
TEA

THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

Code Description

Authors:

JASMINA BLECIC

M. OLIVER BOWMAN

Programmers:

M. OLIVER BOWMAN

JASMINA BLECIC

Lead Scientist:

JASMINA BLECIC

Principal Investigator:

JOSEPH HARRINGTON

April 12, 2016

TEA Code Description, Blecic & Bowman 1

TEA Code Description, Blecic & Bowman 2

This document goes along with the TEA code, the TEA theory paper (Blecic

et al., 2016), and the code description document.

TEA is part of the PhD dissertation work of Dr. Jasmina Blecic, who

developed it with coding assistance from undergraduate M. Oliver Bowman

and under the advice of Prof. Joseph Harrington at the University of Central

Florida, Orlando, Florida, USA.

Copyright c© 2015-2016 University of Central Florida.

This program is reproducible-research software: you can redistribute it and/or

modify it under the terms of the Reproducible Research Software License as

published by Prof. Joseph Harrington at the University of Central Florida,

either version 0.3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the Reproducible

Research Software License for more details.

You should have received a copy of the Reproducible Re-

search Software License along with this program. If not, see

http://planets.ucf.edu/resources/reproducible/. The

license’s preamble explains the situation, concepts, and reasons surrounding

reproducible research, and answers some common questions.

This project was started with the support of the NASA Earth and Space

Science Fellowship Program, grant NNX12AL83H, held by Jasmina Blecic,

Principal Investigator Joseph Harrington, and the NASA Science Mission

Directorates Planetary Atmospheres Program, grant NNX12AI69G.

See the file ACKNOWLEDGING in the top-level TEA directory for instruc-

tions on how to acknowledge TEA in publications.

We welcome your feedback, but do not guarantee support. Many questions are

answered in the TEA forums:

https://physics.ucf.edu/mailman/listinfo/tea-user

https://physics.ucf.edu/mailman/listinfo/tea-devel

Visit our Github site: https://github.com/dzesmin/TEA/

Reach us directly at:

Jasmina Blecic: jasmina@physics.ucf.edu

Joseph Harrington: jh@physics.ucf.edu

TEA Code Description, Blecic & Bowman 3

Contents

1 Code Overview 4

2 Code Description 5

2.1 Library Programs . 5

2.1.1 prepipe.py . 5

2.1.2 makestoich.py . 6

2.1.3 readJANAF.py . 6

2.2 TEA Drivers . 7

2.2.1 runsingle.py . 7

2.2.2 runatm.py . 7

2.3 Main Scientific Programs . 8

2.3.1 balance.py . 8

2.3.2 lagrange.py . 9

2.3.3 lambdacorr.py . 9

2.3.4 iterate.py . 9

2.4 File Control Programs . 10

2.4.1 format.py . 10

2.4.2 makeheader.py . 10

2.4.3 readatm.py . 11

2.4.4 readconf.py . 11

2.5 Auxiliary Programs . 12

2.5.1 makeatm.py . 12

2.5.2 plotTEA.py . 12

TEA Code Description, Blecic & Bowman 4

1 Code Overview

The Thermochemical Equilibrium Abundances (TEA) package (Figure 1) is composed of five

different types of programs: Library Programs that read thermodynamic libraries and collect

stoichiometric information, TEA Drivers that execute TEA for a single T, P point or a list of

multiple T, P points, Main Science Programs that perform the iterative Lagrange minimization

technique and Lambda correction algorithm, File Control Programs that manage input-output

files and operations, and Auxiliary Programs that help the user to make proper input and plot the

TEA output.

Figure 1: Layout of the pre-pipeline and pipeline packages.

The code is built in a modular fashion where each that program performs calculations can be

easily controlled by a driver program or be otherwise replaced as long as the appropriate inputs

and outputs are conserved. This modular work-flow facilitates strict control over what calculations

are performed and where, and allows future users easy access to code manipulations or additions.

As the TEA code is an open-source package, such modifications are encouraged if the user wishes

TEA Code Description, Blecic & Bowman 5

to fine-tune any mechanics or apply new techniques in order to reach equilibrium abundances.

This is a third part of a three-part document describing the TEA code. The first part, the TEA

theory document (Blecic et al., 2016), presents the theoretical basis for the method applied, the

second part is a user manual, and this document contains programs description to allow the user

future modifications. If you find this package useful for your research, please cite Blecic et al.

(2016).

This project was completed with the support of the NASA Earth and Space Science Fellowship

Program, grant NNX12AL83H, held by Jasmina Blecic, PI Joseph Harrington. Project develop-

ment included graduate student Jasmina Blecic and undergraduate M. Oliver Bowman.

2 Code Description

This text is divided into five sections, each describing the aforementioned types of programs with

detailed descriptions of each routine.

2.1 Library Programs

The TEA Library Programs read the thermodynamic tables and the elemental abundances file

to store the necessary thermochemical data and stoichiometric information in TEA readable files.

These files are further used by the TEA Driver programs and Main Scientific Programs. These

library programs consist of three modules: prepipe.py, readJANAF.py and

makestoich.py. Currently, these modules process the JANAF tables and the elemental abun-

dances file made based on Asplund et al. (2009), both provided with the code. The user can feed

the code with their own library granted the format that TEA can process is obeyed.

These programs are executed prior to the release, and the thermochemical data and stoichio-

metric information needed for TEA to run are provided with the code. However, if updated JANAF

tables are obtained, a pre-pipeline execution will populate the files with new information.

2.1.1 prepipe.py

This program sets and/or executes the pre-pipeline TEA routines readJANAF.py and

makestoich.py. It consists of two functions: comp() and setup(). The comp() function

counts the number of each element in a chemical species, while the setup() function reads the

JANAF tables and allows sharing of common routines for readJANAF.py and makestoich.py.

If executed as prepipe.py, it will run both routines. The user can also run each routine sepa-

rately, if desired.

The comp() function is the species-counting function. It counts the number of each element

in a chemical species by taking in a string of a chemical species (i.e., ”H2O”) and returning an

array containing every element with corresponding counts found in that species. It is called by

makestoich.py and the setup() function. The user can also return a stoichiometric array

containing only the elements found in the input species. Otherwise, it returns the full array of all

113 available elemental stoichiometric data.

The setup()routine reads raw JANAF tables placed in the appropriate directory (default:

janaf/) and extracts thermodynamic and stoichiometric data of interest. It serves as a setup for

the readJANAF.py and makestoich.py routines. The program takes the names of the raw

JANAF tables directory, thermodynamic output directory, stoichiometric output directory, output

stoichiometric file, and the pre-written file containing abundance data

TEA Code Description, Blecic & Bowman 6

(default: abundances.txt). It takes number of elements from comp() and loops over all

JANAF data and abundance data, performing various thermodynamic calculations and stoichio-

metric functions on the appropriate species of interest.

2.1.2 makestoich.py

This code makes the stoich out file (default: stoich.txt) that carries stoichiometric values

of all species that appear in the JANAF tables. It reads the chemical formula from each JANAF

file to obtain the number of atomic weights of each element in each species. Also reads in bulk

elemental abundances from abundances.txt that currently uses Asplund et al. (2009) solar

photosphere abundances. The code creates a temporary directory where JANAF tables are con-

verted into stoichiometric tables. The tables carry a unique name and state, given by the top line in

each JANAF table: (i.e., original JANAF table Al-001.txt is converted to Al ref.txt). If

desired, user can preserve this directory (in TEA.cfg, doprint = True).

The names of the files in the temporary directory have the following format:

1. If a species appears just once in JANAF tables, it gets the unique name of the compound and

its state and is defined as originals in the code (example: CH4 g).

2. If a species appears several times, it is defined as redundant in the code and an additional

string is added to differentiate among them (example: Al2O3 cr Alpha,

Al2O3 cr Beta, Al2O3 cr Kappa). This is defined by the isomer name in the JANAF

tables.

The setup of this code is done in prepipe.py inside setup(). The code retrieves the setup

information, creates a temporary directory to store the converted files, allocates space for these

files with the unique naming scheme described above, then loops over all JANAF tables to write

stoichiometric files.

To write the stoich out file (default: stoich.txt), it again loops over all elements (listed

in comp() inside prepipe.py) and matches them with the abundance data from the abundance

file (default: abundances.txt). If a match is not found, the abundance is set to zero. This

information is written at the top of the stoich out file.

For each element in comp() and species in the JANAF tables, the species name and stoichio-

metric values are written into the stoich out file. The code ignores redundant compounds as

they carry the same stoichiometric values.

The prepipe.py code can execute this code together with the readJANAF.py.

makestoich.py can also be executed on its own with the simple command: makestoich.py.

2.1.3 readJANAF.py

This code makes the thermo dir (default: /lib/gdata) directory that carries converted

JANAF tables with only the data needed for TEA to run, namely the temperature, T in (K),

free energy function (−[Go − Ho(Tr)]/T) in (J/K/mol), and the heat of formation (∆fH
o), in

(kJ/mol). This program will remove intermittent commentary in the JANAF files and will pro-

duce separate files for stoichiometrically identical species with unique descriptors. Output data

files are produced in the format /lib/gdata/SPECIES STATE.txt. The code also makes

conversion record.txt that gives the names of the original, raw JANAF files and the new

names given by

TEA Code Description, Blecic & Bowman 7

readJANAF.py. To sort the file list in alphabetical order, execute in terminal:

sort conversion record.txt > conversion record sorted.txt

The names of the files have the following format:

1. Each converted file carries a unique name and state given by the top line in each JANAF file.

2. If a species appears just once in JANAF tables, it gets a unique name of the compound and

its state and is defined as originals in the code (example: CH4 g).

3. If a species appears several times, it is defined as redundant in the code and an additional

string is added to differentiate among them

(example: Al2O3 cr Alpha, Al2O3 cr Beta, Al2O3 cr Kappa).

4. If a species is an ion, additional string is added (example: Al-007.txt and Al-008.txt

became Al ion n g, Al ion p g)

The setup of this code is done in prepipe.py inside the setup() function.The code

retrieves pre-pipeline setup information, creates a directory for converted thermodynamic files,

checks whether a species is redundant in JANAF tables, and creates conversion record.txt.

If a species is redundant, an additional string is added to the file name. The module loops over all

JANAF tables and writes data into the correct columns with the correct labels.

The prepipe.py code can execute this code together with the readJANAF.py.

readJANAF.py can also be executed on its own with the simple command: readJANAF.py.

2.2 TEA Drivers

TEA is executed by one of two drivers, depending on if a single T, P point or a list of T, P points

are provided. Both drivers follow the same general flow of execution.

2.2.1 runsingle.py

This program runs TEA over an input file that contains only one T, P point. The code retrieves the

input file and the current directory name given by the user and sets the locations of all necessary

modules and directories that will be used. It then executes the modules in the following order:

makeheader.py, balance,py, and iterate.py. The final results along with the input

and the configuration files are saved in the em results/ directory.

This module prints the code progress on screen: the current T, P line from the pre-atmosphere

file, the current iteration number, and when the minimization is complete.

Example: 100 Maximum iteration reached, ending minimization.

The program is executed with in-shell inputs:

runsingle.py <input file> <name of the result directory>

Example: runsingle.py inputs/Examples/inp Example.txt Single Example

2.2.2 runatm.py

This program runs TEA over a pre-atmosphere file that contains multiple T, P points. The code

first retrieves the pre-atmosphere file and the current directory name given by the user. It then

sets the locations of all necessary modules and directories of files that will be used. It allocates

an array to store the final abundances for each species of each T, P run. The program loops

over all lines (T, P ’s) in the pre-atmosphere file and executes the modules in the following order:

TEA Code Description, Blecic & Bowman 8

readatm.py, makeheader.py, balance,py, iterate.py, and readoutput.py.

Iterate.py executes lagrange.py and lambdacorr.py. readoutput.py reads re-

sults from the TEA iteration loop executed in iterate.py. The abundances are calculated and

stored in an abundance array. The code then opens the final atmosphere file to write the results.

It takes first common lines from the pre-atmosphere file and writes the data from the stored radii,

temperature, pressure and abundances array. The code has a condition to save or delete all in-

termediate files, time stamps for checking the speed of execution, and is verbose for debugging

purposes. If these files are saved, the function will create a unique directory for each T, P point.

This functionality is controlled in the TEA config file. The final results, along with the input and

the configuration files are saved in the results/ directory.

This module prints on screen the current T, P line from the pre-atmosphere file, the current

iteration number, and informs the user that minimization is done. Example: 5 100 Maximum

iteration reached, ending minimization.

The program is executed with in-shell inputs:

runatm.py <pre-atmosphere file> <name of the result directory>

Example: runatm.py inputs/Examples/atm Example.atm Atm Example

2.3 Main Scientific Programs

These programs perform scientific calculations explained in Sections 2, 3, and 4 of Blecic et al.

(2016). The mass balance equation, Lagrange optimization system of equations, Lambda correc-

tion procedure, and iterative minimization approach are separated into four modules, respectively:

balance.py, lagrange.py, lambdacorr.py, and iterate.py. Inclusion of conden-

sates or solids can be easily implemented inside these modules by modifying the equations listed

in the code comments.

2.3.1 balance.py

This code produces an initial guess for the first TEA iteration by fulfilling the mass balance condi-

tion,
∑n

i=1
aij xi = bj (equation (17) in Blecic et al., 2016), where i is species index, j is element

index, a’s are stoichiometric coefficients, and b’s are elemental fractions by number, i.e., ratio of

number densities of element ’j’ to the total number densities of all elements in the system (see

the end of Section 2 of Blecic et al., 2016). The code writes the result into machine- and human-

readable files.

The code begins by making a directory for the output results. It, then reads the header file

and imports all relevant chemical data from it. To satisfy the mass balance equation, some y i
variables remain as free parameters. The number of free parameters is set to the number of total

elements in the system, thus ensuring that the mass balance equation can be solved for any number

of input elements and output species the user chooses. The code locates a chunk of species (y i)
containing a sum of ai j values that forbids ignoring any element in the system (sum of the ai j
values in a column must not be zero). This chunk is used as a set of free variables in the system.

The initial scale for other y i variables is set to a known, arbitrary number. Starting values for

the known species are set to 0.1 moles, and the mass balance equation is calculated. If this value

does not produce all positive mole numbers, the code automatically sets known parameters to 10

times smaller and tries again. Actual mole numbers for the initial guesses of y i are arbitrary, as

TEA only requires a balanced starting point to initialize minimization. The goal of this code is to

find a positive and a non-zero set of mole numbers to satisfy this requirement. Finally, the code

TEA Code Description, Blecic & Bowman 9

calculates ȳ, initializes the iteration number, ∆, and ∆̄ to zero and writes results into machine- and

human-readable output files.

This code is called by runatm.py and runsingle.py and can be executed alone with

in-shell input: balance.py <HEADER FILE> <DIRECTORY NAME>

2.3.2 lagrange.py

This code applies Lagrange’s method and calculates minima based on the methodology elaborated

in Section 3 of Blecic et al. (2016). Equations in this code contain both references and an explicitly

written definitions. The program reads the last iteration’s output and data from the last header

file, creates variables for the Lagrange equations, sets up the Lagrange equations, and calculates

final xi mole numbers for the current iteration cycle. Note that the mole numbers that result

from this function are allowed to be negative. If negatives are returned, lambda correction by

lambdacorr.py is necessary. The final xi values, as well as x̄, ȳ, ∆, and ∆̄ are written into

machine- and human-readable output files. This function is executed iterate.py and can be

run independently.

2.3.3 lambdacorr.py

This module applies lambda correction method described in Section 4 of Blecic et al., 2016). When

input mole numbers are negative, the code corrects them to positive values and pass them to the

next iteration cycle. The code reads the values from the last lagrange.py output and header

file, performs checks, then starts setting basic equations. It sets a smart range so it can efficiently

explore the lambda values from [0,1]. Half of the range is sampled exponentially, and the other

half linearly, totalling 150 points. The code retrieves the last lambda value before first derivative

becomes positive (equation (34) in TEA theory document), and corrects negative mole numbers to

positive.

The code works without adjustments and with high precision for the fractional abundances

(mixing fractions) up to 10−14 and the temperature range of 1000 - 4000 K. For temperatures

below 1000 K and mixing fractions below 10−14, the code produces results with low precision.

To improve the precision, adjust the lambda exploration variables lower and steps to larger

magnitudes (i.e., lower = -100, steps = 1000). This will lengthen the time of execution.

This function is executed iterate.py and can be run independently.

2.3.4 iterate.py

This program executes the iteration loop for TEA. It repeats Lagrangian minimization

(lagrange.py) and lambda correction (lambdacorr.py) until the maximum iteration is

reached. The code has time stamps for checking the speed of execution and is verbose for de-

bugging purposes; both are defined in TEA.cfg file.

The flow of the code goes as follows: the current header, output, and result directory are read;

physical properties are retrieved from the header, then the balance.py output is read as the

initial iteration input and passed to lagrange.py. Lagrange x i values are then checked for

negative values; the next iteration starts either with lambda correction output (if negative x i’s are

found) or with the output produced by lagrange.py (if all x i’s are positive). This procedure is

repeated until the maximum iteration is reached, which stops the loop. Intermediate results from

each iteration step are written in the machine- and human-readable output files on the user’s request

in TEA.cfg.

TEA Code Description, Blecic & Bowman 10

This program is executed by runatm.py and can be executed alone with in-shell input:

iterate.py <header file> <name of the result directory>

2.4 File Control Programs

These programs generate inputs for the Main Scientific Programs, manage reading and processing

the input information, and produce machine- and human-readable output files.

2.4.1 format.py

This module allows each program to read the output of the previous step so the data can be used

in the next step. It also manages the format for each output file and produces both machine- and

human-readable files.

It contains the following functions:

1. readheader(): This function reads the current header file (one T, P) and returns data com-

mon to each step of TEA. It searches only for the required chemical data from the header

file and fills out the output arrays appropriately. The function is used by balance.py,

lagrange.py, lambdacorr.py, and iterate.py.

2. readoutput(): This function reads output files made by balance.py,

lagrange.py and lambdacorr.py. It reads any iteration’s output and returns the data

in an array.

3. output(): This function produces machine-readable output files. The files are saved only

if saveout = True in TEA.cfg file. The function is used by the balance.py,

lagrange.py, and lambdacorr.py. The function writes the name of the header, cur-

rent iteration number, species list, starting mole numbers of species for current iteration, final

mole numbers of molecular species after the iteration is done, difference between starting

and final mole numbers, total sum of initial mole numbers, total sum of final mole numbers

and the change in total mole numbers of all species.

4. fancyout(): This function produces human-readable output files. The files are saved only if

saveout = True in TEA.cfg file. The function is used by balance.py,

lagrange.py, and lambdacorr.py. The function writes the name of the header, cur-

rent iteration number, species list, starting mole numbers of species for current iteration, final

mole numbers of molecular species after the iteration is done, difference between starting

and final mole numbers, total sum of initial mole numbers, total sum of final mole numbers,

and the change in total mole numbers of all species. If doprint = True, all data written

to the file is presented on-screen in the same human-readable format.

5. fancyout results(): This function produces the final result output for each T, P in the human-

readable format. The final mole number for each species is divided by the total mole numbers

of all species in the mixture. This gives the mole fraction abundance for each species, which

are TEA final results. This function is called by the iterate.py module.

6. printout(): Prints iteration progress number or other information in one line of terminal.

2.4.2 makeheader.py

This module contains functions to write headers containing all necessary chemical data for a single

TEA execution using a single T, P and multiple T, P points. It consists of two main functions,

TEA Code Description, Blecic & Bowman 11

make singleheader() and make atmheader(), both of which are called by the

runsingle.py and runatm.py modules, respectively. header setup(),

atm headarr(), single headarr(),and write header() are supporting functions for

these main functions. This module is imported by runatm.py and runsingle.py to create

the header files.

header setup() - This function is a common setup for both single T, P and multiple T, P runs

of TEA. Given the thermochemical data and stoichiometric table, this function returns stoichiomet-

ric values and an array of chemical potentials for the species of interest at the current temperature

and pressure. Using the data provided in the JANAF tables and the equations (10) and (11) from

Blecic et al. (2016), it calculates the free energies (chemical potentials) of each species at a certain

temperature. It also returns an array of booleans that marks which information should be read

from stoich file for the current species. It is executed by the make atmheader() and

make singleheader() functions.

single headarr() - This function gathers data needed for TEA to run in a single T, P case.

These are: elemental abundances, species names, and their stoichiometric values. For the list of

elements and species used, it takes the abundances and stoichiometric values and puts them in the

final array. It converts logarithmic (dex) elemental abundances into number densities. This func-

tion is run by make singleheader() and is dependent on results from header setup().

atm headarr() - This function gathers data needed for TEA to run in a multiple T, P case.

These are: elemental abundances, species names, and their stoichiometric values. For the list of

elements and species used, it takes the abundances and stoichiometric values and puts them in

the final array. This function is run by make atmheader() and is dependent on results from

header setup().

write header() - This function writes a header file that contains all necessary data for TEA to

run. It is called by make atmheader() and make singleheader().

make singleheader() - This is the main function that creates a header for a single T, P run of

TEA. It reads the input T, P file and retrieves necessary data. It then calls the header setup(),

single headarr(), and write header() functions to create a header for the single T, P
point. This function is called by the runsingle.py module.

make atmheader() - This is the main function that creates a TEA header for one T, P of

a pre-atmosphere file. It retrieves number of elements and species used for only the q-th T, P
point in the pre-atmosphere file. It then calls the header setup(), atm headarr(), and

write header() functions to create a header for this point. This function is called by the

runatm.py module.

2.4.3 readatm.py

This function reads a pre-atmosphere file and returns the data that TEA will use. It opens a pre-

atmosphere file to find markers for species and TEA data, retrieves the species list, reads data

below the markers, and fills out data into corresponding arrays. It also returns number of runs TEA

must execute for each T, P . The function is used by runatm.py.

2.4.4 readconf.py

This code reads the TEA config file, TEA.cfg. There are two sections in TEA.cfg: the ’TEA’

section and the ’PRE-ATM’ section. The ’TEA’ section carries parameters and booleans to run and

debug TEA, whereas ’PRE-ATM’ section carries parameters to make a pre-atmospheric file (see

Section 2.5.1).

TEA Code Description, Blecic & Bowman 12

2.5 Auxiliary Programs

These programs are provided for the user’s convenience. They allow for the easy generation of the

multiple T, P pre-atmosphere files (input for the runatm.py module), and for plotting the de-

sired abundances profile from the final multiple T, P atmosphere files (output of the runatm.py

module).

2.5.1 makeatm.py

This module produces a pre-atmosphere file in the format that TEA can read. Before running

makeatm.py, the TEA.cfg file needs to be edited with the following information: location

of the PT file, the desired name of the pre-atmosphere file, desired input elemental species, and

desired output molecular species.

To run the code type in the terminal: makeatm.py <DIRECTORY NAME>.

The <DIRECTORY NAME> is the name of the directory where the user wants the current run to

be placed. The pre-atmopshere file will be placed in atm inputs} under the

<DIRECTORY NAME> directory.

This module consists of 2 functions:

1. readPT() - reads the pressure-temperature profile from the PT file provided. If custom made,

it must be in the format provided in the doc/examples/ directory.

2. makeatm() - produces a pre-atmosphere file in the format that TEA can read. The file will

be placed in the atm inputs/ directory. It calls readPT() to get the pressure and tem-

perature array and reads the elemental abundance data file (default: abundances.txt,

Asplund et al. (2009)). The code trims the abundance data to the elements of interest,

converts species dex abundances into number densities and divides them by the hydrogen

number densities fractional abundances. It writes data (pressure, temperature, elemental

abundances) into a pre-atmospheric file. The configuration, pressure and temperature, and

abundances files are copied to the atm inputs/ directory.

2.5.2 plotTEA.py

This code plots a figure of temperature vs. abundances for the final atmosphere file produced by

TEA. It needs 2 arguments on the command line: the path to the atmosphere file name and the

names of the species user wants to plot.

Arguments given should be in the following format:

1. filename - string. Full path to the atmospheric file.

2. species - list of strings. List of species that user wants to plot. Species names should be

given with their symbols (without their states) and no breaks between species names (e.g.,

CH4,CO,H2O).

To run the code execute: plotTEA.py <RESULT ATM FILE> <SPECIES NAMES>
Example: plotTEA.py results/atm Example/atm Example.atm CO,CH4,H2O,NH3

The plot is opened once execution is completed and saved in the plots/ directory.

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481, ADS, 0909.0948

Blecic, J., Harrington, J., & Bowman, M. O. 2016, accepted in ApJSupp

http://adsabs.harvard.edu/abs/2009ARA%26A..47..481A
http://arxiv.org/abs/0909.0948

	1 Code Overview
	2 Code Description
	2.1 Library Programs
	2.1.1 prepipe.py
	2.1.2 makestoich.py
	2.1.3 readJANAF.py

	2.2 TEA Drivers
	2.2.1 runsingle.py
	2.2.2 runatm.py

	2.3 Main Scientific Programs
	2.3.1 balance.py
	2.3.2 lagrange.py
	2.3.3 lambdacorr.py
	2.3.4 iterate.py

	2.4 File Control Programs
	2.4.1 format.py
	2.4.2 makeheader.py
	2.4.3 readatm.py
	2.4.4 readconf.py

	2.5 Auxiliary Programs
	2.5.1 makeatm.py
	2.5.2 plotTEA.py

