𝜇 = 73).

Figure 13.1 shows the probability of the sample mean (𝑛 = 34) if H0 is true.
We see that the value 73 can have the highest probability, but also 72 or 74
are probable mean scores according to H0. However, a mean of 84.4 is very
improbable, the probability 𝑃 of this mean score (height of the curve) is

almost null according to H0.

The boundary value for 𝑃 , at which we reject H0 is called the significance
level, often referred to with the symbol 𝛼 (see §2.5). Researchers often use

𝛼 = .05, but sometimes other boundary values are also used. In Figure 13.1,
you see that the probability of a mean score of 77.7 or more has a probability
of 𝑃 = .05 or smaller, according to H0. This can be seen from the area under
the curve. The coloured part has precisely an area of 0.05 of the total area

under the curve.

The decision about whether or not to reject H0 is based on the probability 𝑃
of the outcomes, given H0. The decision might also be incorrect. The finding
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Figure 13.1: Probability distribution of the mean score from a sample (n=34)
with a population mean 73 and population s.d. 14. The coloured area covers
5% of the total area under the curve; outcomes along the X-axis of this area
thus have a probability of at most 5% of occurring if H0 is true.

that 𝑃 < 𝛼 is thus not an irrefutable proof that H0 is untrue (and has to be
rejected); it could also be that H0 is in fact true but that the effect found was

a fluke (Type I error). Conversely, the finding that 𝑃 > 𝛼 is not conclusive
evidence that H0 is true. There can be all kinds of other, plausible reasons

why an effect which exists (H0 is untrue) can still not be observed. If I do not
hear any birds singing, that does not necessarily mean that there are genuinely

no birds singing. More generally: “absence of evidence is not evidence of
absence” (Sagan, 1996, p.121; Alderson, 2004). It is therefore recommended to
always report the size of the effect found; this is explained in more detail in

§13.8 below.

Example 13.1: Assume H0: ‘birds do not sing’. Write down at least
4 reasons why I do not hear birds singing, even if there are in fact
birds singing (H0 is untrue). If I do not reject H0, what type of error
will I be making?
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13.2 One-sample 𝑡-test

The Student’s 𝑡-test is used to investigate a difference between the mean score
of a sample, and an a priori assumed value of the mean. We use this test when

the standard deviation 𝜎 in the population is unknown, and thus has to be
estimated from the sample. The line of thought is as follows.

We determine the test statistic 𝑡 on the basis of the mean and the standard
deviation in the sample, and of the assumed mean (according to H0). If H0 is

true, then the value 𝑡 = 0 is the most
probable. The larger the difference between the observed sample mean and the

assumed sample mean, the more 𝑡 increases. If the test statistic 𝑡 is larger
than a certain boundary value 𝑡∗, and thus 𝑡 > 𝑡∗, then the probability of this

test statistic, if H0 is true, is very small: 𝑃(𝑡|H0) < 𝛼. The probability of
finding this result if H0 is true is then so small that we decide to reject H0 (see

§2.5). We speak then of a significant difference: the deviation between the
observed and the expected mean is probably not a coincidence.

In the earlier example of the grammar test with Linguistics students (§13.1),
we already became acquainted with this form of 𝑡-test. If

𝑥 = 84.4, 𝑠 = 8.4, 𝑛 = 34, then the test statistic is 𝑡 = 7.9 according to formula
(13.1) below.

The probability distribution of test statistic 𝑡 under H0 is known; you can find
the boundary value 𝑡∗ in Appendix C. Put otherwise, if the test statistic 𝑡 is

larger than the boundary value 𝑡∗ which is stated in the table then
𝑃 (𝑡|H0) < 𝛼. To be able to use the table in Appendix C, we still have to

introduce a new term, namely the number of degrees of freedom. That term is
explained in §13.2.1 below.

With the number of degrees of freedom, you can look in Appendix C to see
which boundary value 𝑡∗ is needed to achieve a certain p-value for the
established test statistic 𝑡 = 7.9. Let us see what the p-value is for the

established test statistic 𝑡 = 7.9. We firstly look for the degrees of freedom
(‘d.f.’) in the left column. If the number of degrees of freedom does not occur
in the table, then, to err on the side of caution, we should round down, here to

30 d.f. This determines the row which is applicable for us. In the third
column, we find 𝑡∗ = 1.697. Our established test statistic 𝑡 = 7.9 is larger than

this 𝑡∗ = 1.697, thus the p-value is smaller than the 𝑝 = .05 from the third
column. If we go further right on the same line, we see that the stated 𝑡∗

increases further.
Our established test statistic 𝑡 is even larger than 𝑡∗ = 3.385 in the last

column. The p-value is thus even smaller than 𝑝 = .001 from the title of that
last column. (The statistical analysis program usually also calculates the

p-value.) We report the result as follows:

The mean score of Linguistics students (cohort 2013) is 84.4 (𝑠 =
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8.4); this is significantly better than the assumed population mean
of 73 [𝑡(33) = 7.9, 𝑝 < .001].

13.2.1 Degrees of freedom

To explain the concept of degrees of freedom, we begin with an analogy.
Imagine that there are three possible routes for getting from A to B: a coast

path, a mountain path, and a motorway. It is true that a walker who wants to
travel from A to B has three options but there are only two degrees of freedom

for the walker: he or she only has to make two choices to choose from the
three options. Firstly, the motorway drops out (first choice), and then the

mountain path (second choice), and then the chosen route along the coast is
the only one left over. There are thus two choices ‘free’ in order to choose one
of the three possible routes in the end. If we know the two choices, then we

can deduce from them which route must have been chosen.
Now, we will look at a student who on average has achieved a 𝑥 = 7.0 over the

𝑁 = 4 courses from the first introductory track of his or her degree
programme. The mean of 7.0 can be arrived at in many ways, e.g. (8, 7, 7, 6)
or (5, 6, 8, 9). But if we know the result of three of the courses, and we also
know that the mean is a 7.0 then we also know what the value of the fourth
observation must be. This last observation is thus no longer ‘free’ but is now

fixed by the first three observations, in combination with the mean over 𝑁 = 4
observations. We then say that you have 𝑁 − 1 degrees of freedom to

determine this characteristic of the sample, like the sample mean here, or like
the test statistic 𝑡. The degrees of freedom is often abbreviated to ‘d.f.’

(symbol 𝜈, Greek letter “nu”).
In practice, the number of degrees of freedom is not difficult to determine. We
namely indicate for every test how the degrees of freedom are established —
and the number of d.f. is usually also calculated by the statistical analysis

program which we use.
For the 𝑡-test of a single sample, the number of degrees of freedom is the

number of observations 𝑁 − 1. In the above discussed example, we thus have
𝑁 − 1 = 34 − 1 = 33 degrees of freedom.

13.2.2 formulas

𝑡 = 𝑦 − 𝜇
𝑠 ×

√
𝑁 (13.1)

13.2.3 assumptions

The 𝑡-test for a single sample requires three assumptions which must be
satisfied in order to be able to use the test.
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• The data must have been measured on an interval level of measurement
(see Chapter 4).

• All the observations have to be independent of each other.

• The scores must be normally distributed (see §10.3).

13.2.4 SPSS

The above discussed data can be found in the file
data/grammaticatoets2013.csv.

To test our earlier hypothesis, in SPSS, we firstly have to select the
observations of the Linguistics students.

Data > Select cases...

Choose If condition is satisfied and click on the button If... to
indicate the conditions for selection (inclusion).

Select the variable progr (drag to the panel on the right-hand side), pick
button =, and then type TW (the Dutch label for “Linguistics”), so that the

whole condition is progr = TW.

Afterwards, we can test our earlier hypothesis as follows:

Analyze > Compare Means > One-Sample T Test...

Select variable (drag to the Test variable(s) panel).
Indicate which value of 𝜇 has to be tested: set it as Test Value 73. Confirm OK.

The output contains both descriptive statistics and the results of a two-sample
𝑡-test.

When transferring this output, take good note of the warning in §13.3 below:
SPSS reports as if p=.000 but that is untrue.

13.2.5 JASP

The above discussed data can be found in the file
data/grammaticatoets2013.csv.

To test our earlier hypothesis, in JASP, we firstly have to select or filter the
observations of the Linguistics students. To do so, go to the data sheet, and
click on the funnel or filter symbol in the top left cell. A working panel will

appear in which you can specify the selection.
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Select the variable progr from the lefthand menu, so that it moves to the
working panel. Then click on the symbol = from the top menu of operators,

and type TW (the Dutch abbreviation for the Linguistics program, use capitals,
no quotes). The complete condition on the working panel should now be

progr = TW.
Next click on the button Apply pass-through filter below the working

panel in order to apply this filter. In the data sheet, you should see
immediately that the rows of excluded data (students of other programs than
Linguistics) are greyed out. Those rows (observations) will no longer be used,

until you cancel the selection (which is explained below).

To conduct the one sample 𝑡 test, choose from the top menu bar:

T-Tests > Classical: One Sample T-Test

In the field “Variables”, select the variable score to be tested. Under “Tests”,
check Student (for Student’s 𝑡 test statistic), and as the Test value enter the

value of 𝜇 to use in the test; for this example, enter 73. Under “Alt.
Hypothesis”, select > Test value for a one-sided 𝑡 test; here we test H1:

𝜇 > 73 (see §13.4).
Under “Additional Statistics”, you may check Descriptives and Descriptive

Plots to learn more about the dependent variable. Also check the option
Effect size (see §13.8 below).

Under the heading “Assumption checks”, finally, check the option Normality
(see §10.4).

The output reports the one-sided 𝑡 test, including its effect size. The table
titled Assumption Checks reports the Shapiro-Wilk test of normality. If

checked in the input, descriptive statistics and summary plots are also
reported. This visualises the test value (here: 73) relative to the scores of the

students of Linguistics.

Note that we have activated a filter to select only the students of Linguistics,
and this filter remains in effect until it is deactivated. You can de-activate the
filter by navigating to the data sheet, go to the top left corner, go to the filter
working panel, and double-click on the trash can or waste bin symbol in the

lower right corner. A confirmation text “Filter cleared” should appear, and all
observations (rows) in the data sheet should be un-greyed and active.

13.2.6 R

Our hypothesis discussed above can be tested with the following commands:

gramm2013 <- read.csv( file="data/grammaticatoets2013.csv",header=F)
dimnames(gramm2013)[[2]] <- c("score","progr")
# program levels have Dutch labels: TW=Linguistics
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with( gramm2013,
t.test( score[progr=="TW"], mu=73, alt="greater" ) )

##
## One Sample t-test
##
## data: score[progr == "TW"]
## t = 7.9288, df = 33, p-value = 1.913e-09
## alternative hypothesis: true mean is greater than 73
## 95 percent confidence interval:
## 81.97599 Inf
## sample estimates:
## mean of x
## 84.41176

The notation 1.913e-09 must be read as the number (1.913 × 10−9).

13.3 𝑝-value is always larger than zero

The p-value 𝑝 can be very small but it is always larger than zero! In the
grammar test example above, we found 𝑃 = .000000001913, a very small

probability but one that is larger than zero. This can also be seen from the
tails of the corresponding probability distribution which approach zero

asymptotically (see Fig.13.1) but never become completely equal to zero.
There is always a minimally small probability of finding an extreme value (or
an even more extreme value) from you test statistic in a sample — after all, we
are investigating the sample precisely because the outcome of the test statistic

cannot be established a priori.

In SPSS, however, the p-value is rounded off, and can then appear as ‘Sig.
.000’ or 𝑝 = .000. This is incorrect. The p-value or significance is not equal
to zero, but has been rounded off to zero, and that is not the same. Always

report the p-value or significance with the correct accuracy, in this example as
𝑝 < .001 or even 𝑝 < .0005 (taking into account the rounding off by SPSS to

three decimal places).

13.4 One-sided and two-sided tests

The procedure which we discussed above is valid for one-sided tests. This is to
say that the alternative hypothesis does not only put forward that the means
will differ but also in which direction that will be: H1: 𝜇 > 73, the Linguistics
students score better than the population mean. If we were to find a difference
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in the opposite direction, say 𝑥 = 68, then we would not even conceive of
statistical testing: the H0 simply still stands. It is only when we find a
difference in the hypothesised direction that it is meaningful to inspect

whether this difference is significant. When you look now at the figure in
Appendix C, then this is also the case. The 𝑝-value corresponds with the area

of the coloured region.

If the alternative hypothesis H1 does not specify the direction of the
difference, then a complication arises. Differences in any of the two possible
directions are relevant. We speak then of two-sided tests or two-tailed tests.
To calculate the two-sided p-value, we multiply the 𝑝-value from Appendix C
by 2 (because we are now looking at two coloured regions, on the lower and

upper sides of the probability distribution).

In the grammar test example, let us now use a two-sided test. We then
operationalise the alternative hypothesis as H1: 𝜇 ≠ 73. Again, there is

𝑥 = 73, 𝑡 = 7.9 with 33 d.f. (rounded off to 30 d.f.). With the one-sample
p-value 𝑝 = .025 (fourth column), we find the critical value 𝑡∗ = 2.042. The

two-sided p-value
for this critical value is 2 × .025 = .05. The test statistic we found 𝑡 = 7.9 is

larger than this 𝑡∗ = 2.042, thus the two-sided p-value is smaller than
𝑝 = 2 × .025 = .05. The test statistic we found is larger even than 𝑡∗ = 3.385 in
the last column, thus the two-sided p-value is even smaller than 2 × .001. We

can report our two-sided testing as follows:

The mean score of Linguistics students (class of 2013) is 84.4 (𝑠 =
8.4); the differs significantly from the hypothesised population mean
of 73 (𝑡(33) = 7.9, 𝑝 < .002).

In the majority of studies two-sided tests are used; if the direction of the test
is not stated then you may assume that two-sided or two-tailed tests have

been used.

13.5 Confidence interval of the mean

This section looks more deeply into a subject that was already discussed in
§10.7, and illustrates the confidence interval of the mean with the grammar

test scores.

We can consider the sample’s mean, 𝑥, as a good estimation of an unknown
mean in the population, 𝜇. For this, we can also use the value found for 𝑡∗ to
indicate how reliable the estimation is: the confidence interval. With this, we
express with what (un)certainty we know that the sample mean, 𝑥, matches
the population mean (Cumming, 2012). We are also familiar with such error
margins from election results, where they indicate with what certainty the
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result of the sample (of respondents) matches the actual election result for the
whole population (of voters). An error margin of 2% means that it is 95%
certain that 𝑥, the percentage voting for a certain party, will lie between

(𝑥 − 2)% and (𝑥 + 2)%.

In our example with 30 d.f., we find 𝑡∗ = 2.042 for 95% reliability. Via formula
(13.2), we arrive at the 95% confidence interval (81.5, 87.3). We know with

95% certainty that the unknown average score on the grammar test, from the
population of all possible Linguistics students is larger than 81.5 and smaller

than 87.3. We thus also know, with 95% certainty, that the unknown
population mean 𝜇 deviates from the hypothesised value 73 (Cumming, 2012).

We report this as follows:

The mean score of Linguistics students (class of 2013) is 84.4, with
95% confidence interval (81.5, 87.3), 33 d.f.

In Figure 13.2, you can see the results of a computer simulation to illustrate
this. This figure is made in the same way as Figure 10.7 in Chapter 10 and
illustrates the same point. We have drawn 100× samples from Linguistics

students, with 𝜇 = 84.4 and 𝜎 = 8.4 (see §9.5.2) and 𝑁 = 34. For each sample,
we have drawn the 95% confidence interval. For 95 of the 100 samples, the
population mean 𝜇 = 84.4 is indeed within the interval, but for 5 of the 100
samples the confidence interval does not contain the population mean (these

are marked along the right hand side).

13.5.1 formulas

The two-sample confidence interval for 𝐵% reliability for
a population mean 𝑦 is

𝑦 ± 𝑡∗
𝑁−1 × 𝑠√

𝑁
(13.2)

13.5.2 SPSS

Analyze > Descriptive Statistics > Explore...

Select dependent variables (drag to Dependent List panel).
Click on button Statistics and tick Descriptives with Confidence Interval

95%.
Confirm with Continue and with OK.

The output contains several descriptive statistic measures, now also including
the 95% confidence interval of the mean.
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75 80 85 90
Score grammar test

73

Figure 13.2: 95% confidence interval and sample means, over 100 simulated
samples (n=34) from a population with population mean 84.4, population-s.d.
8.4.

13.5.3 JASP

In JASP you can request the confidence interval of the mean by using a one
sample 𝑡 test. So we conduct this test again and find the confidence interval of

the mean in the output.

For the example discussed above, make sure that the proper selection is used
so that only observations about students of Linguistics will be included in the

analysis (see §13.2.5 for how to filter observations).

Next, from the top menu bar, choose:

T-Tests > Classical: One Sample T-Test

In the field “Variables”, select the variable score to be tested. Under “Tests”,
check Student (for Student’s 𝑡 test statistic), and as the Test value now

enter 0 (zero). Under “Additional Statistics”, check Location parameter and
Confidence interval too. Here you can specify the confidence limits; the

default value of 95% is usually OK.

The output reports the mean of score, because observed scores are now
compared to the test value which is set to 0, so that the Mean Difference

of score-0 is now equal to the mean value of score. The same table also



208 CHAPTER 13. TESTING HYPOTHESES

reports the 95% CI for Mean Difference, which is equivalent here with the
confidence interval of the mean of score.

13.5.4 R

R states the confidence interval of the mean (with self-specifiable confidence
level) for a 𝑡-test. We thus again conduct a 𝑡-test and find the confidence

interval of the mean in the output.

with( gramm2013, t.test( score[progr=="TW"] ) )

##
## One Sample t-test
##
## data: score[progr == "TW"]
## t = 58.649, df = 33, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 81.48354 87.33999
## sample estimates:
## mean of x
## 84.41176

13.6 Independent samples 𝑡-tests

The Student’s 𝑡-test is used to allow the investigation of a difference between
the mean scores of two independent samples, e.g of comparable boys and girls.
On the basis of the mean and the standard deviations of the two samples, we
determine the test statistic 𝑡. If H0 is true, then the value 𝑡 = 0 is the most

probable. The larger the difference between the two means, the larger 𝑡 is too.
We again reject H0 if 𝑡 > 𝑡∗ for the chosen significance level 𝛼.

As a first example, we will take a study of the productive vocabulary size of
18-month old Swedish girls and boys (Andersson et al., 2011). We investigate
the hypothesis that the vocabulary of girls differs from that of boys, i.e. H1:
𝜇𝑔𝑖𝑟𝑙𝑠 ≠ 𝜇𝑏𝑜𝑦𝑠. We cannot a priori assume that a potential difference can only
go in one direction; we thus use a two-sided test, as is already evident from

H1. The corresponding null hypothesis which we test is H0: 𝜇𝑔𝑖𝑟𝑙𝑠 = 𝜇𝑏𝑜𝑦𝑠. In
this study, the vocabulary is estimated on the basis of questionnaires from the
parents of the children in the sample. Participants were (parents of) 𝑛1 = 123
girls and 𝑛2 = 129 boys, who were all 18 months old. Based on the results, it
seems that the girls have a mean vocabulary of 𝑥1 = 95 words (𝑠1 = 82), and
for the boys it is 𝑥2 = 85 words (𝑠2 = 98). With these data, we determine the
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test statistic 𝑡 according to the formula (13.4), resulting in 𝑡 = 0.88 with 122
d.f. We look for the accompanying critical value 𝑡∗ again in Appendix C. In
the row for 100 d.f. (after rounding down), we find 𝑡∗ = 1.984 in the fourth

column. For two-sample testing we have to double the p-value which belongs
to this column (see §13.4), resulting in 𝑝 = .05. The test statistic 𝑡 < 𝑡∗, thus

𝑝 > .05. We decide not to reject H0, and report that as follows:

The mean productive vocabulary of Swedish 18-month old Swedish
children barely differs between girls and boys (𝑡(122) = 0.88, 𝑝 > .4).
Girls produce on average 95 different words (𝑠 = 82), and boys on
average 85 different words (𝑠 = 98).

As a second example, we take a study of the speech tempo of two groups of
speakers, namely originating from the West (first group) and from the North
(second group) of the Netherlands. The speech tempo is expressed here as the

mean duration of a spoken syllable, in seconds, over an interview of ca. 15
minutes (see Example 15.1). We investigate H0: 𝜇𝑊 = 𝜇𝑁 with two-sample

testing. From the results, it appears that those from the West (𝑛 = 20) have a
mean syllable duration of 𝑥𝑊 = 0.235 s (𝑠 = 0.028), and that for those from

the North (also 𝑛 = 20) that is 𝑥𝑁 = 0.269 s (𝑠 = 0.029). With these data, we
again determine the test statistic 𝑡 according to the formula (13.4), resulting

in 𝑡 = −3.76 with 38 d.f. We look for the accompanying critical value again in
Appendix C. The correct d.f. are not stated in the table so we round them

down (i.e. in the conservative direction) to 30 d.f. In the row, we find
𝑡∗ = 2.042 in the fourth column. For two-sample testing, we have to double the
p-value corresponding to these columns (see §13.4), resulting in 𝑝 = .05. The
test statistic is 𝑡 < 𝑡∗, thus 𝑝 < .05. We thus decide to indeed reject H0, and

report that as follows:

The mean duration of a syllable spoken by a speaker from the West
of the Netherlands is 0.235 seconds (𝑠 = 0.028). This is significantly
shorter than from speakers from the North of the Netherlands (𝑥 =
0.269 s, 𝑠 = 0.029) (𝑡(38) = −3.76, 𝑝 < .05). In the investigated
recordings from 1999, the speakers from the West thus speak more
quickly than those from the North of the Netherlands.

13.6.1 assumptions

The Student’s 𝑡-test for two independent samples requires four assumptions
which must be satisfied in order to use the test.

• The data have to be measured on an interval level of measurement (see
§4.4).
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• All the observations must be independent of each other.

• The scores must be normally distributed within each group (see §10.4).

• The scores must have approximately equal variances in both groups. The
more the two samples differ in size, the more serious the violation of this
latter assumption is. It is thus prudent to work with samples that are
of (approximately) the same size, and preferably not too small! If the
samples are equally large, then the violation of this assumption of equal
variances is not so serious (see §13.6.2 directly below).

13.6.2 formulas

13.6.2.1 test statistic

To calculate the test statistic 𝑡, various formulas are used.

If the samples have approximately equal variances, then we firstly compute
the “pooled standard deviation” 𝑠𝑝 as an intermediate step. For this, the two

standard deviations from the two samples are weighted according to their
sample sizes.

𝑠𝑝 = √(𝑛1 − 1)𝑠2
1 + (𝑛2 − 1)𝑠2

2
𝑛1 + 𝑛2 − 2 (13.3)

Then

𝑡 = 𝑥1 − 𝑥2

𝑠𝑝√ 1
𝑛1

+ 1
𝑛2

(13.4)

If the samples do have unequal variances, and the fourth assumed sample
above is thus violated, then Welch’s version of the 𝑡 test is used:

𝑠WS = √ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

(13.5)

Then

𝑡 = 𝑥1 − 𝑥2
𝑠WS

(13.6)

13.6.2.2 degrees of freedom

The 𝑡 test is usually conducted by a computer program, which typically uses
the following approximation of degrees of freedom (symbol 𝜈, Greek “nu”, see
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§13.2.1). Firstly, 𝑔1 = 𝑠2
1/𝑛1 and 𝑔2 = 𝑠2

2/𝑛2 are calculated. The number of
degrees of freedom of 𝑡 is then

𝜈WS = (𝑔1 + 𝑔2)2

𝑔2
1/(𝑛1 − 1) + 𝑔2

2/(𝑛2 − 1) (13.7)

According to this approximation, the number of degrees of freedom has as its
liberal upper limit (𝑛1 + 𝑛2 − 2), and as its conservative lower limit the

smallest of (𝑛1 − 1) or (𝑛2 − 1). You can thus always use this conservative
lower limit. If the two groups have around the same variance (i.e. 𝑠1 ≈ 𝑠2),

then you can also use the liberal upper limit.

For the second example above, the approximation of formula (13.7) gives an
estimation of 37.99 ≈ 38 d.f. The conservative lower limit is

𝑛1 − 1 = 𝑛2 − 1 = 19. The liberal upper limit is 𝑛1 + 𝑛2 − 2 = 38.

When using the table with critical values 𝑡∗, in Appendix C, it is usually
advisable to use the table row with the rounded down degrees of freedom,
i.e. first-following smaller d.f.. Hence, for this example, you would use 𝑡∗

critical values in the row with 30 d.f. (see also §13.2 above).

13.6.3 SPSS

Here, the second example above is worked out.

Analyze > Compare Means > Independent-Samples T Test

Drag the dependent variable syldur to the Test Variable(s) panel. Drag the
independent variable region to the Grouping Variable panel. Define the two

groups: value W for region group 1 and
value N for region group 2. Confirm with Continue and OK.

As you could see above the calculation of the 𝑡-test is dependent on the answer
to the question whether the standard deviations of the two groups are around
equal. SPSS solves this rather clumsily: you get to see all the relevant outputs,

and have to make a choice from them yourself.

13.6.3.1 Test for equality of variances

With Levene’s test, you can investigate H0: 𝑠2
1 = 𝑠2

2, i.e. whether the variances
(and with them the standard deviations) of the two groups are equal. If you

find a small value for the test statistic 𝐹 , and a 𝑝 > .05, then you do not have
to reject this H0. You can then assume that the variances are equal. If you
find a large value for 𝐹 , with 𝑝 < .05, then you should indeed reject this H0,

and you cannot assume that the variances of these two groups are equal.
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13.6.3.2 Test for equality of means

Depending on this outcome from Levene’s test, you have to use the first or the
second row of the output of the Independent Samples Test (a test which
investigates whether the means from the two groups are equal). In this

example, the variances are around equal, as the Levene’s test also indicates.
We thus use the first line of the output, and report 𝑡(38) = −3.765, 𝑝 = .001.

13.6.4 JASP

Here, the second example above is worked out: the tempo (speech rate) of
speakers from the West and North of the Netherlands is to be compared.

13.6.4.1 preparation

To this end, only observations from the Northern and Western speakers are to
be used. This may be achieved by navigating to the data sheet, and click on
the column header of the variable region. This will open a working panel, in

which you can select and unselect Values (i.e. regions) of the nominal variable
region. The column “Filter” normally has all values checked, which means that

all observations are included. Uncheck the values to be excluded, i.e. South
and M id, so that the check marks are crossed out, and the corresponding

observations in the data sheet are greyed out. Only leave check marks at the
North and West values.

Note: do not forget to remove the filter and include all regions for later
analyses.

13.6.4.2 t test

After filtering the observations, choose from the top menu bar:

T-Tests > Classical: Independent Samples T-Test

In the field “Variables”, select the variable syldur to be tested. In the field
“Grouping Variable”, select the independent variable region. (If the

independent variable has more than two groups, JASP will report an error. To
avoid this problem, we have filtered the independent variable, so that only two

groups remain.)

Under “Tests”, check Student (for Student’s 𝑡 test statistic). Under “Alt.
Hypothesis”, select the first option (groups are not the same) for a two-sided 𝑡

test. Under “Additional Statistics”, you may check Descriptives and
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Descriptive Plots to learn more about the dependent variable. Also check
the option Effect size (see §13.8 below).

Under the heading “Assumption checks”, check the options Normality (see
§13.6.1, third assumption, see also

§10.4) and Equality of variances too (see §13.6.1, fourth assumption).

The output reports the two-sided 𝑡 test for two independent samples, including
its effect size.

The table titled Assumption Checks reports the Shapiro-Wilk test of
normality in both groups.

The table titled Test of Equality of Variances reports Levene’s test, which
tests whether the two variances are equal (H0: 𝑠2

1 = 𝑠2
2). If this test reports a

low value of 𝐹 and a high value of 𝑝 then H0 is not rejected, and the
assumption of equal variances does not need to be rejected. You may assume
that the two variances are indeed approximately equal. Use and report the

Student version of the 𝑡 test (as chosen under the “Tests” menu bar). If
Levene’s test reports a high value of 𝐹 and a low value of 𝑝, however, then you
should reject H0, and you may not assume that the two variances are equal.

Under the “Tests” menu bar, you should then select the Welch option, and you
should use and report the Welch version of the 𝑡 test.

In this example, the tests for normality and for equal variances do not show
significant results. This means that the third and fourth assumptions

mentioned above are appropriate; hence we use and report the Student 𝑡 test:
𝑡(38) = 3.76, 𝑝 < .001, 𝑑 = 1.2.

If checked in the input, descriptive statistics and summary plots are also
reported. This provides insights into how the scores from the two groups differ.

13.6.5 R

require(hqmisc)
data(talkers)
with(talkers, t.test( syldur[region=="W"], syldur[region=="N"],

paired=F, var.equal=T ) )

##
## Two Sample t-test
##
## data: syldur[region == "W"] and syldur[region == "N"]
## t = -3.7649, df = 38, p-value = 0.0005634
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0519895 -0.0156305
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## sample estimates:
## mean of x mean of y
## 0.23490 0.26871

13.7 𝑡-test for paired observations

The Student’s 𝑡-test is also used to investigate a difference between the means
of two dependent or paired observations. This is the case if we only draw one
sample (see Chapter 7), and then collect two observations from the members
of this sample, namely one observation under each of the conditions. The two
observations are then paired, i.e. related to each other, and these observations

are thus not independent (since they come from the same member of the
sample). With this, one of the assumptions of the 𝑡-test is violated.

As an example, we take an imaginary investigation of the use of the Dutch
second person pronouns U (formal “you”, like French “vous”) and je (informal

“you”, like French “tu”) as forms of address on a website. The researcher
makes two versions of a website, one with U and the other with je. Each

respondent has to judge both versions on a scale from 1 to 10. (For validity
reasons, the order of the two versions is varied between respondents; the order
in which the pages are judged can thus have no influence on the total score per

condition.) In Table 13.1, the judgements of 𝑁 = 10 respondents are
summarised.

Table 13.1: Fictional judgements of a webpage with U or je as the
forms of addressed, by 𝑁 = 10 respondents.

ID U Condition je Condition 𝐷
1 8 9 -1
2 5 6 -1
3 6 9 -3
4 6 8 -2
5 5 8 -3
6 4 6 -2
7 4 8 -4
8 7 10 -3
9 7 9 -2
10 6 7 -1

𝐷=-2.2

The pair of observations for the 𝑖-th member of the sample has a difference
score which we can write as:

𝐷𝑖 = 𝑥1𝑖 − 𝑥2𝑖 where 𝑥1𝑖 is the dependent variable score of the 𝑖-th respondent
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for condition 1. This difference score is also stated in Table 13.1.

This difference score 𝐷 is then actually analysed with the earlier discussed
𝑡-test for a single sample (see §13.2), where H0: 𝜇𝐷 = 0, i.e. according to H0,

there is no difference between conditions. We calculate the mean of the
difference score, 𝐷, and the standard variance of the difference score, 𝑠𝐷, in
the usual manner (see §9.5.2). We use this mean and this standard deviation

to calculate the test statistic 𝑡 via formula (13.8), with (𝑁 − 1) degrees of
freedom. Finally, we again use Appendix C to determine the critical value.

and with it, the p-value 𝑝 for the value of the sample size 𝑡 under H0.

For the above example with U or je as forms of address, we thus find
𝐷 = −2.2 and 𝑠𝐷 = 1.0. If we put this into formula (13.8), we find 𝑡 = −6.74
with 𝑁 − 1 = 9 d.f. We again look for the corresponding critical value 𝑡∗ in

Appendix C. Thereby, we ignore the sign of 𝑡, because, after all, the
probability distribution of 𝑡 is symmetric. In the row for 9 d.f., we find

𝑡∗ = 4.297 in the last column. For two-sided testing, we have to double the
p-value corresponding to this column (see §13.4), resulting in 𝑝 = .002. The

test statistic is 𝑡 > 𝑡∗, thus 𝑝 < .002. We decide to indeed reject H0, and report
that as follows:

The judgement of 𝑁 = 10 respondents on the page with U as the
form of address is on average 2.2 points lower than their judgement
over the comparable page with je as the form of address; this is a
significant difference (𝑡(9) = −6.74, 𝑝 < .002).

13.7.1 assumptions

The 𝑡-test for paired observations within a single sample requires three
assumptions which must be satisfied, in order to be able to use these tests.

• The data must be measured on an interval level of measurement (see §4.4).

• All pairs of observations have to be independent of each other.

• The difference scores 𝐷 have to be normally distributed (see §10.4); how-
ever, if the number of pairs of observations in the sample is larger than ca
30 then the 𝑡 test is rather robust against violations of this assumption.

13.7.2 formulas

𝑡 = 𝐷 − 𝜇𝐷
𝑠𝐷

×
√

𝑁 (13.8)
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13.7.3 SPSS

The data for the above example can be found in the file data/ujedata.csv.

Analyze > Compare Means > Paired-Samples T Test

Drag the first dependent variable cond.u to the Paired Variables panel under
Variable1, and drag the second variable cond.je to the same panel under

Variable2. Confirm with OK.

13.7.4 JASP

The data for the above example can be found in the file data/ujedata.csv.

In the top menu bar, choose

T-Tests > Classical: Paired Samples T-Test

In the field “Variable pairs”, select the two variables to be compared. Here we
select the variables cond.U and cond.je.

Under “Tests”, check Student (for Student’s 𝑡 test statistic). Under “Alt.
Hypothesis”, select the first option (observations on the two variables are not
the same) for a two-sided 𝑡 test. Under “Additional Statistics”, you may check

Descriptives and Descriptive Plots to learn more about the two
dependent variables and their difference. Also check the option Effect size

(see §13.8 below).
Under the heading “Assumption checks”, finally, check the option Normality

(see §10.4).

The output reports the two-sided 𝑡 test for paired observations, including its
effect size. The output table shows that the difference being analysed is

between “Measure 1” (cond.u) and “Measure 2” (cond.je).
The table titled Assumption Checks reports the Shapiro-Wilk test of

normality of the difference.
If checked in the input, descriptive statistics and summary plots are also

reported. These provides insights into how the scores on the two variables
differ.

13.7.5 R

The data from the above example can be found in the file data/ujedata.csv.
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ujedata <- read.table( file="data/ujedata.csv", header=TRUE, sep=";" )
with(ujedata, t.test( cond.u, cond.je, paired=TRUE ) )

##
## Paired t-test
##
## data: cond.u and cond.je
## t = -6.7361, df = 9, p-value = 0.00008498
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.938817 -1.461183
## sample estimates:
## mean of the differences
## -2.2

13.8 Effect size

Until now, we have mainly dealt with testing as a binary decision with regards
to whether or not to reject H0, in the light of the observations. However, in

addition to this, it is also of great importance to know how large the observed
effect actually is: the effect size (‘ES’) (Cohen, 1988; Thompson, 2002;

Nakagawa and Cuthill, 2007).
In the formulas (13.1) and (13.8), it is expressed that the test statistic 𝑡

increases, as the effect increases, i.e. for a larger difference (𝑥 − 𝜇) or (𝑥1 − 𝑥2)
or (𝐷 − 𝜇𝐷), and/or as the sample size increases. Put briefly (Rosenthal and

Rosnow, 2008, p.338, formula 11.10):

significance of test = size of effect × size of study (13.9)

This means that a small, and possibly trivial effect can also be statistically
significant if only the sample is large enough. Conversely, a very large effect

can be firmly established on the basis of a very small sample.

Example 13.2: In an investigation of the life times of inhabitants
from Austria and Denmark (Doblhammer, 1999), it appears that life
times differ according to the week of birth (within a calendar year).
This is presumably because babies from “summer pregnancies” are
(or were) on average somewhat healthier than those from “winter
pregnancies”. In this investigation, the differences in life times were
very small ±0.30 year in Austria, ±0.15 year in Denmark), but the
number of observations (deceased persons) was very large.
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Meanwhile, the difference in body length between dwarfs (shorter
than 1.5 m) and giants (taller than 2.0 m) is so large that the differ-
ence can be firmly empirically established on the basis of only 𝑛 = 2
in each group.

In our investigation, we are especially interested in important differences,
i.e. usually large differences. We have to appreciate that studies also entail
costs in terms of money, time, effort, privacy, and loss of naïveté for other

studies (see Chapter 3). We thus do not what to want to perform studies on
trivial effects needlessly. A researcher should thus determine in advance what

the smallest effect is that he/she wants to be able to detect, e.g. 1 point
difference in the score of the grammar test. Differences smaller than 1 point
are then considered to be trivial, and differences larger than 1 point to be

potentially interesting.

It is also important to state the effect size found with the results of the study,
to be of service for readers and later researchers. In some academic journals, it
is even required to report the effect size. It should be said that this can also be

in the form of a confidence interval of the mean (see 13.5), because we can
convert these confidence intervals and effect sizes into each other.

The raw effect size is straightforwardly the difference 𝐷 in means between the
two groups, or between two conditions, expressed in units of the raw score. In
§13.6, we found such a difference in vocabulary of 𝐷 = 95 − 85 = 10 between

boys and girls.

However, we mainly use the standardised effect size (see the formulas below),
where we take into account the distribution in the observations, e.g. in the

form of “pooled standard deviation” 𝑠𝑝
2. In this way, we find a standardised

effect size of

𝑑 = 𝑥1 − 𝑥2
𝑠𝑝

= 10
90.5 = 0.11 (13.10)

In the first example below, the standardised effect size of the difference in
vocabulary between girls and boys is thus 0.11. In this case, the difference

between the groups is small with respect to the distribution within the groups
— the probability that a randomly selected girl has a larger vocabulary than a

randomly selected boy, is only 0.53 (McGraw and Wong, 1992), and that is
barely better than the probability of 0.50 which we expect according to H0. It
is then no surprise that this very small effect is not significant (see §13.6). We

could report the effect size and significance as follows:

2In this case, we use 𝑠𝑝 = √ 122×822+128×982
122+128 = 90.5, see formulas (13.3) and (13.12).
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The mean productive vocabulary of Swedish 18-month old children
barely differs between girls and boys. Girls produce on average 95
different words (𝑠 = 82), and boys on average 85 different words
(𝑠 = 98). The difference is very small (𝑑 = 0.11) and not significant
(𝑡(122) = 0.88, 𝑝 > .4).

In the second example above, the standardised effect size of the difference in
syllable length is about (0.235 − 0.269)/0.029 ≈ 1.15. We can report this

relatively large effect as follows:

The average length of a syllable spoken by a speaker from the West
of the Netherlands is 0.235 seconds (𝑠 = 0.028). This is considerably
shorter than for speakers from the North of the Netherlands (𝑥 =
0.269 s, 𝑠 = 0.029). The difference is ca. 10%; this difference is very
large (𝑑 = −1.15) and significant [𝑡(38) = −3.76, 𝑝 < .05]. In the
investigated recordings from 1999, the speakers from the West thus
speak considerably more quickly than those from the North of the
Netherlands.

If 𝑑 is around 0.2, we speak of a small effect. We call an effect size 𝑑 of around
0.5 a medium effect, and we call one of around 0.8 or larger a large effect

(Cohen, 1988; Rosenthal and Rosnow, 2008).
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Figure 13.3: Relation between the sample size and the smallest effect (d) that
is significant according to a t-test for unpaired, independent observations, with
errors probabilities alpha=.05 and beta=.10.
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Example 13.3: Look again at the formula (13.9) and at the Figure
13.3 which illustrate the relation between sample size and effect size.
With a sample size of 𝑛1 = 122, we can only detect an effect of
𝑑 = 0.42 or more, with sufficiently low probabilities of Type I and
II errors again (𝛼 = .05, 𝛽 = .10). To detect the very small effect of
𝑑 = 0.11, with the same small error probabilities 𝛼 and 𝛽, samples
of at least 1738 girls and 1738 boys would be needed.

We can also express the effect size as the probability that the difference occurs
in the predicted direction, for a randomly chosen element from the population

(formulas (13.11) and (13.13)), or (if applicable) for two randomly and
independently chosen elements from the two populations (formula (13.12))

(McGraw and Wong, 1992). Let us again return to the grammar test from the
Linguistics students (§13.2). The effect which we found is not only significant

but also large. Expressed in terms of probability: the probability that a
random Linguistics student achieves a score larger than 𝜇0 = 73 is 0.91. (And

a randomly chosen Linguistics student thus still has 9% probability of
achieving a lower score than the hypothesised population mean of 73.)

For the fictional judgements about the webpages with U or je (see Table 13.1),
we find a standardised effect size of

𝑑 = 𝐷 − 𝜇𝐷
𝑠𝐷

= −2.20 − 0
1.03 = −2.13

It is then not surprising that this extremely large effect is indeed significant.
We can report this as follows:

The judgements of 𝑁 = 10 respondents about the pages with U or je
as forms of address differ significantly, with on average −2.2 points
difference. This difference has a 95% confidence interval of −2.9
to −1.5 and an estimated standardised effect size 𝑑 = −2.13; the
probability that a randomly chosen respondent judges the je-version
more highly than the U -version is 𝑝 = .98.

13.8.1 formulas

For a single sample:

𝑑 = 𝑥 − 𝜇
𝑠 (13.11)
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where 𝑠 stands for the standard variation 𝑠 of the score 𝑥.

For two independent samples (see formula (13.3)):

𝑑 = 𝑥1 − 𝑥2
𝑠𝑝

(13.12)

For paired observations:

𝑑 = 𝑥1 − 𝑥2
𝑠𝐷

(13.13)

where 𝑠𝐷 is the standard deviation from the difference 𝐷 according to the
formula (13.13).

13.8.2 SPSS

In SPSS, it is usually easiest to calculate the effect size by hand.

For a simple sample (formula (13.11)), we can simply calculate the effect size
from the mean and the standard deviation, taking into account the value 𝜇

which we are testing against.

Analyze > Descriptive Statistics > Descriptives...

Choose the button Options and ensure that Mean and Std.deviation are
ticked. As a result there is the required data in the output:

𝑑 = (84.41 − 73)/8.392 = 1.36, a very large effect.

For unpaired, independent observations, it is likewise the easiest to calculate
the effect size by hand on the basis of the means, standard deviations, and size

of the two samples, making use of the formulas (13.3) and (13.12) above.

For a single sample with two paired observations (formula (13.13)), we can
again calculate the effect size more simply from the mean and the standard
deviation of the difference. The information is in the output of the pairwise

𝑡-test
(§13.7.3), respectively as Mean and Std.Deviation:

𝑑 = −2.200/1.033 = 2.130, a super large effect.

13.8.3 JASP

In JASP, the effect size can be requested when conducting the 𝑡 tests, just by
checking the option Effect size under “Additional Statistics”. For more
detailed instructions on how to specify this using JASP, see the respective

subsections for conducting a 𝑡 test for a single sample (§13.2.5), a 𝑡 test for two
independent groups (§13.6.4), and a 𝑡 test for paired observations (§13.7.4).
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The output of the 𝑡 test will report Cohen’s 𝑑 as measure for the effect size.
You can also ask for the Confidence interval of the effect size, which will

typically report the 95% confidence interval of the effect size (see §13.8.5
below).

13.8.4 R

For a single sample (formula (13.11)):

gramm2013 <- read.csv( file="data/grammaticatoets2013.csv",header=F)
dimnames(gramm2013)[[2]] <- c("score","progr")
# programs have Dutch labels, TW=Linguistics
with(gramm2013, score[progr=="TW"]) -> score.ling
# auxiliary variable
( mean(score.ling)-73 ) / sd(score.ling)

## [1] 1.359783

The probability of a score larger than the population mean (the test value) 73
for a random Linguistics student (of which we assume that 𝜇 = 84.4 and

𝑠 = 8.4):

1 - pnorm( 73, mean=84.4, sd=8.4 )

## [1] 0.9126321

For unpaired, independent observations, we can calculate the smallest
significant effect (see also Fig. 13.3); for which we use the function

power.t.test. (This function is also used to construct Fig.13.3.) With this
function, you have to set the desired power as an argument (power = 1 − 𝛽;

see §14.1).

power.t.test( n=122, sig=.05, power=.90, type="two.sample" )

##
## Two-sample t test power calculation
##
## n = 122
## delta = 0.4166921
## sd = 1
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: n is number in *each* group
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In the output, the smallest significant effect is indicated by delta; see also
Example 13.3 above.

For a single sample with two paired observations (formula(13.13)):

ujedata <- read.table( file="data/ujedata.csv", header=TRUE, sep=";" )
with( ujedata, mean(cond.u-cond.je) / sd(cond.u-cond.je) )

## [1] -2.130141

13.8.5 Confidence interval of the effect size

Earlier, we already saw (§10.7 and §13.5) that we can estimate a characteristic
or parameter of the population on the basis of a characteristic from a sample.
This is how we estimated the unknown population mean 𝜇 on the basis of the

observed sample mean 𝑥. The estimation does have a certain degree of
uncertainty or reliability: perhaps the unknown parameter differs in the
population somewhat from the sample characteristic, which we use as an

estimator, as a result of chance variations in the sample. The (un)certainty
and (un)reliability is expressed as a confidence interval of the estimated

characteristic. We then know with a certain reliability (mainly 95%) that the
unknown parameter will lie within that interval (§10.7 and §13.5).

This reasoning is now valid not only for the mean score, or for the mean or for
the variance, but equally for the effect size. After all, the effect size is also an

unknown parameter from the population, which we are trying to estimate
based on a limited sample. For the fictional judgements about the webpages

with the formal U or informal je pronouns (see Table 13.1), we found a
standardised effect size of 𝑑 = −2.13. This is an estimation of the unknown

effect size (i.e. of the strength of the preference for the je-variant) in the
population of assessors, on the basis of a sample of 𝑛 = 10 assessors. We can
also indicate the reliability of this estimation here, in the form of a confidence

interval around the observed sample 𝑑 = −2.13.

The confidence interval of the effect size is tricky to establish though
(Nakagawa and Cuthill, 2007; Chen and Peng, 2015). We illustrate it here in a

simple manner for the simplest case, namely that of the 𝑡-test for a single
sample, or for two paired observations. For this, we need two elements: firstly,
the effect size expressed as a correlation (Rosenthal and Rosnow, 2008, p.359,

formula 12.1),

𝑟 = √ 𝑡2

𝑡2 + df

and secondly the standard error of the effect size 𝑑 (Nakagawa and Cuthill,
2007, p.600, formula 18):
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se𝑑 = √2(1 − 𝑟)
𝑛 + 𝑑2

2(𝑛 − 1) (13.14)

In our earlier example of the 𝑛 = 10 paired judgements about a webpage with
U or je as forms of address we found 𝑑 = −2.13. We also find that 𝑟 = .9135.

With these data, we find se𝑑 = 0.519 via formula (13.14).

With this, we then determine the confidence interval for the effect size:

𝑑 ± 𝑡∗
𝑛−1 × se𝑑 (13.15)

(see the correspond formula (13.2)).

After substituting 𝑡∗
9 = 2.262 (see Appendix C) and se𝑑 = 0.519, we eventually

find a 95% confidence interval of (−3.30, −0.96). We thus know with 95%
confidence that the unknown effect size in the population is somewhere within
this interval, and thus also that it is smaller than zero. On the basis of this
last consideration, we may reject H0. And: we now know not only that the
preference deviates from zero, but also to what extent the (standardised)

preference deviates from zero, i.e. how strong the preference for the je-version
is. This new knowledge about the extent or size of the effect is often more

useful and more interesting than the binary decision of whether or not there is
an effect (whether or not to reject H0) (Cumming, 2012).



Chapter 14

Power

14.1 Introduction

With statistical testing of H0, we determine the probability 𝑃 of the observed
differences or effects (or of even larger differences or effects than observed) if

H0 were true, and thus if the observed difference had to be attributed solely to
chance (see §2.5 and Chapter 13). If the probability 𝑃 is very small, then we
have thus found results which are very improbable if H0 were true. We then
conclude that H0 is presumably not true and we thus reject H0. We then call

the difference or effect found, the “significant” (Latin: ‘meaning making’).
However, there is in fact a probability, 𝑃 , that the difference found is actually
a fluke, and that, by rejecting H0, we are making a Type I error (i.e. wrongly
rejecting H0, see §13.1). As we use a certain significance level, with which to
compare 𝑃 , this 𝛼 is thus also the probability that we are making a Type I

error.

At least as important, however, is the opposite error of not wrongly
rejecting H0, a Type II error. Examples of such errors are: not convicting a
suspect even if he is guilty, letting a ‘spam’ email message through into my

mailbox, examining a patient and nevertheless not noticing their illness,
concluding that birds are silent when they are in fact singing (Example 13.1),

or wrongly concluding that two groups do not differ when an important
difference does in fact exist between the two groups. The probability of a Type

II error is referred to with the symbol 𝛽.

If H0 is in fact not true (there is a difference, the message is ‘spam’, birds are
singing, etc.), then H0 should be rejected, and 𝛽 should thus be as small as

possible. The probability of rightly rejecting H0 is then (1 − 𝛽) (see
complement rule (10.5)); this probability (1 − 𝛽) is called the power. Power

can be interpreted as the probability of the researcher being right (H0
is rejected) when she is indeed right (H0 is untrue).
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The probabilities of Type I and Type II errors have to be weighed up carefully
against each other. In many studies, the p-values 𝛼 = .05 (significance level)
and 𝛽 = .20 (power=.80) are used. With these, an implicit weighting is made
that a Type I error is 4× more grave than a Type II error. For some studies
that might be justified but it is also easily conceivable that, under certain

circumstances, a Type II error is actually more grave or serious than a Type I
error. If we find both types of error more or less equally grave, then we should

strive for a smaller 𝛽 and larger power (Rosenthal and Rosnow, 2008).

The power of a study depends on three factors: (i) the effect size 𝑑, which
itself is in turn dependent on the measured difference 𝐷 and the variation 𝑠 in

the observations (formula (13.10)), (ii) the sample size 𝑁 , and (iii) the
significance level 𝛼. In the following sections, we will discuss each of these

factors separately, and, when doing so, keep the other two factors as constant
as possible. For this discussion, we will use the depictions of calculated power

(Figures 14.1 and 14.2). The depicted power contours are specifically for a
t-test for independent samples (§13.6) with two-sided testing. The relations

discussed below also apply to other statistical tests.

0.0

0.2

0.4

0.6

0.8

1.0

Power

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

120

140

Effect size (d)

S
am

pl
e 

si
ze

 (
n 

pe
r 

gr
ou

p)

t−test for
independent samples

Figure 14.1: Power expressed in contours (see shading), dependent on the stan-
dardised effect size (d) and sample size according to a two-sided t-test for un-
paired, independent observations, with two-sided significance level alpha=.01.
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Figure 14.2: Power expressed in contours (see graduation), dependent on the
standardised effect size (d) and the sample size (n), according to a two-sided
t-test for unpaired, independent observations with significance level alpha=.05.
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14.2 Relation between effect size and power

The two figures 14.1 and 14.2 show that, in general, the larger the effect to be
tested is (more to the right in each figure), the larger the power. This is also
not surprising: a larger effect has a higher probability of being detected in a
statistical test, under the same circumstances. A moderately large effect of

𝑑 = .5, with 𝑛 = 30 observations in each group, only has a probability of .48 of
being detected (if 𝛼 = .05, Figure 14.2). On the basis of a study with 𝑛 = 30
observations per group is thus actually a gamble whether a researcher will

actually detect such an effect, and will reject H0. Put otherwise, the
probability of a Type I error is admittedly safely low (𝛼 = .05) but the

probability of a Type II error is more than 10× as large, and thus dangerously
high (𝛽 = .52) (Rosenthal and Rosnow, 2008, Ch.12).

A larger effect has a higher probability of being detected. A larger effect of
𝑑 = .8, for example, results in a power of .86 with this testing. The probability
of a Type II error 𝛽 = .14 here is admittedly also larger than the probability of

a Type I error, but the proportion 𝛽/𝛼 is considerably less skewed.

As researchers, we only have an indirect influence on effect size. We of course
have no influence on the true raw difference 𝐷 in the population. For the

power, however, the raw difference 𝐷 is not important, but rather the
standardised difference 𝑑 = 𝐷/𝑠 (§13.8). Thus, if we ensure that the standard

deviation 𝑠 decreases, then 𝑑 will increase, and then the power will also
increase (figures 14.1 and 14.2), and we thus have a higher probability of

actually detecting an effect! With this goal in mind, researchers always strive
to neutralise disrupting influences from all kinds of other factors as much as
possible. After all, the disrupting influences produce extra variability in the

observations, and, with this, a lower power with the statistical testing.

In a well-designed study, we want to determine in advance what the power will
be, and how large the sample should be (see below). For this we need an

estimation of the smallest effect size 𝑑 which we still want to detect (§13.8)
(Quené, 2010). To estimate the effect size, firstly, an estimate of the raw
difference 𝐷 between the groups or conditions is needed. Secondly, an

estimation is needed of the variability 𝑠 in the observations. These estimations
can be largely deduced from earlier publications, in which the standard

deviation 𝑠 is usually reported. If no earlier research reports are available,
then 𝑠 can be roughly estimated from some informal ‘pilot’ observations. Take
the difference between the highest and the lowest (range) of these, divide this
range by 4, and use the outcome of this as a rough estimation for 𝑠 (Peck and

Devore, 2008).
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14.3 Relation between sample size and power

The relation between the sample size 𝑁 and the power of a study is illustrated
in Figure 14.1 for a strict significance level 𝛼 = .01, and in Figure 14.2 for the

most used significance level 𝛼 = .05. The figures show that, in general, the
larger the sample gets (further upwards), the larger the power is. The increase
is steeper (power increases more quickly) with larger effects (right-hand side)
than with smaller effects (left-hand side). Put differently: with small effects,

the sample is actually always too small to detect these small effects with
sufficient power. We already saw that in Example 13.3 (Chapter 13).

The two figures 14.1 and 14.2 are based on the comparison between two
groups which are equally large, each with precisely half of the observations
(𝑛1 = 𝑛2 = 𝑁/2). That is also most efficient. The power is based on the

harmonic mean of 𝑛1 and 𝑛2 (see §9.3.4), and that harmonic mean is always
smaller than the arithmetic mean of those two numbers. It is thus advisable to

ensure that the groups or samples which you compare are approximately
equally large.

Example 14.1: In a study, two groups of participants are compared,
with 𝑛1 = 10 and 𝑛2 = 50
(𝑁 = 𝑛1 + 𝑛2 = 10 + 50 = 60). The harmonic mean of 𝑛1 = 10
and 𝑛2 = 50 is 𝐻 = 17. This study thus has the same power
as a smaller study with two groups, each of 17 participants, thus
34 participants in total. For this study, thus, 26 participants more
have been investigated (and bothered) than necessary (see also §3.2)
(Aron et al., 2011, p.295).

14.4 Relation between significance level and
power

The relation between the significance level 𝛼 and the power is illustrated by
the difference between the two figures 14.1 and 14.2. For each combination of
effect size and sample size, the power is lower in Figure 14.1 for 𝛼 = .01 than
in Figure 14.2 for 𝛼 = .05. If we choose a higher significance level 𝛼, then the

probability of rejecting H0 increases, and thus also the power of correctly
rejecting H0 when H0 is untrue (see Table 2.2). However, unfortunately, with

a high significance level 𝛼, the probability of wrongly rejecting H0 (i.e. of
making a Type I error) also increases. The investigator must make a
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well-considered decision between Type I errors (with probability 𝛼) and Type
II errors (with probability 𝛽); as said earlier, this decision has to depend on

the seriousness of (the consequences of) these two types of errors.

14.5 Disadvantages of insufficient power

Unfortunately, many examples can be found of ‘underpowered’ research in the
domain of language and communication. This research has a too small

probability of rejecting H0 when the investigated effect indeed exists (H0 is
not true). Why is that bad (Quené, 2010)?

Firstly, the Type II error which occurs here can have serious consequences: a
treatment method which is actually better is not recognised as such, a patient
is not or wrongly diagnosed, a useful innovation is wrongly pushed aside. This

error hinders the growth of our knowledge and our insight, and hinders
scientific progress (see also Example 3.2 in Chapter 3).

The outcomes of simulated experiments with different sample size, and thus
with different power, are summarised in Figure 14.3. We explain the second

disadvantage on the basis of the somewhat complex figure. In the left panel of
Figure 14.3, we can see that the different (simulations of) ‘underpowered’
studies show a mixed picture. Some of these studies do show a significant
effect (dark symbols), and many other studies do not (light symbols). The

mixed picture then usually leads to follow up research, in which people try to
find out why the effect does occur in some studies, and not in others. Might

the difference in results be attributable to differences in stimuli? participants?
tasks? instruments? All that follow up research is superfluous though: the

mixed picture from these studies can be explained by the small power of each
study. The needless and superfluous follow up research costs much time and
money (and indirect costs, see Chapter 3), and comes at the cost of other,

more useful research (Schmidt, 1996, p.118). Put otherwise: one well designed
study with power which is more than sufficient can avoid many needless follow

up studies.
The third disadvantage is based on the experience that studies in which a
significant effect is found (dark symbols) have a higher probability of being

reported; this phenomenon is called ‘publication bias’ or the ‘file drawer
problem’. After all, a positive result often does get published, whilst a negative
result often disappears into a file drawer. With small power, that leads to the
third disadvantage, namely an overestimation or ‘bias’ of the reported effect
size. In an underpowered study, after all, an effect must be quite large to be

found. In the leftmost panel, we can see that a significant effect has only been
found 31×. The average effect size of these 31 significant outcomes is

𝑑signif = 0.90 (black dashed line), i.e. a distortion or ‘bias’ of 0.40 relative to
the actual 𝑑 = 0.50 (grey dashed line)1. In the rightmost panel, we can see
1A replication study which does have sufficient power, thus typically finds a smaller effect
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Figure 14.3: Effect sizes (along the horizontal axis) found in simulated experi-
ments (two-sided t-test for independent observations, alpha=.05), broken down
according to sample size (left 𝑛 = 20, right 𝑛 = 80) and according to testing
result (dark symbols: significant; light symbols: not significant). The true ef-
fect size between groups is always 𝑑 = 0.5, indicated by the grey dashed line.
The mean effect size found from the significant outcomes is referred to with the
black dashed line. For each sample size, 100 simulations have been carried out
(long vertical axis).
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that a significant effect has been found 91× (thus the power here is sufficient).
The mean effect size of these 91 significant outcomes hardly deviates from the

actual 𝑑. Moreover, the standard deviation of the reported effect size is
smaller, and that is again important for later research, meta-studies, and

systematic reviews.

Fourthly, the mixed picture from the different studies, sometimes with
significant outcomes and sometimes without, and with great variation in the

reported effect size, carries the danger that these outcomes are taken less
seriously than ‘consumers’ of scientific knowledge (practitioners, health

insurers, developers, policy makers, etc.). In this way, these consumers get the
impression that the scientific evidence for this investigated effect is not strong,
and/or that the researchers are in disagreement about whether the effect exists

and if it does, how large it then is (Van Kolfschooten, 1993) (Figure 14.3).
This, also hinders scientific progress, and it hinders the use of scientific

insights in societal applications.

To avoid all these objections, researchers have to take into account the desired
power of a study in an early stage. Designing and conducting a study with
insufficient power is after all in opposition with the earlier discussed ethical

and moral principles of diligence and responsibility (§3.1).

than the original ‘underpowered’ study. The smaller effect found in the replication study is
then typically also not significant. We then say that the replication study “fails to replicate”
the effect that was significant in the original study - but that was actually a spurious finding.



Chapter 15

Analysis of variance

15.1 Introduction

This chapter is about an often used statistical analysis, called analysis of
variance (often abbreviated to ANOVA).

The structure of this chapter is as follows. We will begin in §15.2 with some
examples of research studies whose outcomes can be tested with analysis of

variance. The purpose of this section is to familiarise you with the technique,
with the new terminology, and with the conditions under which this technique

can be used. In §15.3.1, we will introduce this technique in an intuitive
manner by looking at the thinking behind the test. In §15.3.2 we derive a

formal form for the most important test statistic, the 𝐹 -ratio.

15.2 Some examples

Just like the t-test, analysis of variance is a statistical generalisation technique,
which is to say: an instrument that can be used when formulating statements
about the population characteristics, on the basis of data taken from samples
from these populations. In the case of the t-test and ANOVA, the statements
are about whether or not the means of (two or more) populations are equal. In
this sense, analysis of variance can also be understood as an expanded version

of the t-test: we can analyse data of more than two samples with ANOVA.
Moreover, it is possible to include the effects of multiple independent variables
simultaneously in the analysis. This is useful when we want to analyse data

from a factorial design (§6.8).
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Examples 15.1: In this example, we investigate the speech tempo
or speed of four groups of speakers, namely originating from the
Middle, North, South and West of the Netherlands. The speech
tempo is expressed as the mean duration of a syllable (in seconds),
with the mean taken over an interview of approximately 15 minutes
with each speaker (Quené, 2008) (Quené, 2014). A shorter mean
syllable duration thus corresponds to a faster speaker (cf. skating,
where a faster skater has shorter lap durations). There were 20
speakers per group, but 1 speaker (from the South), who had an
extremely high value, was removed from the sample.

The observed speech tempos per speaker from the above Example 15.1 are
summarised in Table 15.1 and Figure 15.1.

Here, the region of origin is an independent categorial variable or ‘factor’. The
values of this factor are also referred to as ‘levels’, or in many studies as

‘groups’ or ‘conditions’. Each level or each group or condition forms a ‘cell’ of
the design, and the observations from that cell are also called ‘replications’

(consider why they are called this). The speech tempo is the dependent
variable. The null hypothesis is that the dependent variable means are equal

for all groups, thus H0: 𝜇𝑀 = 𝜇𝑁 = 𝜇𝑍 = 𝜇𝑊 . If we reject H0, then that
means only that not all means are equal, but it does not mean that each group

mean deviates from each other group mean. For this, a further (post-hoc)
study is necessary; we will return to this later.

Table 15.1: Mean speech tempos, with standard deviation and
numbers of speakers, divided according to region of origin of the
speaker (see Example 15.1).

Region Mean s.d. n
Middle 0.253 0.028 20
North 0.269 0.029 20
South 0.260 0.030 19
West 0.235 0.028 20

In order to investigate whether the four populations differ in their average
speech tempo, we might think about conducting t-tests for all pairs of levels.
(With 4 levels, that would require 6 tests, see equation (10.8) with 𝑛 = 4 and

𝑥 = 2). There are however various objections to this approach. We will discuss
one of these here. For each test, we use a p-value of 𝛼 = .05. We thus have a

probability of .95 of a correct decision without a Type I error. The probability
that we will make a correct decision for all 6 tests is .956 = .731 (according to
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Figure 15.1: Boxplot of the mean length of syllable, split up according to region
of origin of the speaker.

the multiplication principle, equation (10.6)). The joint probability of one or
more Type I error(s) in the 6 tests is thus no longer .05, but has now increased

to 1 − .731 = .265, more than a quarter!

Analysis of variance now offers the possibility of investigating the
aforementioned null hypothesis on the basis of a single testing (thus not 6

tests). Analysis of variance can thus be best characterised as a global testing
technique, which is most suitable if a priori you are not able or do not want to
make any specific predictions about the differences between the populations.

An analysis of variance applied to the scores summarised in Table 15.1 will
lead to the rejection of the null hypothesis: the 4 regional means are not equal.

The differences found are, in all probability, not due to chance sample
fluctuations, but instead to systematic differences between the groups

(𝛼 = .05). Can it now be concluded that the differences found in speech tempo
are caused by differences in the origin of the speaker? Here, restraint is

required (see §5.2). After all, it cannot be excluded that the four populations
not only differ systematically from each other in speech tempo, but also in
other relevant factors which were not included in the study, such as health,

wealth, or education. We would only be able to exclude these other factors if
we allocated the participants randomly to the selected levels of the

independent variable. However, this is not possible when we are concerned
with the region of origin of the speaker: we can usually assign a speaker

(randomly) to a form of treatment or condition, but not to a region of origin.
In fact, the study in Example 15.1 is thus quasi-experimental.
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For our second example, we involve a second factor in the same study on
speech tempo, namely also the speaker’s gender. ANOVA enables us, in one

single analysis, to test whether (i) the four regions differ from each other (H0:
𝜇𝑀 = 𝜇𝑁 = 𝜇𝑍 = 𝜇𝑊 ), and (ii) whether the two genders differ from each
other (H0: 𝜇woman = 𝜇man), and (iii) whether the differences between the

regions are the same for both genders (or, put differently, whether the
differences between the genders are the same for all regions). We call the latter

differences the ‘interaction’ between the two factors.

Table 15.2: Mean speech tempos, with standard deviation and
numbers of speakers, divided according to gender and the speaker’s
region of origin (see Example 15.1).

Gender Region Mean s.d. n
Woman Middle 0.271 0.021 10
Woman North 0.285 0.025 10
Woman South 0.269 0.028 9
Woman West 0.238 0.028 10

Man Middle 0.235 0.022 10
Man North 0.253 0.025 10
Man South 0.252 0.030 10
Man West 0.232 0.028 10

The results in Table 15.2 suggest that (i) speakers from the West speak more
quickly than the others, and that (ii) men speak more quickly than women (!).

And (iii) the difference between men and women appears to be smaller for
speakers from the West than for speakers from other regions.

15.2.1 assumptions

The analysis of variance requires four assumptions which must be satisfied to
use this test; these assumptions match those of the t-test (§13.2.3).

• The data have to be measured on an interval level of measurement (see
§4.4).

• All observations have to be independent of each other.

• The scores have to be normally distributed within each group (see §10.4).

• The variance of the scores has to be (approximately) equal in the scores
of the respective groups or conditions (see §9.5.1). The more the samples
differ in size, the more serious violating this assumption is. It is thus
sensible to work with equally large, and preferably not too small samples.
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Summarising: analysis of variance can be used to compare multiple population
means, and to determine the effects of multiple factors and combinations of
factors (interactions). Analysis of variance does require that data satisfy

multiple conditions.

15.3 One-way analysis of variance

15.3.1 An intuitive explanation

As stated, we use analysis of variance to investigate whether the scores of
different groups, or those collected under different conditions, differ from each

other. However — scores always differ from each other, through chance
fluctuations between the replications within each sample. In the preceding

chapters, we already encountered many examples of chance fluctuations within
the same sample and within the same condition. The question then is whether
the scores between the different groups (or gathered under different conditions)

differ more from each other than you would expect on the basis of chance
fluctuations within each group or cell.

The aforementioned “differences between scores” taken together form the
variance of those scores (§9.5.1). For analysis of variance, we divide the total
variance into two parts: firstly, the variance caused by (systematic) differences

between groups, and secondly, the variance caused by (chance) differences
within groups. If H0 is true, and if there are thus no differences (in the

populations) between the groups, then we nevertheless expect (in the samples
of the groups) some differences between the mean scores of the groups, be it

that the last mentioned differences will not be greater than the chance
differences within the groups, if H0 is true. Read this paragraph again

carefully.

This approach is illustrated in Figure ??, in which the scores from three
experimental groups (with random assignment of participants to the groups)

are shown: the red, grey and blue group. The scores differ from each other, at
least through chance fluctuations of the scores within each group. There are
probably also systematic differences between (the mean scores of) the three
groups. However, are these systematic differences now comparatively larger

than the chance differences within each group? If so, then we reject H0.
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The systematic differences between the groups correspond with the differences
from the red, grey and blue group means (dashed lines in Figure ??) relative
to the mean over all observations (dotted line). For the first observation, that
is a negative deviation since the score is below the general mean (dotted line).
The chance differences within the groups correspond to the deviation of each
observation relative to the group mean (for the first observation that is thus a
positive deviation, since the score is above the group average of the red group).

Let us now make the switch from ‘differences’ to ‘variance’. We then split the
deviation of each observation relative to the general mean into to two

deviations: first, the deviation of the group mean relative the general mean,
and, second, the deviation of each replication relative to the group mean.

These are two pieces of variance which together form the total variance. Vice
versa, we can thus divide the total variance into two components, which is

where the name ‘analysis of variance’ comes from. (In the next section, we will
explain how these components are calculated, taking into account the number

of observations and the number of groups.)

Dividing the total variance into two variance components is useful because we
can determine the ratio between these two parts. The ratio between the

variances is called the 𝐹 -ratio, and we use this ratio to test H0.

H0 ∶ variance between groups = variance within groups



15.3. ONE-WAY ANALYSIS OF VARIANCE 239

H0 ∶ 𝐹 = variance between groups
variance within groups = 1

As such, the 𝐹 -ratio is a test statistic whose probability distribution is known
if H0 is true. In the example of Figure ??, we find 𝐹 = 3.22, with 3 groups
and 45 observations, 𝑝 = .0004. We thus find a relatively large systematic

variance between groups here, compared to the relatively small chance variance
within groups: the former variance (the fraction 𝐹 ’s numerator) is more than

3× as large as the latter variance (the fraction 𝐹 ’s denominator). The
probability 𝑝 of finding this fraction if H0 is true, is exceptionally small, and

we thus reject H0. (In the following section, we will explain how this
probability is determined, again taking into account the number of

observations and the number of groups.) We then speak of a significant effect
of the factor on the dependent variable.

At the end of this section, we repeat the core essence of
analysis of variance. We divide the total variance into two parts: the possible

systematic variance between groups or conditions, and the variance within
groups or conditions (i.e. ever present, chance fluctuation between

replications). The test statistic 𝐹 consists of the proportion between these two
variances. We do a one-sided test to see whether 𝐹 = 1, and reject H0 if 𝐹 > 1

such that the probability 𝑃(𝐹 |H0) < 𝛼. The mean scores of the groups or
conditions are then in all probability not equal. With this, we do not yet know

which groups differ from each other - for this another further (post-hoc)
analysis is needed (§15.3.5 below).

15.3.2 A formal explanation

For our explanation, we begin with the observed scores. We assume that the
scores are constructed according to a certain statistical model, namely as the

sum of the population mean (𝜇), a systematic effect (𝛼𝑗) of the 𝑗’the condition
or group (over 𝑘 conditions or groups), and a chance effect (𝑒𝑖𝑗) for the 𝑖’the
replication within the 𝑗’the condition or group (over 𝑁 replications in total).

In formula:

𝑥𝑖𝑗 = 𝜇 + 𝛼𝑗 + 𝑒𝑖𝑗

Here too, we thus again analyse each score in a systematic part and a chance
part. This is the case not only for the scores themselves, but also for the

deviations of each score relative to the total mean (see §15.3.1).
Thus, three variances are of interest. Firstly, the total variance (see equation
(9.3), abbreviated to t) over all 𝑁 observations from all groups or conditions

together:

𝑠2
𝑡 = ∑(𝑥𝑖𝑗 − 𝑥)2

𝑁 − 1 (15.1)
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Secondly the variance ‘between’ (abbreviated to b) the groups or conditions:

𝑠2
𝑏 =

∑𝑗=𝑘
𝑗=1 𝑛𝑗(𝑥𝑗 − 𝑥)2

𝑘 − 1 (15.2)

and, thirdly, the variance ‘within’ (shortened to w) the groups or conditions:

𝑠2
𝑤 =

∑𝑗=𝑘
𝑗=1 ∑𝑖(𝑥𝑖𝑗 − 𝑥𝑗)2

𝑁 − 𝑘 (15.3)

In these comparisons, the numerators are formed from the sum of the squared
deviations (‘sums of squares’, shortened to SS). In the previous section, we

indicated that the deviations add up to each other, and that then is also the
case for the summed and squared deviations:

∑(𝑥𝑖𝑗 − 𝑥)2 =
𝑗=𝑘
∑
𝑗=1

𝑛𝑗(𝑥𝑗 − 𝑥)2 +
𝑗=𝑘
∑
𝑗=1

∑
𝑖

(𝑥𝑖𝑗 − 𝑥𝑗)2 (15.4)

SS𝑡 = SS𝑏 + SS𝑤 (15.5)

The numerators of the variances are formed from the degrees of freedom
(abbreviated df, see §13.2.1). For the variance between groups 𝑠2

𝑏 , that is the
number of groups or conditions, minus 1 (𝑘 − 1). For the variance within

groups 𝑠2
𝑤, that is the number of observations, minus the number of groups

(𝑁 − 𝑘). For the total variance, that is the number of observations minus 1
(𝑁 − 1). The degrees of freedom of the deviations also add up to each other:

(𝑁 − 1) = (𝑘 − 1) + (𝑁 − 𝑘) (15.6)
df𝑡 = df𝑏 + df𝑤 (15.7)

The above fractions which describe the variances 𝑠2
𝑡 , 𝑠2

𝑏 and 𝑠2
𝑤, are also

referred to as the ‘mean squares’ (shortened to MS). MS𝑡 is by definition equal
to the ‘normal’ variance 𝑠2

𝑥 (see the identical equations (9.3) and (15.1)).
The test statistic 𝐹 is defined as the ratio of the two variance components

defined above:

𝐹 = 𝑠2
𝑏

𝑠2𝑤
(15.8)

with not one but two degrees of freedom, resp. (𝑘 − 1) for the numerator and
(𝑁 − 𝑘) for the denominator.

You can determine the p-value 𝑝 which belongs with the 𝐹 found using a
table, but we usually conduct an analysis of variance using a computer, and it

then also calculates the p-value.
The results of an analysis of variance are summarised in a fixed format in a
so-called ANOVA table, like Table 15.3. This contains the most important

information summarised. However, the whole table can also be summarised in
one sentence, see Example 15.2.
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Table 15.3: Summary of analysis of variance of the observations in
Figure ??.

Variance Source df SS MS 𝐹 𝑝
Group 2 14.50 7.248 9.356 0.0004
(within) 42 32.54 0.775

Example 15.2: The mean scores are not equal for the red, grey and
blue group [𝐹 (2, 42) = 9.35, 𝑝 = .0004, 𝜔2 = 0.28].

15.3.3 Effect size

Just like with the 𝑡-test, it is not only important to make a binary decision
about H0, but it is at least equally important to know how large the observed

effect is (see also §13.8). This effect size for analysis of variance can be
expressed in different measures, of which we will discuss two (this section is

based on Kerlinger and Lee (2000); see also Olejnik and Algina (2003)).

The simplest measure is the so-called 𝜂2 (“eta squared”), the proportion of the
total SS which can be attributed to the differences between the groups or

conditions:

𝜂2 = SS𝑏
SS𝑡

The effect size 𝜂2 is a proportion between 0 and 1, which indicates how much
of the variance in the sample can be assigned to the independent variable.

The second measure for effect size with analysis of variance is the so-called 𝜔2

(“omega squared”) (Maxwell and Delaney (2004), p.296):

𝜔2 = SS𝑏 − (𝑘 − 1)MS𝑤
SS𝑡 + MS𝑤

(15.9)

The effect size 𝜔2 is also a proportion; this is an estimation of the proportion
of the variance in the population which can be attributed to the independent
variable, where the estimation is of course based on the investigated sample.

As we are generally more interested in generalisation to the population than to
the sample, we prefer 𝜔2 as the measure for the effect size.

We should not only report the 𝐹 -ratio, degrees of freedom, and p-values, but
also the effect size (see Example 15.2 above).
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“It is not enough to report 𝐹 -ratios and whether they are statisti-
cally significant. We must know how strong relations are. After all,
with large enough 𝑁s, 𝐹 - and 𝑡-ratios can almost always be statisti-
cally significant. While often sobering in their effect, especially when
they are low, coefficients of association of independent and depen-
dent variables [i.e., effect size coefficients] are indispensable parts of
research results” (Kerlinger and Lee, 2000, p.327, emphasis added).

15.3.4 Planned comparisons

In Example 15.2 (see Figure ??), we investigated the differences between
scores from the red, grey and blue groups. The null hypothesis which was

tested was H0: 𝜇red = 𝜇grey = 𝜇blue. However, it is also quite possible that a
researcher already has certain ideas about the differences between groups, and
is looking in a focused manner for certain differences, and wants to actually
ignore other differences. The planned comparisons are also called ‘contrasts’.

Let us assume for the same example that the researcher already expects, from
previous research, that the red and blue group scores will differ from each
other. The H0 above is then no longer interesting to investigate, since we

expect in advance that we will reject H0. The researcher now wants to know in
a planned way (1) whether the red group scores lower than the other two
groups, (H0: 𝜇red = (𝜇grey + 𝜇blue)/2), and (2) whether the grey and blue

groups differ from each other (H0: 𝜇grey = 𝜇blue) 1.

The factor ‘group’ or ‘colour’ has 2 degrees of freedom, and that means that
we can make precisely 2 of such planned comparisons or ‘contrasts’ which are
independent of each other. Such independent contrasts are called ‘orthogonal’.

In an analysis of variance with planned comparisons, the variance between
groups or conditions is divided even further, namely into the planned contrasts

such as the two above (see Table 15.4). We omit further explanation about
planned comparisons but our advice is to make smart use of these planned
comparisons when possible. Planned comparisons are advised whenever you
can formulate a more specific null hypothesis than H0: “the mean scores are

equal in all groups or conditions”. We can make planned statements about the
differences between the groups in our example:

Example 15.3: The mean score of the red group is significantly lower
than that from the two other groups combined [𝐹(1, 42) = 18.47, 𝑝 =
.0001, 𝜔2 = 0.28]. The mean score is almost the same for the grey

1If (1) red does differ from grey and blue, and if (2) grey and blue also differ from each
other, then this implies that red differs from grey (a new finding) and that red differs from
blue (we already knew that).
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and blue group [𝐹(1, 42) < 1, n.s., 𝜔2 = 0.00]. This implies that the
red group achieves significantly lower scores than the grey group and
than the blue group.

Table 15.4: Summary of analysis of variance of the observations in
Figure ??, with planned contrasts between groups.

Variance source df SS MS 𝐹 𝑝
Group 2 14.50 7.248 9.356 0.0004
Group, contrast 1 1 14.31 14.308 18.470 0.0001
Group, contrast 2 1 0.19 0.188 0.243 0.6248

(within) 42 32.54 0.775

The analysis of variance with planned comparisons can thus be used if you
already have planned (a priori) hypotheses over differences between certain

(combinations of) groups or conditions. “A priori” means that these
hypotheses (contrasts) are formulated before the observations have been made.
These hypotheses can be based on theoretical considerations, or on previous

research results.

15.3.4.1 Orthogonal contrasts

Each contrast can be expressed in the form of weights for each condition. For
the contrasts discussed above, that can be done in the form of the following

weights:

Condition Contrast 1 Contrast 2
Red -1 0
Grey +0.5 -1
Blue +0.5 +1

The H0 for contrast 2 (𝜇grey = 𝜇blue) can be expressed in weights as follows:
C2 = 0 × 𝜇red − 1 × 𝜇grey + 1 × 𝜇blue = 0.

To determine whether two contrasts are orthogonal, we multiply their
respective weights for each condition (row):

((−1)(0), (+0.5)(−1), (+0.5)(+1)) = (0, −0.5, +0.5).
We then sum all these products: 0 − 0.5 + 0.5 = 0.

If the sum of these products is null, then the two contrasts are orthogonal.
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15.3.5 Post-hoc comparisons

In many studies, a researcher has no idea about the expected differences
between the groups or conditions. Only after the analysis of variance, after a
significant effect has been found, does the researcher decide to inspect more
closely which conditions differ from each other. We speak then of post hoc

comparisons, “suggested by the data” (Maxwell and Delaney, 2004, p.200).
When doing so, we have to work conservatively, precisely because after the

analysis of variance we might already suspect that some comparisons will yield
a significant result, i.e., the null hypotheses are not neutral.

There are many dozens of statistical tests for post hoc comparisons. The most
important difference is their degree of conservatism (tendency not to reject

H0) vs. liberalism (tendency to indeed reject H0). Additionally, some tests are
better equipped for pairwise comparisons between conditions (like contrast 2
above) and others better equipped for complex comparisons (like contrast 1
below). And the tests differ in the assumptions which they make about the

variances in the cells.

Here, we will mention one test for post hoc comparisons between pairs of
conditions: Tukey’s Honestly Significant Difference, abbreviated to Tukey’s

HSD. This test occupies a good middle ground between being too conservative
and too liberal. An important characteristic of the Tukey HSD test is that the
family-wise error (the collective p-value) over all pairwise comparisons together
is equal to the indicated p-value 𝛼 (see §15.2). The Tukey HSD test results in
a 95% confidence interval for the difference between two conditions, and/or in

a 𝑝-value for the difference between two conditions.

Example 15.4: The mean scores are not equal for the red, grey
and blue group [𝐹 (2, 42) = 9.35, 𝑝 = .0004, 𝜔2 = 0.28]. Post-
hoc comparisons using Tukey’s HSD test show that the grey and
blue groups do not differ (𝑝 = .875), while there are significant
differences between the red and blue groups (𝑝 < .001) and between
the red and grey group (𝑝 = .003).

15.3.6 SPSS

15.3.6.1 preparation

We will use the data in the file data/kleurgroepen.txt; these data are also
shown in Figure ??. Read first the required data, and check this:
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File > Import Data > Text Data...

Select Files of type: Text and select the file data/kleurgroepen.txt.
Confirm with Open.

The names of variables can be found in line 1. The decimal symbol is the full
stop (period). The data starts on line 2. Each line is an observation. The

delimiter used between the variables is a space. The text is between double
quotation marks. You do not need to define the variables further, the standard

options of SPSS work well here.
Confirm the last selection screen with Done. The data will then be read in.

Examine whether the responses are normally distributed within each group,
using the techniques from Part II of this textbook (especially §10.4).

We cannot test in advance in SPSS whether the variances in the three groups
are equal, as required for the analysis of variance. We will do that at the same

time as the analysis of variance itself.

15.3.6.2 ANOVA

In SPSS, you can conduct an analysis of variance in several different ways. We
will use a generally applicable approach here, where we indicate that there is

one dependent variable in play.

Analyze > General Linear Model > Univariate...

Select score as dependent variable (drag to the panel “Dependent variable”).
Select kleur (the Dutch variable name for colour of the group) as independent

variable (drag to the panel “Fixed Factor(s)”).
Select Model... and then Full factorial model, Type I Sum of squares,

and tick: Include intercept in model, and confirm with Continue.
Select Options... and ask for means for the conditions of the factor colour
(drag to the Panel “Display Means for”). Cross: Estimates of effect size

and Homogeneity tests, and confirm again with Continue.
Confirm all options with OK.

In the output, we find first the outcome of Levene’s test on equal variances
(homogeneity of variance) which gives no reason to reject H0. We can thus

conduct an analysis of variance.

Then, the analysis of variance is summarised in a table like Table 15.3, where
the effect size is also stated in the form of Partial eta square. As

explained above, it would be better, however, to report 𝜔2, but you do have to
calculate that yourself!
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15.3.6.3 planned comparison

For an analysis of variance with planned comparisons, we have to indicate the
desired contrasts for the factor kleur (the Dutch variable name for colour of
the group). However, the method is different to the above. We cannot set the

planned contrasts in SPSS via the menu system which we used until now.
Here, we instead have to get to work “under the bonnet”!

First repeat the instructions above but, instead of confirming everything, you
should now select the button Paste. Then, a so-called Syntax window will be
opened (or activated, if it was already open). Within it, you will see the SPSS

command that you built via the menu.
We are going to edit this command in order to indicate our own, special

contrasts. When specifying the contrasts, we do have to take into account the
order of the conditions, which is alphabetical by default: blue, grey, red.
The command in the Syntax window should eventually look like the one
below, after you have added the line /CONTRAST. The command must be

terminated with a full stop.

UNIANOVA score BY colour
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/EMMEANS=TABLES(colour)
/PRINT=ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN=colour
/CONTRAST(colour)=special(0.5 0.5 -1, 1 -1 0).

Place the cursor somewhere between the word UNIANOVA and the terminating
full stop, and then click on the large green arrow to the right (Run Selection)

in the Syntax window’s menu.

The output provides the significance and the confidence interval of the tested
contrast for each contrast. The first contrast is indeed significant (Sig. .000,

report as 𝑝 < .001, see §13.3), and the second is not, see Table 15.4.

15.3.6.4 post hoc comparison

First repeat the instructions above.
Select the button Post Hoc..., and select the factor kleur (the Dutch

variable name for colour of the group) (move this term to the window “Post
Hoc Tests for:”). Tick: Tukey, and then Continue. Confirm all options with

OK.

For each pairwise comparison, we see the difference, the standard error, and
the Lower Bound and Upper Bound of the 95% confidence interval of that
difference. If that interval does not include null then the difference between
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the two groups or conditions is thus probably not equal to null. The corrected
p-value according to Tukey’s HSD test is also provided in the third column.

We can see that red differs from blue, that red differs from grey, and that the
scores of the grey and blue groups do not differ.

15.3.7 JASP

15.3.7.1 preparation

We will use the data in the file data/kleurgroepen.txt; these data are also
shown in Figure ??. First read the required data, and check this.

Examine whether the responses are normally distributed within each group,
using the techniques from Part II of this textbook (especially §10.4). Note: In

JASP it is possible to examine the distribution at the same time as the
analysis of variance itself, see below.

We also need to examine whether the variances in the three groups are equal,
as required for the analysis of variance. We will do that too at the same time

as the analysis of variance itself.

15.3.7.2 ANOVA

From the top menu bar, choose

ANOVA > Classical: ANOVA

Select the variable score and move it to the field “Dependent Variable”, and
move the variable kleur (the Dutch variable name for “colour” of the group) to

the field “Fixed Factors”.
Under the heading “Display” check Estimates of effect size, and select

𝜔2 and/or (partial) 𝜂2. In this book we prefer 𝜔2. You can also check
Descriptive statistics to learn more about the scores in each cell.

Open the bar named “Assumption Checks” and check Homogeneity tests.
“Homogeneity corrections” may remain at the default value of None. Here you

can also examine whether the distribution within each group is normal, as
assumed by the analysis of variance. This is equivalent to assuming a normal
distribution of the residuals of the analysis of variance. You can inspect the
latter by checking Q-Q plot of residuals. If the assumption is met (and if

residuals are distributed normally) then the residuals should fall on an
approximately straight line in the resulting Q-Q plot (see §10.4).

The analysis of variance is summarized in the output in a table similar to
Table 15.3, in which the effect size should be reported as well.
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The output also contains the summary of Levene’s test for equal variances
(homogeneity of variance). This test does not support rejection of H0, so we
may conclude that the variances are indeed approximately equal, i.e., that

that particular assumption of the analysis of variance is warranted.

15.3.7.3 planned comparison

For an analysis of variance with planned comparisons we need to specify the
planned comparisons for the factor kleur. The procedure is initially the same

as above, so repeat the instructions given under ANOVA above.

Next, open the bar named “Contrasts”. The field “Factors” should contain the
factor kleur followed by “none”. Instead of “none” select the option “custom”.

Now below the field there appears a work sheet titled “Custom for kleur”.
Enter the the values for the contrast as specified above (§15.3.4). For contrast

1, enter −1 for red and 0.5 for blue and grey both. Next, click on Add
contrast to add another contrast, and for contrast 2 enter 0 for red

(i.e. ignore this group), −1 for grey and +1 for blue.

The output of the planned contrasts provides the test value, its significance,
and optionally the confidence interval of the contrasts. Note that in the text
above (§15.3.4), the planned contrasts were tested using the 𝐹 test statistic,

whereas JASP uses the 𝑡 test. The reported 𝑝 values are identical. Report the
testing of the planned contrasts using the 𝑡 values and 𝑝 values, just as you
would do for a regular 𝑡 test. The first contrast is indeed significant and the

second is not, see Example 15.3 and Table 15.4.

15.3.7.4 post-hoc comparisons

For an analysis of variance with post-hoc comparisons we need to specify the
post-hoc comparisons for the factor kleur. The procedure is initially the same

as above, so repeat the instructions given under ANOVA above.

Next, open the bar named “Post Hoc Tests”, and move the factor kleur to the
righthand field. Check that “Type” is set to Standard and that the option

Effect size is also checked. Under “Correction” check the option Tukey, and
under “Display” check the option Confidence intervals.

The output of the Post Hoc Tests shows for each pairwise comparison the
difference, the standard error, and the 95% confidence interval of the

difference. If the interval does not contain zero, then the scores are probably
different between the two groups. For each pairwise comparison JASP reports
a 𝑡 test with its adjusted 𝑝 value. We see that red differs from blue, that red

differs from grey, and that scores do not differ between the blue and grey
groups. Report that you have used Tukey’s HSD test, and report the 𝑝 values

for each comparison, as in Example 15.4 above.
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15.3.8 R

15.3.8.1 preparation

We will use the data in the file data/kleurgroepen.txt; these data are also
shown in Figure ??. First read the data, and check this:

# same data as used in Fig.15.2
colourgroups <- read.table( "data/kleurgroepen.txt",

header=TRUE, stringsAsFactors=TRUE )

Examine whether the responses are normally distributed within each group,
using the techniques from Part II of this textbook (especially §10.4).

Investigate whether the variances in the three groups are equal, as required for
analysis of variance. The H0 which we are testing is: 𝑠2

red = 𝑠2
grey = 𝑠2

blue. We
test this H0 using Bartlett’s test.

bartlett.test( x=colourgroups$score, g=colourgroups$kleur )

##
## Bartlett test of homogeneity of variances
##
## data: colourgroups$score and colourgroups$kleur
## Bartlett's K-squared = 3.0941, df = 2, p-value = 0.2129

15.3.8.2 ANOVA

summary( aov( score~kleur, data=colourgroups) -> m01 ) # see Table 15.3

## Df Sum Sq Mean Sq F value Pr(>F)
## kleur 2 14.50 7.248 9.356 0.000436 ***
## Residuals 42 32.54 0.775
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15.3.8.3 effect size

# own function to calculate omega2, see comparison (15.7) in the main text,
# for effect called `term` in summary(`model`)
omegasq <- function ( model, term ) {
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mtab <- anova(model)
rterm <- dim(mtab)[1] # resid term
return( (mtab[term,2]-mtab[term,1]*mtab[rterm,3]) /

(mtab[rterm,3]+sum(mtab[,2])) )
}
# variable kleur=colour is the term to inspect
omegasq( m01, "kleur" ) # call function with 2 arguments

## [1] 0.2708136

15.3.8.4 planned comparison

When specifying the contrasts, we have to take into account the alphabetic
ordering of the conditions: blue, grey, red. (Note that the predictor itself is

named kleur which is the Dutch term for colour of the group).

# make matrix of two orthogonal contrasts (per column, not per row)
conmat <- matrix( c(.5,.5,-1, +1,-1,0), byrow=F, nrow=3 )
dimnames(conmat)[[2]] <- c(".R.GB",".0G.B") # (1) R vs G+B, (2) G vs B
contrasts(colourgroups$kleur) <- conmat # assign contrasts to factor
summary( aov( score~kleur, data=colourgroups) -> m02 )

## Df Sum Sq Mean Sq F value Pr(>F)
## kleur 2 14.50 7.248 9.356 0.000436 ***
## Residuals 42 32.54 0.775
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# output is necessary for omega2
# see https://blogs.uoregon.edu/rclub/2015/11/03/anova-contrasts-in-r/
summary.aov( m02, split=list(kleur=list(1,2)) )

## Df Sum Sq Mean Sq F value Pr(>F)
## kleur 2 14.50 7.248 9.356 0.000436 ***
## kleur: C1 1 14.31 14.308 18.470 0.000100 ***
## kleur: C2 1 0.19 0.188 0.243 0.624782
## Residuals 42 32.54 0.775
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When we have planned contrasts, the previously constructed function omegasq
can no longer be used (and neither can the previously provided formula). We
now have to calculate the 𝜔2 by hand using the output from the summary of

model m02:
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(14.308-1*0.775)/(0.775+14.308+0.19+32.54) # 0.2830402

## [1] 0.2830402

(0.188-1*0.775)/(0.775+14.308+0.19+32.54) # rounded off 0.00

## [1] -0.012277

15.3.8.5 post hoc comparisons

TukeyHSD(m02)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = score ~ kleur, data = colourgroups)
##
## $kleur
## diff lwr upr p adj
## grey50-blue -0.158353 -0.9391681 0.6224622 0.8751603
## red-blue -1.275352 -2.0561668 -0.4945365 0.0007950
## red-grey50 -1.116999 -1.8978139 -0.3361835 0.0033646

For each pair, we see the difference, and the Lower Bound (lwr) and the Upper
Bound (upr) of the 95% confidence interval of the difference. If that interval

does not include zero, then the difference between the two groups or conditions
is thus probably not equal to zero. The corrected p-value according to Tukey’s
HSD test is also given in the last column. Again, we see that red differs from

grey, that red differs from blue, and that the grey and blue scores do not differ.

15.4 Two-way analysis of variance

In §15.2, we already gave an example of a research study with two factors
which were investigated in one analysis of variance. In this way, we can

investigate (i) whether there is a main effect from the first factor (e.g. the
speaker’s region of origin), (ii) whether there is a main effect from the second
factor (e.g. speaker gender), and (iii) whether there is an interaction effect. A
such interaction implies that the differences between conditions of one factor
are not the same for the conditions of the other factor, or put otherwise, that
a cell’s mean score deviates from the predicted value based on the two main

effects.
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15.4.1 An intuitive explanation

In many studies, we are interested in the combined effects of two or more
factors. In Table 15.2, we already saw mean speech tempos, split up according
to the speaker’s region of origin and sex. If the differences between the regions

are different for men compared with women, or put differently, if the
differences between men and women are different for the different regions then
we speak of an interaction. By adding a second factor into the study, we thus
have to deal with a third factor, namely the interaction between the first and

second factor2.

If a significant interaction is present then we can no longer make general
statements about the main effect we are concerned with. After all, the impact

of a main effect is also dependent on the interaction with (an) other main
effect(s), as can be seen in Figure 6.1 (§6.8). The listener group’s scores are on

average not higher compared with those of the other groups, and the scores
are also on average not higher in one condition than in the other. The main
effects are thus not significant — but their interaction on the other hand is

indeed significant. In general, interaction occurs when the effect of one factor
varies depending on the different levels of another factor. In this example of
two-way interaction, the effect of one factor is in opposite directions for the

two levels of the other factor.

15.4.2 A formal explanation

We again assume that the scores have been built up according to a statistical
model, namely as the sum of the population mean 𝜇, a systematic effect 𝛽𝑘 of
the 𝑘’the condition of factor B, a systematic effect (𝛼𝛽)𝑗𝑘 of the combination
of conditions (𝑗, 𝑘) of factors A and B, and a chance effect 𝑒𝑖𝑗𝑘 for the 𝑖’the

replication within the 𝑗𝑘’the cell. In formula:

𝑥𝑖𝑗𝑘 = 𝜇 + 𝛼𝑗 + 𝛽𝑘 + (𝛼𝛽)𝑗𝑘 + 𝑒𝑖𝑗𝑘

In the one-way analysis of variance the total ‘sums of squares’ is split up into
two components, namely between and within conditions (see equation (15.4)).

With the two-way analysis of variance, there are now however four

2If we add more factors then the situation quickly becomes confusing. With three main
effects, there are already 3 two-way interactions plus 1 three-way interaction. With four main
effects, there are already 6 two-way interactions, plus 4 three-way interactions, plus 1 four-way
interaction.
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components:

∑(𝑥𝑖𝑗𝑘 − 𝑥)2 =∑
𝑗

𝑛𝑗( ̄𝑥𝑗 − ̄𝑥)2+ (15.10)

∑
𝑘

𝑛𝑘( ̄𝑥𝑘 − ̄𝑥)2+ (15.11)

∑
𝑗

∑
𝑘

𝑛𝑗𝑘( ̄𝑥𝑗𝑘 − ̄𝑥𝑗 − ̄𝑥𝑘 + ̄𝑥)2+ (15.12)

∑
𝑖

∑
𝑗

∑
𝑘

(𝑥𝑖𝑗𝑘 − ̄𝑥𝑗𝑘)2 (15.13)

The degrees of freedom of these sums of squares also add up to each other
again:

(𝑁 − 1) = (𝐴 − 1) +(𝐵 − 1) + (𝐴 − 1)(𝐵 − 1) +(𝑁 − 𝐴𝐵) (15.14)
df𝑡 = df𝐴 +df𝐵 + df𝐴𝐵 +df𝑤 (15.15)

Just like with the one-way analysis of variance, we again calculate the ‘mean
squares’ by dividing the sums of squares by their degrees of freedom.

We now test three null hypotheses, namely for the two main effects and their
interactions. For each test, we determine the corresponding 𝐹 -ratio. The
numerator is formed from the observed variance, as formulated above; the

denominator is formed from 𝑠2
𝑤, the chance variance between the replications

within the cells. All the necessary calculations for analysis of variance,
including determining the degrees of freedom and p-values, are carried out by

computer nowadays.
The results are summarised again in an ANOVA table, which has now been
somewhat extended in Table 15.6. We now test and report three hypotheses.
If the interaction is significant, then you should first report the interaction,

and only then the main effects. After all, the interaction present has an
influence on how we should interpret the main effects. If the interaction is not
significant, like in our current example with speech tempos from Table 15.2,
then it is usual to first report the main effects, and then the non-significant

interaction effect.

The observed speech tempos differ significantly between the four
regions of origin of the speakers [𝐹 (3, 71) = 6.09, 𝑝 < .001, 𝜔2 =
.14], and men speak significantly faster than women [𝐹 (1, 71) =
15.03, 𝑝 = .0002, 𝜔2 = .13]. The two factors show no interaction
[𝐹 (3, 71) = 1.41, n.s., 𝜔2 = .01]. A post hoc comparison between the
regions showed that speakers from the West speak significantly more
quickly than those from the North (Tukey’s HSD test, 𝑝 = .0006) and
from those from the South (𝑝 = .0164); other pairwise differences
between regions were not significant.
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Table 15.6: Summary of two-way analysis of variance of the speech
tempos in Table 15.2.

Source of variance df SS MS 𝐹 𝑝
(i) Regio 3 0.0124 0.0041 6.09 <.001
(ii) Sex 1 0.0102 0.0102 15.03 <.001
(iii) Region × Sex 3 0.0029 0.0010 1.41 .248
within 71 0.0484 0.0007

15.4.3 SPSS

15.4.3.1 Preparation

One speaker has a very long average syllable duration; we will ignore this
observation from now on.

Data > Select cases...

Specify that we are only using observations which satisfy a condition, and
specify the condition as syldur < 0.4.

15.4.3.2 ANOVA and post hoc tests

Analyze > General Linear Model > Univariate...

Drag the dependent variable (syldur) to the box Dependent variable. Drag
the two independent variables (sex, region) to the Fixed factor(s) box.

For the post hoc test, select the button Post Hoc.... Select the region factor
and select Tukey. Confirm with Continue and then again with OK.

15.4.4 JASP

15.4.4.1 preparation

One speaker has a very long average syllable duration; we will ignore this
observation from now on. We do so by setting a filter which excludes this

particular observation. Go to the data sheet, and click on the funnel or filter
symbol in the top left cell. A working panel will appear in which you can
specify the selection. Select the variable syldur from the lefthand menu, so

that it moves to the working panel. Then click on the symbol < from the top
menu of operators, and place the cursor to the right of the < symbol on the
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working panel, and then type 0.4. The complete condition on the working
panel should now be syldur < 0.4. Next click on the button Apply

pass-through filter below the working panel in order to apply this filter.
In the data sheet, you should see immediately that the row of excluded data

(speaker with overlong syllable duration) is greyed out. That row
(observation) will no longer be used, until you cancel the selection

(instructions for which are in §13.2.5).
Examine whether the responses are normally distributed within each group or

cell, using the techniques from Part II of this textbook (especially §10.4).
Note: In JASP it is possible to examine the distribution at the same time as

the analysis of variance itself, see below.

15.4.4.2 ANOVA

In the top menu bar, choose:

ANOVA > Classical: ANOVA

Select the variable score and move it to the field “Dependent Variable”, and
move the variables region and sex to the field “Fixed Factors”.

Under the heading “Display” check Estimates of effect size, and select
𝜔2 and/or (partial) 𝜂2. In this book we prefer 𝜔2. You can also check
Descriptive statistics to learn more about the scores in each cell.

Open the menu bar named “Model” and for “Sum of squares” choose option
Type III.

Open the menu bar named “Assumption Checks” and check Homogeneity
tests.

“Homogeneity corrections” may remain at the default value of None. Here you
can also examine whether the distribution within each group or cell is normal,

as assumed by the analysis of variance. This is equivalent to assuming a
normal distribution of the residuals of the analysis of variance. You can

inspect the latter by checking Q-Q plot of residuals. If the assumption is
met (and if residuals are distributed normally) then the residuals should fall

on an approximately straight line in the resulting Q-Q plot (see §10.4).
Open the menu bar named “Descriptive Plots” and select region for the field

“Horizontal Axis” and select sex for the field “Separate Lines”.
The output summarizes the analysis of variance in a table similar to Table
15.6, with the effect size included. The Descriptive plots section provides a
visualisation which may be helpful in understanding a possible interaction

effect.
The output under Assumption Check also reports Levene’s test for equal
variances (homogeneity of variance). This test does not suggest rejection of
H0, so we may conclude that the variances are indeed approximately equal,
i.e., that that particular assumption of the analysis of variance is warranted.
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15.4.4.3 post hoc comparisons

For an analysis of variance with post-hoc comparisons we need to specify the
post-hoc comparisons. The procedure is initially the same as above, so repeat

the instructions given under ANOVA above.

Next, open the bar named “Post Hoc Tests”, and move the factor region to the
righthand field. Check that “Type” is set to Standard and that the option

Effect size is also checked. Under “Correction” check the option Tukey, and
under “Display” check the option Confidence intervals.

The output of the Post Hoc Tests shows for each pairwise comparison the
difference, the standard error, and the 95% confidence interval of the

difference. If the interval does not contain zero, then the scores are probably
different between the two groups. For each pairwise comparison JASP reports

a 𝑡 test with its adjusted 𝑝 value using Tukey’s correction. We see that
speakers from the North and West regions differ, as do speakers from the

South and West, with large effect sizes for these two differences. The other
differences among regions are not significant.

15.4.5 R

15.4.5.1 preparation

require(hqmisc) # for hqmisc::talkers data set
data(talkers)
ok <- talkers$syldur<0.4 # TRUE for 79 of 80 talkers
# table of means, see Table 15.2 in main text
with(talkers, tapply( syldur[ok], list(region[ok],sex[ok]), mean ))

## 0 1
## M 0.2707400 0.23460
## N 0.2846000 0.25282
## S 0.2691444 0.25175
## W 0.2378100 0.23199

15.4.5.2 ANOVA

# approximately similar to Table 15.5 in main text, but R uses Type I SS
summary( aov(syldur~region*sex, data=talkers, subset=ok) -> m03 )
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## Df Sum Sq Mean Sq F value Pr(>F)
## region 3 0.01234 0.004114 6.039 0.001009 **
## sex 1 0.01031 0.010310 15.135 0.000223 ***
## region:sex 3 0.00287 0.000958 1.406 0.248231
## Residuals 71 0.04837 0.000681
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results are slightly different from those reported in Table 15.6 above,
because R computes the sums of squares somewhat differently3.

15.4.5.3 Effect size

In order to assess effect size, we will use the previously programmed function
omegasq (§15.3.8.3):

omegasq(m03, "region") # [1] 0.1380875

## [1] 0.1380875

omegasq(m03, "sex") # [1] 0.1291232

## [1] 0.1291232

omegasq(m03, "region:sex") # [1] 0.01112131

## [1] 0.01112131

These results too differ slighly from those reported in the main text above,
because R computes the sums of squares somewhat differently.

15.4.5.4 post-hoc tests

TukeyHSD(x=m03, which="region")

## Warning in replications(paste("~", xx), data = mf): non-factors ignored: sex
3The default type of computing sums of squares in R (Type I) may be used in JASP by

choosing: Model, Sum of squares: Type I. The default type of computing sums of squares
in JASP (Type III) may be achieved in R by various workarounds, see e.g. https://www.r-
bloggers.com/2011/03/anova-%E2%80%93-type-iiiiii-ss-explained.

https://www.r-bloggers.com/2011/03/anova-%E2%80%93-type-iiiiii-ss-explained
https://www.r-bloggers.com/2011/03/anova-%E2%80%93-type-iiiiii-ss-explained
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## Warning in replications(paste("~", xx), data = mf): non-factors ignored: region,
## sex

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = syldur ~ region * sex, data = talkers, subset = ok)
##
## $region
## diff lwr upr p adj
## N-M 0.016040000 -0.005674448 0.037754448 0.2195083
## S-M 0.007319474 -0.014678836 0.029317783 0.8175548
## W-M -0.017770000 -0.039484448 0.003944448 0.1466280
## S-N -0.008720526 -0.030718836 0.013277783 0.7248801
## W-N -0.033810000 -0.055524448 -0.012095552 0.0006238
## W-S -0.025089474 -0.047087783 -0.003091164 0.0190285

These results too differ slighly from those reported in the main text above,
because R computes the sums of squares somewhat differently.



Chapter 16

Chi-square-tests

16.1 Introduction

Earlier, we already saw that we cannot always make use of a parametric test
such as the t test or analysis of variance, because the collected data do not
satisfy the assumptions. If the collected data have been measured on an

interval level of measurement (see Chapter 4), or if the probability distribution
of the data is far from normal (see §10.5), then a non-parametric test is to be

preferred over such a parametric test. If the collected data do satisfy the
assumptions for a parametric test, then a non-parametric test is less sensitive

(more conservative) than a parametric test, i.e. the non-parametric test
requires a larger effect and/or a larger sample, and generally has less power

than a parametric test when seeking out an effect (see Chapter 14).

In this Chapter, we discuss the most used non-parametric test: the so-called
𝜒2 test, pronounced as “chi-square-test” (with the greek letter “chi”).

16.2 𝜒2 test for “goodness of fit” in single
sample

Data of nominal level of measurement are often analysed with the 𝜒2 test. The
number of dots on a dice is an example of a dependent variable of nominal

level of measurement: there is no physical ordering between the six sides, and
each side of a die has an equally high probability of appearing on the top.
Imagine we throw a die 60×, and find the following frequencies of the six

possible outcomes: 14, 9, 11, 10, 15, 1. This can be considered to be a sample of
𝑛 = 60 throws from an infinite population of possible throws, and the outcome
frequencies reported here should be seen as a contingency table of 1 row and 6

259
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columns (i.e. 6 cells). How high is the probability of this distribution of
outcomes? Is the die indeed honest?

The 𝜒2 test is based on the differences between the expected and observed
frequencies. According to the null hypothesis (H0: the die is honest), we

expect 10 outcomes in each cell (60/6 = 10), i.e. the expected frequency is
identical for each cell (this is called a uniform distribution). The observed
outcomes deviate from the expected frequencies of outcomes, in particular

because the outcome “six” barely occurs in this sample. This might of course
also have happened by chance. The 𝜒2 test indicates how high the probability

is of this uneven distribution of outcomes (or an even more uneven
distribution), if H0 is true. The expected outcomes are thus deduced from a

distribution of the outcomes according to H0, and we investigate how well the
observed outcomes fit the expected outcomes. This form of the 𝜒2 test is thus

also referred to as a test of the ‘goodness of fit’.

For this example, we find the outcome of the testing 𝜒2 = 12.44 with 5 degrees
of freedom (see §13.2.1 for explanation about degrees of freedom), with

𝑝 = .0297. We usually use the computer to calculate this probability value,
but we can also estimate this probability via a table with critical 𝜒2-values, see
Appendix D, and footnote 1). If H0 is true, then we have only 3% probability
of finding this outcome (or an even more uneven distribution of outcomes).
The significance 𝑝 found is smaller than 𝛼 = .05, and we thus reject H0. We

conclude that this die is not honest: the distribution of outcomes found
deviates significantly from the expected distribution according to H0.

16.3 𝜒2 test for homogeneity of a variable in
multiple samples

The 𝜒2 test can also be used for a research design with one nominal variable
which we have observed in two or more samples. The question is then whether

the distribution of the observations over the categories is equal for the
different samples. This test is comparable with t tests for two independent

samples (§13.6). We usually then summarise the numbers of observations with
a contingency table with multiple rows for the different samples, and multiple
columns for the categories of the nominal dependent variable (see also Table

11.3).

The 𝜒2-test is again based on the differences between the expected and
observed frequencies. According to the null hypothesis (there is no difference

in distribution between the two samples), the distribution of observations
across the columns should be approximately equal for all rows (and vice versa).

1The value found 𝜒2 = 12.44 is slightly under the critical value for 5 d.f. and 𝑝 = .025,
(there (𝜒2)∗ = 12.83), thus the corresponding probability of this value or a larger value is
slightly greater than 0.025.



16.4. 𝜒2 TEST FOR ASSOCIATION BETWEEN TWO VARIABLES IN SINGLE SAMPLE261

16.4 𝜒2 test for association between two
variables in single sample

Finally, the 𝜒2 test can equally well be used for a research design with two
nominal variables, which we have observed in a single sample. The question
then is whether the distribution of observations over the second variable’s
categories is equal for the different categories of the first variable (and vice
versa). We again summarise the numbers of observations in a contingency

table with multiple rows for the categories of the first nominal variable, and
multiple columns for the categories of the second nominal variable.

Here too, the 𝜒2-test is based on the differences between the expected and
observed frequencies. According to the null hypothesis (that there is no

association between the two nominal variables), the distribution of
observations across rows should be approximately equal for all columns, and

vice versa. However, this does not mean that we expect the same frequency for
all cells. This is illustrated in the following example.

Example 16.1: In the early morning of 15th April 1912, the Titanic
sunk in the Atlantic Ocean. Many of those on board lost their lives.
Those on board could be divided into four classes (1st/2nd/3rd class
passengers, and crew). Was the outcome of the disaster (whether
the individual survived the disaster or not) approximately equal for
persons of these four classes? The contingency table 16.1 provides
the distributions of outcomes.

Table 16.1: Distribution of those on board the Titanic (𝑁 = 2201),
according to passage and status (survived or not). Data taken from
the dataset Titanic in R.

Class Died Survived Total
1st 122 203 325
2nd 167 118 285
3rd 528 178 706
Crew 673 212 885
Total 1490 711 2201

For the expected frequencies, we have to take into account the dif-
ferent numbers of those on board in the different classes, and the
unequal distribution of outcomes (1490 non-survivors and 711 sur-
vivors). If there were no association between the class and the sur-
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vival status, we would expect there to be 220 non-survivors amongst
the first class passengers [(1490/2201) × 325 = (325 × 1490)/2201 =
220] and 105 non-survivors [(711/2201) × 325 = (325 × 711)/2201 =
105]. In this way, we can determine the expected frequencies for
each cell, taking into account the marginal totals. With the help of
these expected frequencies, we then calculate 𝜒2 = 190.4, here with
3 d.f., 𝑝 < .001. The significance 𝑝 found is smaller than 𝛼 = .001,
and we thus reject H0. We conclude that the outcome of the disaster
(died or survived) was unevenly distributed for the four classes of
those on board the Titanic.

For the analysis of contingency tables which consist of precisely 2 × 2 cells, the
Phi coefficient is an effective alternative (see §11.6).

Reread and remember the warnings about correlation and causality (§11.7) —
these are also applicable here.

16.5 assumptions

The 𝜒2-test requires three assumptions which must be satisfied in order to use
the test.

• The data have to be measured on a nominal level of measurement, or have
to be simplified to nominal level (see Chapter 4).

• All observations have to be independent of each other, and based on (a)
random sample(s) of the population(s) (see §7.3), or on random assign-
ment of the elements from the sample to experimental conditions (ran-
domisation, see §5.4, point 5). Each element for the sample can thus only
contribute one observation to one cell2.

• The sample has to be large enough so that the expected frequency (𝐸) for
each cell is at least 5. If the expected frequency or frequencies in one or
more cells is/are less than 5, then reduce the number of cells by merging
bordering cells, and determine the expected frequencies again.

16.6 formulas

The test statistic 𝜒2 is defined as

𝜒2 = ∑ (𝑂 − 𝐸)2

𝐸 (16.1)

2If one variable’s observations are paired rather than independent (e.g. before/after treat-
ment, passed/failed, etc.), then the McNemar test is a useful alternative.
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in which 𝑂 and 𝐸 indicate the observed and expected numbers of observations
for each cell of the frequency table (Ferguson and Takane, 1989). The

expected numbers might also be rational numbers (e.g. 45/6 for the 6 possible
outcomes of an honest die, if we throw 45×). The larger the difference (𝑂 − 𝐸)
in one or several cells, the larger also 𝜒2 will be (see below). Due to squaring,
the test statistic 𝜒2 is always null or positive, and never negative (Ferguson

and Takane, 1989).
The probability distribution of the test statistic 𝜒2 is determined by the

number of degrees of freedom (see §13.2.1 for explanation of this concept). For
a 𝜒2-test with one nominal variable (“goodness of fit”), the number of degrees
of freedom must be equal to the number of cells minus 1. For a 𝜒2-test with

multiple samples (homogeneity) and/or with two variables (correlations), with
respectively 𝑘 and 𝑚 categories, the number of degrees of freedom is equal to

(𝑘 − 1) × (𝑚 − 1).
For each cell of the frequency table, in row 𝑖 and column 𝑗, we can also

compute the raw residual:

𝑒𝑖𝑗 = (𝑂𝑖𝑗 − 𝐸𝑖𝑗)
√𝐸𝑖𝑗

(16.2)

If we square these raw residuals and then sum the squares, the result is the 𝜒2

test statistic given in Eq.(16.1) above.
It is more insightful to compute the standardized residual for each cell of the
frequency table (Agresti, 2007, p.38). The standardization means that the

standard error of the residuals is taken into account (by using row totals 𝑅𝑖,
column totals 𝐶𝑗, and the grand total 𝑁):

𝑒𝑖𝑗 = (𝑂𝑖𝑗 − 𝐸𝑖𝑗)
√𝐸𝑖𝑗 × (1 − 𝑅𝑖

𝑁 ) × (1 − 𝐶𝑗
𝑁 )

(16.3)

These standardized residuals may be interpreted as standard normal 𝑍 scores,
using the critical 𝑍 values given in Appendix B. Hence the adjusted

standardized residuals provide insight in the source of a significant outcome of
the 𝜒2 test, and they also allow us to assess the contribution of each cell to

that outcome3.
For the example given in §16.2 we find the following six standardized residuals
for the six possible outcomes of the die: (1.39, −0.35, +0.35, 0.00, 1.73, −3.12).
The first five of these outcomes are observed approximately as frequently as
expected, but the sixth of these outcomes is observed significantly less often

than expected (𝑝 = .003).
3If multiple comparisons are performed, then the critical value of 𝛼 should be adjusted

accordingly, in order to prevent Type I errors somewhere among the comparisons. With 𝑘
cells and 𝑘 comparisons, a safe precaution is to use 𝛼/𝑘 instead of 𝛼 for each comparison
– this is called Bonferroni’s adjustement of the 𝛼 value, or Dunn’s procedure (Maxwell and
Delaney, 2004, p.202). See also §15.3.5.
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16.7 SPSS

16.7.1 goodness of fit: preparation

If we want to investigate a nominal variable, then it must of course be marked
as a column in the SPSS data file. Every observation forms a separate row in
the data file, and the nominal independent variable is a column in the data file.

Sometimes, we do not have the separate observations (rows) but do have the
table of numbers of observations per category of the nominal variable. We can

work further with these. Let us say that we have two columns, named
outcome and number, as follows (see §16.2):

Outcome Number
1 14
2 9
3 11
4 10
5 15
6 1

Next, each cell (row) has to get a weight that is as large as the number of
observations, which is named here in the second column: the first cell (row)
weighs 14×, the second cell (row) weighs 9× etc. Thanks to this trick, we do

not have to fill in 𝑁 = 60 rows (a row for each observation), but only 6 rows (a
row for each cell).

Data > Weigh Cases...

Choose Weigh cases by... and select the variable number in entry field.
Confirm with OK.

Choose and select the variable number in input field. Confirm with OK.

16.7.2 goodness of fit: testing

Analyze > Nonparametric tests > Legacy Dialogs > Chi-square...

Select the variables outcome (in “Test variable list” panel) and indicate that
we expect equal numbers of observations in each cell. (It is also possible to

enter other expected frequencies here, if other, unequal frequencies are
expected according to H0.) Confirm with OK.
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16.7.3 contingency tables: preparation

If we want to investigate two nominal variables, then they must both be
marked as columns in the SPSS data file. Each observation forms a separate
row in the data file, and the nominal variables are columns in the data file.

For Example 16.1 above, we then use a “long” data file, consisting of
𝑁 = 2201 rows, with a separate row for each person on board, with at least

two columns, for class and survivor.

Sometimes, we do not have the separate observations (rows) but do have the
contingency table of numbers of observations for each combination of

categories of the nominal variables. We can also work further with these. Let
us say that we have three columns, named class, survivor and number, as

follows:

Class Survivor Number
1st no 122
1st yes 203
2nd no 167
2nd yes 118
3rd no 528
3rd yes 178
crew no 673
crew yes 212

Next, each cell (row) has to get a weight which is as large as the number of
observations, which is named in the third column: the first cell (row) weighs

122×, the second cell (row) weighs 203×, etc. With this trick, we do not have
to enter 𝑁 = 2201 rows (a row for each observation), but only 8 rows (a row

for each cell).

Data > Weigh Cases...

Choose Weigh cases by... and select the variable number in entry field.
Confirm with OK.

16.7.4 contingency tables: testing

The testing proceeds in the same way as described in §11.6 for the association
between two nominal variables.

Analyze > Descriptives > Crosstabs...
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Select the variables class (in “Rows” panel) and survivor (in “Columns”
panel) for contingency table 16.1.

Choose Statistics… and tick the option Chi-square. Confirm firstly with
Continue and afterwards again with OK.

16.8 JASP

16.8.1 goodness of fit: preparation

The nominal data to investigate are typically coded as a “long” column in the
data file. Each observation typically forms a separate row in the data file, and
the nominal independent variable is a column in the data file. However, for the

“goodness of fit” 𝜒2 test in JASP, the data have to be entered not in this
“long” fashion (with 𝑁 rows), but in the form of a summary of numbers of

observations (counts, frequency) per category of the nominal variable (with 𝑘
rows, one row for each of 𝑘 categories).

For the example in §16.2 these summary data would look like this:

outcome count
1 14
2 9
3 11
4 10
5 15
6 1

In order to enter these data in JASP, create a data file (using e.g. Excel or any
text editor) with the contents as listed above, including the column headers.

Save the file in CSV format (.csv, not .xlsx) and open it in JASP.

16.8.2 goodness of fit: testing

In the top menu bar, choose

Frequencies > Classical: Multinomial Test

Select the variable containing the categories of the nominal variable, here
outcome, and place it in the entry field “Factor”. Select the variable containing

the counts (frequencies) of each category, and place it in the entry field
“Count”.

Under “Test Values” there are two options.
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If you choose Equal proportions (multinomial test), a special version of
the 𝜒2 test will be performed, testing for a uniform distribution (as explained

above, this means that the expected frequency is equal for each outcome
category). In this example, this H0 implies that the die is honest, which is

exactly what we want to test here.
If you choose Expected proportions (chi-square test), you may adjust
the expected frequencies in each cell. Use this option if your H0 postulates a
non-uniform (e.g. gaussian) distribution. A table will appear, in which you

must enter the expected frequencies according to H0 for each category or cell.
By default, the values in this table are all equal, so that the default is
equivalent to the “equal proportions” or uniform H0 in the first option.

You may also check Descriptives and Confidence interval under the
heading “Additional Statistics”, and check Descriptives plot under “Plots”,

so as to gain better insight in the patterns in your data.

In JASP it is not possible to obtain the (adjusted) standardized residuals;
however you can compute these manually from the observed and expected

counts.

16.8.3 contingency tables: preparation

The nominal data to investigate are typically coded as two or more “long”
columns in the data file. Each observation (e.g. each person on the Titanic, in

Example 16.1) corresponds with a separate row in the data file, and the
nominal variables are in columns in the data file (e.g. class and outcome).
We can use such a “long” data file for creating a contingency table in JASP,
and for performing a 𝜒2 test on that contingency table — see the end of the

next subsection for further instructions.

However, for performing a 𝜒2 test on a contingency table in JASP, the data do
not necessarily have to be entered in this “long” fashion (with 𝑁 rows); the

data may also be in the form of a summary of numbers of observations
(counts, frequency) per category of the nominal variable (with 𝑘 rows, one row

for each of 𝑘 cells or combinations of categories).

For example 16.1, the data would then look as follows:

class outcome count
1st died 122
1st survived 203
2nd died 167
2nd survived 118
3rd died 528
3rd survived 178
crew died 673
crew survived 212
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In order to enter these data in JASP, create a data file (using e.g. Excel or any
text editor) with the contents as listed above, including the column headers.

Save the file in CSV format (.csv, not .xlsx) and open it in JASP.

16.8.4 contingency tables: testing

The 𝜒2 test on a contingency table proceeds in the same way as described in
§11.6 for association between two nominal variables.

In the top menu bar, choose:

Frequencies > Classical: Contingency Tables

Select one nominal variable (class) in the “Rows” field, and the other
nominal variable (outcome) in the “Columns” field, to set up the contingency

table (Table 16.1). Select the variable count into the “Counts” field; this
specifies the numbers of observations for each cell.

Open the Statistics section bar, and check the option Chi-square (𝜒2).
Open the Cells section bar, and check the option Expected counts.

The resulting value of the 𝜒2 test statistic is reported in the output under
Chi-Squared Tests.

If you have a “long” data sheet, with one observation per row, then you only
need to select one nominal variable (class) in the “Rows” field, and the other
nominal variable (outcome) in the “Columns” field, to set up the contingency

table (Table 16.1).
Open the Statistics section bar, and check the option Chi-square (𝜒2).

Open the Cells section bar, and check the option Expected counts.

In JASP it is not possible to obtain the (adjusted) standardized residuals;
however you can compute these manually from the observed and expected

counts.

16.9 R

16.9.1 goodness of fit: testing

chisq.test( c( 14, 9, 11, 10, 15, 1 ) ) -> dobbel.chi2.htest # die §16.2
print(dobbel.chi2.htest)

##
## Chi-squared test for given probabilities
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##
## data: c(14, 9, 11, 10, 15, 1)
## X-squared = 12.4, df = 5, p-value = 0.0297

dobbel.chi2.htest$residuals # raw residuals

## [1] 1.2649111 -0.3162278 0.3162278 0.0000000 1.5811388 -2.8460499

sum( (dobbel.chi2.htest$residuals)^2 ) # chi2 = sum of sq of raw resid

## [1] 12.4

dobbel.chi2.htest$stdres # standardized residuals

## [1] 1.3856406 -0.3464102 0.3464102 0.0000000 1.7320508 -3.1176915

16.9.2 contingency table: preparation and testing

In R, the dataset Titanic is provided as a multidimensional matrix. We sum
the observations and make a contingency table of the first dimension (class)

and the fourth dimension (outcome).

apply( Titanic, c(1,4), sum ) -> Titanic.classoutcome

Next, we use the contingency (frequency) table as the input for a chisq.test.
The resulting chisq.htest object is saved within R in order to inspect its

residuals.

chisq.test( Titanic.classoutcome ) -> Titanic.chisq.htest
print(Titanic.chisq.htest)

##
## Pearson's Chi-squared test
##
## data: Titanic.classoutcome
## X-squared = 190.4, df = 3, p-value < 2.2e-16

Titanic.chisq.htest$stdres # standardized residuals
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## Survived
## Class No Yes
## 1st -12.593038 12.593038
## 2nd -3.521022 3.521022
## 3rd 4.888701 -4.888701
## Crew 6.868541 -6.868541

The adjusted standardized residuals show the remarkably high number of
survivors among the first class passengers, and the remarkably low number of

survivors among the ship’s crew.

16.10 Effect size: odds ratio

When using the 𝜒2-test, the effect size can be reported in the form of the
so-called “odds ratio”. The ‘odds ratio’ is derived from the contingency table
with frequencies per cell; the odds ratio is most commonly used with 2 × 2
contingency tables. We will explain all these matters using the following

example of a 2 × 2 contingency table.

Example 16.2: Doll and Hill (1956) investigated the relation between
smoking and lung cancer. They first surveyed all British doctors
about their age and smoking behaviour. Next, the researchers kept
up over the years with the death notices and cause of death of all
those surveyed. The first outcomes, after more than four years, are
summarised in Table 16.2.

Table 16.2: Contingency table of 𝑁 = 24354 British doctors of 35
years and older for the first survey, divided according to smoking
behaviour (rows: (non-) smoker currently or previously) and ac-
cording to death by lung cancer in the last 4 years (columns), with
letter indication for the numbers of observations.

Smoking No lung cancer Lung cancer Total
No (0) 3092 (A) 1 (B) 3093 (A+B)
Yes (1) 21178 (C) 83 (D) 21261 (C+D)
Total 24270 (A+C) 84 (B+D) 24354 (A+B+C+D)

In the usual manner, we find 𝜒2 = 10.35, df=1, 𝑝 < .01. We conclude
that there is an association between smoking behaviour and death
from lung cancer.
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For the effect size, we firstly calculate the ‘odds’ of death from lung cancer for
the smokers: D/C= 83/21178 = 0.00392. Amongst the smokers, there are 83
deaths from lung cancer, compared with 21178 deaths not from lung cancer

(the ‘odds’ of dying from lung cancer are 1 in 0.00392). For the non-smokers:
B/A=1/3092 = 0.00032 (the ‘odds’ are 1 in 0.00032).

We call the ratio of these two ‘odds’ for the two groups the ‘odds ratio’
(abbreviated OR). In this example, we find (D/C) / (B/A) = AD/BC =

(3092 × 83)/(1 × 2178) = (0.00392)/(0.00032) = 12.1. The ‘odds’ of dying from
lung cancer are thus more than 12× as great for the smokers as for the

non-smokers. We report this as follows:

Doll and Hill (1956) found a significant relation between smoking
behaviour and death from lung cancer, 𝜒2(1) = 10.35, 𝑝 < .01, OR =
12.1. The ‘odds’ of dying from lung cancer seemed to be more than
12× as great for smokers as for non-smokers.
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Chapter 17

Other nonparametric tests

17.1 Introduction

In this chapter, we discuss different nonparametric tests. These tests can be
used when the data is not measured on an interval level of measurement (see
Chapter 4), or if the probability distribution of the data deviates from the

normal distribution (see §10.5). The nonparametric tests do not make
assumptions about the parameters of the probability distribution of the data.

Earlier, we already saw that nonparametric correlation coefficients exist,
namely the Spearman’s rank correlation coefficient (§11.5) and the (nominal)

Phi correlation coefficient (§11.6). In the previous chapter, we discussed a
much used nonparametric test, the 𝜒2-test. Below, we will look at some other
frequently used nonparametric tests. We discuss these in two groups: firstly

for paired observations, and afterwards for unpaired observations from
multiple samples. In each subsection, we will firstly discuss the tests which use

information of the nominal level (sign tests and related) and then the tests
which use information of the ordinal level, i.e. which are based on the rank

order of the observed values.

17.2 Paired observations, single sample

17.2.1 Sign test

A handy test for paired observations is the so-called sign test. This test can be
viewed as a nonparametric, nominal counterpart of the t-test for paired

observations (§13.7).
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In this test, we look only at the sign (positive or negative) of the difference 𝐷
between the two paired observations. Let us again take the example of an
imaginary study on webpages with U (Dutch formal ‘you’) and je (Dutch

informal ‘you’) as forms of address, with 𝑁 = 10 respondents. In Table 13.1,
we saw that all 10 respondents preferred je: the difference variable 𝐷 was 10×

negative and 0× positive, or put differently, all the outcomes of 𝐷 were
negative.

With the sign test, we look at how probable this distribution of positive and
negative values of 𝐷 would be, if H0 were correct. According to H0, we expect
𝑁/2 positive and 𝑁/2 negative differences; according to H0, the probability of

a positive sign of 𝐷 (the probability of a hit) is thus 𝑝 = 1/2. We now
determine the probability of the observed outcome (0 hits) given H0, and we

use the binomial probability distribution for this (§10.2):

𝑃(0 hits) = (10
0 )(0.5)0(1 − 0.5)10−0 = (1)(1)(0.000976) < 0.001 (17.1)

The probability of this outcome according to H0 is so small that, in light of
this observed (and presumably valid) outcome, we decide to reject H0, and we

report this as follows:

The 𝑁 = 10 respondents unanimously give a lower judgement to the
webpage with U as the form of address than to the comparable page
with je as the form of address; this is a significant difference (sign
test, 𝑝 < .001).

17.2.2 Wilcoxon signed-ranks test

The Wilcoxon signed-ranks test can be viewed as a nonparametric, ordinal
counterpart of the t-test for paired observations (§13.7).

This test makes use of the rank order of the difference 𝐷 between the two
paired observations. We will again use the example of the imaginary study on
webpages with U or je as forms of address (Table 13.1), but will now look at
the rank order of the differences 𝐷 (taking into account equal differences from

several participants), and indicate the sign (positive or negative) of the
difference 𝐷:

−2, −2, −7.5, −5, −7.5, −5, −10, −7.5, −5, −2

The sum of the positive rankings is 𝑊+ = 0 (there are no positive rankings)
and the sum of the negative rankings 𝑊− = −53.5, and with that |𝑊−| = 53.5.
The smallest of these two sums (𝑊+ or |𝑊−|) forms the test statistic; here, we
use |𝑊−|. We will not discuss the probability distribution of the test statistic
but instead have the significance calculated by computer: 𝑃(|𝑊−|) = .0055.
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The probability of this outcome according to H0 is so small that, in light of
this observed (and presumably valid) outcome, we again decide to reject H0.

The (ordinal) Wilcoxon signed-ranks test makes use of more information than
the (nominal) sign test. If an effect is significant according to the sign test, as
is the case in this example, then it is also always significant according to the

Wilcoxon signed-ranks test. If an effect is significant in the Wilcoxon
signed-ranks test, then it is also always significant according to the t-test. This

has to do with the level of measurement: the sign test considers only the
(nominal) sign of the differences, the Wilcoxon signed-rank is based on the
(ordinal) ranking of the differences, and the t-test is based on the (interval)

size of the differences.

17.2.2.1 formulas

We not only calculate 𝑊+ (or |𝑊−|) in the aforementioned manner, but also
the corresponding value of 𝑧 (Ferguson and Takane, 1989):

𝑧 = 𝑊+ − 𝑁(𝑁+1)
4

√ 𝑁(𝑁+1)(2𝑁+1)
24

(17.2)

With this, we can calculate the effect size, in the form of a correlation
(Rosenthal, 1991, Eq.2.18):

𝑟 = 𝑧√
𝑁

(17.3)

For the example above, we find 𝑧 = −2.803, and 𝑟 = −.89, which indicates an
extremely large effect.

17.3 Independent observations, multiple
samples

17.3.1 Median test

The median test can be viewed as a nonparametric, nominal counterpart of
the t-test for unpaired, independent observations. It is actually a sign test (see
17.2.1), in which we test whether the distribution of observations above/below
their joint median (see §9.3.2 for explanation about the median) deviates from
the expected distribution according to H0. The null hypothesis H0 is that the

distributions of the two samples do not differ from each other, and that
approximately half of the observations in both samples lie above the joint

median, and the other half lies below it.
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17.3.2 Wilcoxon rank sum test, or Mann-Whitney U test

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U test. Both
can be viewed as nonparametric, ordinal counterparts of the t-test for

unpaired, independent observations (§13.6).

Let us say that we want to investigate whether certain text attributes have an
influence on the subjective appreciation of the text. For this, a researcher

selects a random sample of participants from the population (see §7.3), and
assigns these participants in a random manner to two experimental conditions

(randomisation, see §5.4, point 5).
In the first condition, the participant has to give a judgement about the
original version of a text. In the second condition, the participants give a

judgement about the rewritten version of the same text. The higher the given
score, the higher the valuation for the text. One of the participants

unfortunately had to leave the study prematurely. The judgements of the
remaining 19 participants are in Table 17.1. On the basis of the random

sample and the random assignment of participants to conditions, the
judgements can be seen as coming from two different random samples. The
null hypothesis is that there is no difference in valuation between the two

conditions.

Table 17.1: Judgements of 𝑁 = 19 participants on the original and
rewritten versions of a text.

Condition
Original 10 17 35 2 19 4 18 28 24 –
Rewritten 15 22 8 48 29 25 27 39 31 36

The Wilcoxon rank sum test is based on the ranking of the observations. Each
observation is replaced by the ranking of that observation, taken over the two
conditions together. The lowest or smallest value gets ranking 1. We indicate
the sum of the rankings of the smallest group (here: of the original condition)
with 𝑊1. The probability distribution of 𝑊 under H0 is known (exactly for
small 𝑛1 and 𝑛2, and approximately for larger samples). With this, we can
determine the probability of encountering the value found of 𝑊1, or a more

extreme value, if H0 is true.

Earlier, we saw that the t-test for unpaired observations (§13.6) investigates
whether the means are different for two samples. Analogously, the Wilcoxon

rank sum test (and the Mann-Whitney 𝑈 test) investigates whether the
medians are different for the two samples. The test is thus more robust for
outliers — if we were to replace the highest judgement (48) with a much

higher judgement (say 480), then that would have no influence on the median
of that group, nor on the test statistic or its significance.
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For our example, we find that the lower rankings occur relatively frequently in
the first condition (original version), i.e. that the text in this condition

received lower judgements. The sum of the rankings for this smallest condition
is the test statistic 𝑊1 = 67. In some versions of the test1, this raw sum is
used to calculate the significance. In other test versions2, this raw sum is

firstly corrected for the minimal value of 𝑊1 (see the formulas below): the test
statistic is then 𝑈 = 𝑊1 − min(𝑊1) = 67 − 45 = 22. Afterwards, the

significance of 𝑊1 = 67 or of 𝑈 = 22 is calculated. We find that 𝑝 = .0653. If
we do a two-sided test (H0: judgements in conditions 2 are no higher and no

lower than those in condition 1) with 𝛼 = .05, then there is no reason to reject
H03.

17.3.2.1 formulas

For the sums of the rankings, it is the case that
𝑊1 + 𝑊2 = (𝑛1 + 𝑛2)(𝑛1 + 𝑛2 + 1)/2.

If all the lowest rankings (i.e. all lowest judgements) are in the smallest (first)
condition, then 𝑊1 has the minimal value of 𝑛1(𝑛1 + 1)/2. If all the highest
rankings (i.e. all the highest judgements) are in this condition, then 𝑊1 has

the maximum value of 𝑛1(𝑛1 + 𝑛2 + 1)/2. 𝑊1 (and the minimum and
maximum of it) can only be integer numbers.

It is useful to not only calculate 𝑊1 or 𝑈 , but also the corresponding value of
𝑧 (Ferguson and Takane, 1989):

̄𝑊1 = 𝑛1(𝑛1 + 𝑛2 + 1)
2 (17.4)

𝑧 = |𝑊1 − ̄𝑊1| − 1
2

√ 𝑛1𝑛2(𝑛1+𝑛2+1)
12

(17.5)

With this, we again determine the effect size, using equation (17.3). For the
above example, we find ̄𝑊1 = 22.5, 𝑧 = 1.837, and 𝑟 = .42, which indicates a

‘medium’ effect. That this considerable effect still does not lead to a
significant difference (with two-sided testing) is presumably a consequence of

the (too) small size of the two groups.

1Wilcoxon rank sum test in SPSS.
2Mann-Whitney test in SPSS and in R, and Wilcoxon rank sum test in R.
3If we do a two-sided test with 𝛼 = .10, then we could indeed reject H0. If we do a one-

sided test (H0: judgements in condition 2 are not higher than in condition 1), then we may
halve the calculated 𝑝, since the calculated 𝑝 assumes two-sided testing. We would then find
𝑝 = .0653/2 = .0326, and, as this probability is smaller than 𝛼 = .05, we would then indeed
be able to reject H0.
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17.3.3 Kruskall-Wallis H test

The Kruskall-Wallis H test can be viewed as an expansion of the Wilcoxon
rank sum test (see §17.3.2 above), for 𝑘 ≥ 2 independent samples or groups.
The test can also be used to compare 𝑘 = 2 groups; in this case, the test is

completely equivalent to the Wilcoxon rank sum test above. The
Kruskall-Wallis H test can be viewed as the nonparametric, ordinal

counterpart of a one-way analysis of variance (see §15.3.1). Put loosely: we
carry out a kind of variance analysis, not on the observations themselves but

on the rankings of the observations. We calculate 𝐻 as the test statistic based
on the rankings of the observations in the 𝑘 different groups.

17.3.3.1 formula

𝐻 = 12
𝑁(𝑁 + 1)

𝑘
∑(𝑅2

𝑗
𝑛𝑗

) − 3(𝑁 + 1) (17.6)

where 𝑅𝑗 refers to the sum of the rankings of the observations in group 𝑗, and
𝑛𝑗 refers to the size of the group 𝑗. (For convenience, we disregard ‘ties’ which
are instances in which the same value and ranking occurs in multiple groups.)

The test statistic 𝐻 has a probability distribution which resembles that of 𝜒2,
with 𝑘 − 1 degrees of freedom. The significance of the test statistic 𝐻 is thus

determined via the probability distribution of 𝜒2 (see Appendix D). This
approximation via 𝜒2 however only works if 𝑘 ≥ 3 and 𝑛𝑗 ≥ 5 for the smallest
group (Ferguson and Takane, 1989). If 𝑘 = 2 or 𝑛𝑗 < 5 then the probability

𝑃(𝐻) is calculated exactly.
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Random numbers
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Table A.1: The table below contains 200 random numbers between 0 and 9999.

2836 264 6789 1483 3459 9200 4996 3761 699 5622
1943 6034 8838 1349 8750 3181 8799 4525 6536 5111
7259 8030 5709 8334 3526 2768 6296 8335 6350 6192
570 8266 9050 7771 3 7983 1871 3927 5549 1487

1241 2273 505 8816 4786 533 9347 888 3728 4135
6688 9456 2880 4616 7698 2955 9597 9188 8932 5605
1325 1294 8001 1814 5020 9470 8702 4083 6452 2863
6196 5085 9961 5306 1660 1809 8405 2019 2710 1368
1577 5112 874 6909 4126 8473 2065 1511 4778 4440
5778 1207 3337 1888 1420 6917 4160 2682 5263 5926
6635 1887 8836 2940 2404 7017 3119 3699 2529 8663
6813 5759 3314 6929 5238 6008 5900 8485 5938 5642
5208 2391 8324 6888 9449 2577 7859 176 1650 8389
5446 4412 9857 9535 2794 7883 4119 6439 8082 7918
2984 2126 9506 2188 9762 9775 4213 7624 4520 1086
371 4559 12 718 8403 8150 6533 3741 6279 8546

4669 1053 3343 4889 9088 9188 8093 9496 8806 923
4070 3408 8102 3012 9706 771 8296 3094 148 7244
4867 6267 1225 6539 7958 7217 7833 728 1610 5284
4665 1912 5320 8563 1365 3834 1818 7791 7704 2460
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Standard normal
probability distribution

p
B/2 B/2

0 Z*

The critical value 𝑍∗ given below has a probability of 𝑝 under 𝐻0, i.e.,
𝑃(𝑍 > 𝑍∗|𝐻0) = 𝑝 (the blue area), and it has a probability of 𝐵 to have a
value in the interval (−𝑍∗, +𝑍∗) (the yellow area). The 𝑍 distribution is

symmetrical around 𝑍 = 0, hence 𝑃(𝑍 < −𝑍∗) = 𝑃(𝑍 > 𝑍∗).

The first table reports the critical boundary values 𝑍∗ for some frequently
used probabilities of 𝑝 and frequently used confidence intervals of 𝐵:

p 0.2 0.1 0.05 0.025 0.01 0.005 0.0025 0.001
B 60% 80% 90% 95% 98% 99% 99.5% 99.8%
Z* 0.8416 1.282 1.645 1.960 2.326 2.576 2.807 3.090

The second table reports the probabilities 𝑝 and confidence intervals 𝐵 for
some frequently used critical values of 𝑍∗:
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p 0.3085 0.1587 0.0668 0.0228 0.0062 0.0013 0.0002
B 38.29% 68.27% 86.64% 95.45% 98.76% 99.73% 99.95%
Z* 0.5 1 1.5 2 2.5 3 3.5
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Critical values for
𝑡-distribution

p

0 t*

The critical boundary value 𝑡∗ given below has a critical probability 𝑝 under
𝐻0, i.e. 𝑃(𝑡 ≥ 𝑡∗|𝐻0) = 𝑝, and has probability 𝐵 of a value between (−𝑡∗, +𝑡∗).

The 𝑡-distribution is symmetric around 𝑡 = 0, thus 𝑃(𝑡 < −𝑡∗) = 𝑃(𝑡 > 𝑡∗).

The table below provides the critical boundary values 𝑡∗ for much used critical
probabilities 𝑝 and confidence intervals 𝐵, for the degrees of freedom indicated

in the first column.
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p 0.2 0.1 0.05 0.025 0.01 0.005 0.0025 0.001
B 60% 80% 90% 95% 98% 99% 99.5% 99.8%

1 1.376 3.078 6.314 12.706 31.821 63.657 127.321 318.309
2 1.061 1.886 2.920 4.303 6.965 9.925 14.089 22.327
3 0.9785 1.638 2.353 3.182 4.541 5.841 7.453 10.215
4 0.941 1.533 2.132 2.776 3.747 4.604 5.598 7.173
5 0.9195 1.476 2.015 2.571 3.365 4.032 4.773 5.893
6 0.9057 1.440 1.943 2.447 3.143 3.707 4.317 5.208
7 0.896 1.415 1.895 2.365 2.998 3.499 4.029 4.785
8 0.8889 1.397 1.860 2.306 2.896 3.355 3.833 4.501
9 0.8834 1.383 1.833 2.262 2.821 3.250 3.690 4.297
10 0.8791 1.372 1.812 2.228 2.764 3.169 3.581 4.144
11 0.8755 1.363 1.796 2.201 2.718 3.106 3.497 4.025
12 0.8726 1.356 1.782 2.179 2.681 3.055 3.428 3.930
13 0.8702 1.350 1.771 2.160 2.650 3.012 3.372 3.852
14 0.8681 1.345 1.761 2.145 2.624 2.977 3.326 3.787
15 0.8662 1.341 1.753 2.131 2.602 2.947 3.286 3.733
16 0.8647 1.337 1.746 2.120 2.583 2.921 3.252 3.686
17 0.8633 1.333 1.740 2.110 2.567 2.898 3.222 3.646
18 0.862 1.330 1.734 2.101 2.552 2.878 3.197 3.610
19 0.861 1.328 1.729 2.093 2.539 2.861 3.174 3.579
20 0.860 1.325 1.725 2.086 2.528 2.845 3.153 3.552
21 0.8591 1.323 1.721 2.080 2.518 2.831 3.135 3.527
22 0.8583 1.321 1.717 2.074 2.508 2.819 3.119 3.505
23 0.8575 1.319 1.714 2.069 2.500 2.807 3.104 3.485
24 0.8569 1.318 1.711 2.064 2.492 2.797 3.091 3.467
25 0.8562 1.316 1.708 2.060 2.485 2.787 3.078 3.450
30 0.8538 1.310 1.697 2.042 2.457 2.750 3.030 3.385
40 0.8507 1.303 1.684 2.021 2.423 2.704 2.971 3.307
50 0.8489 1.299 1.676 2.009 2.403 2.678 2.937 3.261
100 0.8452 1.290 1.660 1.984 2.364 2.626 2.871 3.174
200 0.8434 1.286 1.653 1.972 2.345 2.601 2.839 3.131
400 0.8425 1.284 1.649 1.966 2.336 2.588 2.823 3.111
∞ 0.8416 1.282 1.645 1.960 2.326 2.576 2.807 3.090
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Critical values for
𝜒2-distribution

p

0 χ2

The critical value (𝜒2)∗ given below has a critical probability 𝑝 under 𝐻0,
i.e. 𝑃(𝜒2 ≥ (𝜒2)∗|𝐻0) = 𝑝.

The table below provides the critical boundary values (𝜒2)∗ for much used
critical probabilities 𝑝, for the degrees of freedom indicated in the first column.
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p 0.2 0.1 0.05 0.025 0.01 0.005 0.0025 0.001
1 1.64 2.71 3.84 5.02 6.63 7.88 9.14 10.83
2 3.22 4.61 5.99 7.38 9.21 10.60 11.98 13.82
3 4.64 6.25 7.81 9.35 11.34 12.84 14.32 16.27
4 5.99 7.78 9.49 11.14 13.28 14.86 16.42 18.47
5 7.29 9.24 11.07 12.83 15.09 16.75 18.39 20.52
6 8.56 10.64 12.59 14.45 16.81 18.55 20.25 22.46
7 9.80 12.02 14.07 16.01 18.48 20.28 22.04 24.32
8 11.03 13.36 15.51 17.53 20.09 21.95 23.77 26.12
9 12.24 14.68 16.92 19.02 21.67 23.59 25.46 27.88
10 13.44 15.99 18.31 20.48 23.21 25.19 27.11 29.59
11 14.63 17.28 19.68 21.92 24.72 26.76 28.73 31.26
12 15.81 18.55 21.03 23.34 26.22 28.30 30.32 32.91
13 16.98 19.81 22.36 24.74 27.69 29.82 31.88 34.53
14 18.15 21.06 23.68 26.12 29.14 31.32 33.43 36.12
15 19.31 22.31 25.00 27.49 30.58 32.80 34.95 37.70
16 20.47 23.54 26.30 28.85 32.00 34.27 36.46 39.25
17 21.61 24.77 27.59 30.19 33.41 35.72 37.95 40.79
18 22.76 25.99 28.87 31.53 34.81 37.16 39.42 42.31
19 23.90 27.20 30.14 32.85 36.19 38.58 40.88 43.82
20 25.04 28.41 31.41 34.17 37.57 40.00 42.34 45.31
21 26.17 29.62 32.67 35.48 38.93 41.40 43.78 46.80
22 27.30 30.81 33.92 36.78 40.29 42.80 45.20 48.27
23 28.43 32.01 35.17 38.08 41.64 44.18 46.62 49.73
24 29.55 33.20 36.42 39.36 42.98 45.56 48.03 51.18
25 30.68 34.38 37.65 40.65 44.31 46.93 49.44 52.62
30 36.25 40.26 43.77 46.98 50.89 53.67 56.33 59.70
40 47.27 51.81 55.76 59.34 63.69 66.77 69.70 73.40
50 58.16 63.17 67.50 71.42 76.15 79.49 82.66 86.66
100 111.67 118.50 124.34 129.56 135.81 140.17 144.29 149.45
200 216.61 226.02 233.99 241.06 249.45 255.26 260.74 267.54
400 423.59 436.65 447.63 457.31 468.72 476.61 483.99 493.13
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