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ABSTRACT

We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abun-
dances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson
(1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given
elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a
list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the
free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given
by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with
higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplan-
ets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user
manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research,
open-source license via https://github.com/dzesmin/TEA.

Subject headings: astrochemistry – molecular processes – methods: numerical – planets and satellites: atmo-
spheres – planets and satellites: composition – planets and satellites: gaseous planets

1. INTRODUCTION

There are two methods to calculate chemical equilibrium:
using equilibrium constants and reaction rates, i.e., kinetics,
or minimizing the free energy of a system (Bahn & Zukoski
1960, Zeleznik & Gordon 1968).

The kinetic approach, where the pathway to equilibrium
needs to be determined, is applicable for a wide range of tem-
peratures and pressures (Line et al. 2011, Moses et al. 2011,
Visscher et al. 2010b). However, using kinetics for high-
temperature thermochemical equilibrium calculations can be
challenging. Chemical equilibrium can be calculated almost
trivially for several reactions present in the system, but as the
number of reactions increases, the set of numerous equilib-
rium constant relations becomes hard to solve simultaneously.
To have an accurate kinetic assessment of the system, one
must collect a large number of reactions and associate them
with the corresponding rates. This is not an issue at lower tem-
peratures, where reaction rates are well known. However, at
high temperatures, where thermochemical equilibrium should
prevail, one needs to know forward and reverse reactions and
corresponding reaction rates, which are less well known or
conflicted (Venot et al. 2012, Visscher et al. 2010b).

The advantage of the free energy minimization method is
that each species present in the system can be treated inde-
pendently without specifying complicated sets of reactions a
priori, and therefore, a limited set of equations needs to be
solved (Zeleznik & Gordon 1960). In addition, the method
requires only knowledge of the free energies of the system,
which are well known, tabulated, and can be easily interpo-
lated or extrapolated.

Thermochemical equilibrium calculations have been
widely used in chemical engineering to model combustion,
shocks, detonations and the behaviour of rockets and com-
pressors (e.g., Miller et al. 1990, Belford & Strehlow 1969).
In astrophysics, they have been used to model the solar
nebula, the atmospheres and circumstellar envelopes of cool
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stars, and the volcanic gases on Jupiter’s satellite Io (e.g.,
Lauretta et al. 1997, Lodders & Fegley 1993, Zolotov &
Fegley 1998).

Thermochemistry also governs atmospheric composition in
vast variety of giant planets, brown dwarfs, and low-mass
dwarf stars (Lodders & Fegley 2002, Visscher et al. 2010a,
Allard & Hauschildt 1995, Tsuji et al. 1996, Marley & Robin-
son 2015, and references therein). Recent studies (Moses
et al. 2011, Zahnle et al. 2009, Line et al. 2010, Kopparapu
et al. 2012, Venot et al. 2012, Line & Yung 2013, Visscher
et al. 2006, 2010b, Venot et al. 2012) show that in hot exo-
planetary atmospheres (T > 1200 K), disequilibrium effects
are so reduced that thermochemical equilibrium prevails. For
the hottest planets, Line & Yung (2013) show that that at the
pressure of 100 mbar CH4, CO, H2O, and H2 should be in ther-
mochemical equilibrium even under a wide range of vertical
mixing strengths. In addition, the exoplanet photospheres ob-
served with current instruments are sampled within the region
of the atmosphere dominated by vertical mixing and quench-
ing, but not by photochemistry (Line & Yung 2013).

Thermochemical equilibrium calculations are the starting
point for initializing models of any planetary atmosphere.
In general, thermochemical equilibrium governs the compo-
sition of the deep atmospheres of giant planets and brown
dwarfs, however, in cooler atmospheres thermoequilibrium
calculations are the necessary baseline for further disequilib-
rium assessment. They can also provide a first-order approxi-
mation for species abundances as a function of pressure, tem-
perature, and metallicity for a variety of atmospheres (e.g.,
Visscher et al. 2010b, Lodders & Fegley 2002).

The Gibbs free energy minimization method for calculat-
ing thermochemical equilibrium abundances of complex mix-
tures was first introduced by White et al. (1958). Prior to 1958
all equilibrium calculations were done using equilibrium con-
stants of the governing reactions. White et al. (1958) were
the first to develop a method that makes no distinction among
the constituent species and does not need a list of all possible
chemical reactions and their rates. Rather, it depends only on
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the chemical potentials of the species involved.
In this paper, we present an open-source code, Ther-

mochemical Equilibrium Abundances (TEA) based on the
Gibbs free energy minimization approach by White et al.
(1958) and Eriksson (1971). Given a single T,P point
or a list of T,P pairs (the thermal profile of an atmo-
sphere) and elemental abundances, TEA calculates mole
fractions of the desired gaseous molecular species. It
uses 84 elemental species and the thermodynamical data
for more then 600 gaseous molecular species available in
the provided JANAF (Joint Army Navy Air Force) ta-
bles (http://kinetics.nist.gov/janaf/, Chase
1998). TEA can adopt any initial elemental abundances. For
user convenience a table with solar photospheric elemental
abundances from Asplund et al. (2009) is provided.

The TEA code is a part of the open-source
Bayesian Atmospheric Radiative Transfer project
(https://github.com/exosports/BART). This
project consists of three major parts: TEA - this code, a
radiative-transfer code that models planetary spectra, and
a statistical module that compares theoretical models with
observations. TEA is written in Python in an architecturally
modular format. It is accompanied by detailed documen-
tation, a start guide, the TEA User Manual (Bowman and
Blecic), the TEA Code Description document (Blecic and
Bowman), and the TEA Theory document (this paper),
so the user can easily modify it. The code is actively
maintained and available to the scientific community via
the open-source development website GitHub.com
(https://github.com/dzesmin/TEA,
https://github.com/dzesmin/TEA-Examples).
This paper covers an initial work on thermochemical cal-
culations of species in gaseous phases. Implementation of
condensates is left for future work.

In this paper, we discuss the theoretical basis for the method
applied in the code. Section 2 explains the Gibbs Free en-
ergy minimization method; Section 3 describes the general
Lagrangian optimization method and its application in TEA;
in Section 4 we introduce the Lambda Correction algorithm
for handling negative abundances that follow from the La-
grangian method; Section 5 describes the layout of the TEA
code; Section 6 explores chemical equilibrium abundance
profiles of several exoplanetary atmospheres; Section 7 com-
pares our code to other methods available, and Section 9 states
our conclusions.

2. GIBBS FREE ENERGY MINIMIZATION METHOD

Equilibrium abundances can be obtained by using different
combinations of thermodynamical state functions: tempera-
ture and pressure – (t, p), enthalpy and pressure – (H, p), en-
tropy and pressure – (S, p), temperature and volume – (t,v),
internal energy and volume – (U,v), etc. Depending on how
the system is described, the condition for equilibrium can be
stated in terms of Gibbs free energy, helmholtz energy, or en-
tropy. If a thermodynamic state is defined with temperature
and pressure, Gibbs free energy (G) is most easily minimized,
since those two states are its natural, dependent variables.

Gibbs free energy represents a thermodynamic potential
that measures the useful work obtainable by the system at a
constant temperature and pressure. Thus, the Gibbs free en-
ergy minimization method minimizes the total chemical po-
tential of all involved species when the system reaches equi-
librium.

The Gibbs free energy of the system at a certain temperature

is the sum of the Gibbs free energies of its constituents:

Gsys(T ) =

n
∑

i

Gi(T ) , (1)

where Gsys(T ) is the total Gibbs free energy of the system
for n chemical species, Gi(T ) is the Gibbs free energy of a
gas species i, and T is the temperature. The total Gibbs free
energy of the system is expressed as the sum of the number
of moles x of the species i, xi, and their chemical potentials
gi(T ):

Gsys(T ) =

n
∑

i

xi gi(T ) . (2)

The chemical potential gi(T ) depends on the chemical poten-

tial at the standard state g0
i (T ) and the activity ai,

gi(T ) = g0
i (T ) + RT lnai , (3)

where R is the gas constant, R = kBNA, and kB and NA are
the Boltzmann constant and Avogadro’s number, respectively.
Activities for gaseous species, which are treated as ideal, are
equal to the partial pressures, and for condensates they equal
1:

ai = Pi = P
xi

N
, forgases (4)

ai = 1 , forcondensates , (5)

where P is the total pressure of the atmosphere, N is the total
number of moles of all species involved in the system. Hence,
Equation (3) for gaseous species becomes:

gi(T ) = g0
i (T ) + RT lnPi . (6)

Combining Equation (6) with Equation (2), the Gibbs free en-
ergy of the system becomes:

Gsys(T ) =

n
∑

i

xi

(

g0
i (T ) + RT lnPi

)

, (7)

or,

Gsys(T ) =

n
∑

i

xi

(

g0
i (T ) + RT lnP + RT ln

xi

N

)

, (8)

For our purposes, it is more convenient to write Equation (8)
in unitless terms:

Gsys(T )

RT
=

n
∑

i=1

xi

[g0
i (T )

RT
+ lnP + ln

xi

N

]

. (9)

Equation (9) requires a knowledge of the free
energy of each species as a function of tempera-
ture. These can be obtained from the JANAF tables
(http://kinetics.nist.gov/janaf/, Chase
1998, Burrows & Sharp 1999), or easily derived from other
tabulated functions.

To extract free energies, g0
i (T )/RT , from the JANAF tables,

we used the expression given in Eriksson (1971), Equation
(2):
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g0
i (T )

RT
= 1/R

[G0
i − H0

298

T

]

+

∆ f H
0
298

RT
, (10)

where g0
i (T ) is given in J/mol, R = 8.3144621 J/K/mol, H0

298 is
the enthalpy (heat content) in the thermodynamical standard

state at a reference temperature of 25oC = 298.15 K, G0
i is the

Gibbs free energy in J/mol, (G0
i − H0

298/T ) is the free-energy

function in J/K/mol, and ∆ f H
0
298 is the heat of formation at

298.15 K in kJ/mol. Thus, our conversion equation becomes:

g0
i (T )

RT
= 1/R

[G0
i − H0

298

T

]

+

∆ f H
0
2981000

RT
, (11)

G0
i − H0

298/T is the fourth term in the JANAF tables and

∆ f H
0
298 is the sixth. The free energy function of a species

corresponding to a temperature other than those provided in
the JANAF tables is calculated using spline interpolation.

Alternatively, the free energies can be calculated using the
eighth term in the JANAF tables, following Equation (3) from
Eriksson (1971):

g0
i (T )

RT
= − ln (10) log10 (K f ) , (12)

where K f is the equilibrium constant of formation.
To determine the equilibrium composition, we need to find

a non-negative set of values xi that minimizes Equation (9)
and satisfies the mass balance constraint:

n
∑

i=1

ai j xi = b j , ( j = 1,2, ...,m) , (13)

where the stoichiometric coefficient ai j indicates the number
of atoms of element j in species i (e.g., for CH4 the stoichio-
metric coefficient of C is 1 and the stoichiometric coefficient
of H is 4), and b j is the total number of moles of element j
originally present in the mixture.

We use the reference table containing elemental solar abun-
dances given in Asplund et al. (2009) Table 1 for b values.
Asplund et al. (2009) adopt the customary astronomical scale
for logarithmic abundances, where hydrogen is defined as log
ǫH = 12.00, and log ǫX = log(NX/NH)+12, where NX and NH

are the number densities of element X and H, respectively.
Thus, their values are given in dex (decimal exponent) units.
We transform these values into elemental fractions by num-
ber, i.e., ratio of number densities. We convert each species
dex elemental abundance into number density and divide it by
the hydrogen number density (Asplund et al. 2009, Section 3).
The final output are fractional abundances (mole mixing frac-
tions), i.e., the ratio of each species’ number of moles to the
number of moles in the mixture.

3. LAGRANGIAN METHOD OF STEEPEST DESCENT

To find equilibrium abundances of the desired molecu-
lar species at a given temperature and pressure, we need
to minimize Equation (9). To do so, we have to apply a
technique that minimizes a multi-variate function under con-
straint. There are many optimization techniques used to find
the minima of a function subject to equality constraints (e.g.,

line search method, Dantzig-simplex method for linear pro-
gramming, Newton-Raphson method, Hessian-conjugate gra-
dient method, Lagrangian steepest-descent method). The
main advantage of the Lagrangian steepest-descent method is
that the number of equations to solve scales with the number
of different types of atoms present in the mixture, which is
usually a much smaller number than the possible number of
molecular constituents. This allows the code to be executed
much faster than in other methods.

Gradient descent, also known as steepest descent, is an al-
gorithm for finding a local minimum of a function. At each
iteration, the method takes steps towards the minimum, where
each step is proportional to the negative gradient of the func-
tion at the current point. If a function f (x) is defined and
differentiable in the neighborhood of a point a, then f (x) de-
creases most rapidly in the direction of the negative gradient,
−∇ f (a). From this, it follows that if b = a − λ∇ f (a), then
f (a) > f (b) if λ is small enough. Starting with a guess x0 for
a local minimum of f , and considering a sequence x0,x1,x2, ...
such that xn+1 = xn −λ∇ f (xn), n ≥ 0, one gets f (x0) ≥ f (x1)
≥ f (x2) ≥... . This sequence of xn converges to a desired lo-
cal minimum if the correct λ value is assigned. The value of
λ can vary at each iteration. If the function f is convex, the
local minimum is also the global minimum.

Our code implements a more complex version of the
method outlined above. The problem consists of some func-
tion f (x,y) subject to a constraint g(x,y) = C. In this case, we
need both f and g to have continuous first partial derivatives.
Thus, we introduce a new variable called the Lagrangian mul-
tiplier, π, where:

Λ(x,y,λ) = f (x,y)±π (g (x,y) −C) , (14)

which allows us to find where the contour of g(x,y) = C tan-
gentially touches f (x,y) (Figure 1). The point of contact is
where their gradients are parallel:

∇xy f (x,y) = −π∇xy g(x,y) . (15)

The constant π allows these gradients to have different mag-
nitudes. To find the minimum, we need to calculate all partial
derivatives of the function Λ, equate them with zero,

∇x,y,πΛ(x,y,π) = 0 , (16)

and follow the same iteration procedure as explained above.

3.1. Lagrangian Method in TEA

To implement this in our code, we followed the methodol-
ogy derived in White et al. (1958). We applied an iterative
solution to the energy minimization problem, where the mole
numbers of the desired molecular species are recomputed at
each step and the new direction of steepest descent is calcu-
lated. This produces improved mole number values, which
however, could be negative. Thus, two short procedures are
required in each iteration cycle: solving a set of simultane-
ous linear equations for an improved direction of descent (de-
scribed in this Section) and approximately minimizing a con-
vex function of one variable, λ, to ensure that all improved
mole number values are positive (Section 4).

To calculate the direction of steepest descent (following the
methodology derived in Section 3) and initiate the first itera-
tion cycle, we first need to solve the mass balance equation,
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FIG. 1.— Example of the Lagrangian minimization approach. Left: The 3D illustration of the minimization problem. Blue lines indicate starting and ending
values of f (x,y) during minimization. An (x, y) pair is found that minimizes f (x,y) (bottom blue line) subject to a constraint g(x,y) = C (red line). Right: Contour
map of the left figure. The point where the red line (constraint) tangentially touches a blue contour is the solution. Since d1 < d2, the solution is the minimum of
f (x,y).

Equation (13). We start from any positive set of values for the
initial mole numbers, y = (y1,y2, ...,yn), as our initial guess:

n
∑

i=1

ai j yi = b j ( j = 1,2, ...,m) . (17)

To satisfy the mass balance Equation (17), some yi variables
must remain as free parameters. In solving these equations,
we leave as many free parameters as we have elements in the
system, thus ensuring that the mass balance equation can be
solved for any number of input elements and output species
the user chooses. We set all other yi to a known, arbitrary
number. Initially, the starting values for the known species
are set to 0.1 moles, and the mass balance equation is calcu-
lated. If that does not produce all positive mole numbers, the
code automatically sets known parameters to 10 times smaller
and tries again. The initial iteration input is set when all mole
numbers are positive, and the mass balance equation is satis-
fied.

To follow with the Lagrangian method, we denote two
terms in Equation (9) as:

ci =
g0

i (T )

RT
+ lnP , (18)

where P is the pressure in bar. Using ci, we denote the right
side of Equation (9) as the variable fi(Y ):

fi(Y ) = yi

[

ci + ln
yi

ȳ

]

, (19)

where Y = (y1,y2, ...,yn) and ȳ is the total initial number of
moles. The left side of Equation (9), Gsys(T )/RT , we denote
as function F(Y ):

F(Y ) =

n
∑

i=1

yi

[

ci + ln
yi

ȳ

]

. (20)

Then, we do a Taylor series expansion of the function F
about Y . This yields a quadratic approximation Q(X):

Q(X) = F(X)

∣

∣

∣

X=Y
+

∑

i

∂F

∂xi

∣

∣

∣

X=Y
∆i + (21)

1

2

∑

i

∑

k

∂2 F

∂xi∂xk

∣

∣

∣

X=Y
∆i∆k .

where ∆i = xi − yi, and xi are the improved mole numbers.
This function is minimized using the Lagrangian principle.
We now introduce Lagrangian multipliers as π j:

G(X) = Q(X) +

∑

j

π j(−
∑

i

ai j xi + b j) , (22)

and calculate the first derivatives, ∂G/∂xi, of the new func-
tion. We equate them to zero to find the minima, ∂G/∂xi =
0.

We solve for xi from Equation (22) by combining Equation
(17) and (19) with the fact that x̄ is the sum of the improved
mole numbers, x̄ =

∑n

i=1 xi. The improved number of moles,
xi, are given as:

xi = − fi(Y ) + (
yi

ȳ
) x̄ + (

m
∑

j=1

π j ai j)yi , (23)

while the Lagrangian multipliers, π j, are expressed as:

m
∑

j=1

π j

n
∑

i=1

ai j yi =

n
∑

i=1

yi

[g0
i (T )

RT
+ lnP + ln

yi

ȳ

]

, (24)

where j iterates over the m elements and i iterates over the n
species. x̄ and ȳ are the sums of improved and initial num-
ber of moles, respectively. Using Equation (19), we can now
rewrite Equation (24) as:

m
∑

j=1

π j b j =

n
∑

i=1

fi(Y ) . (25)

If we further denote the constants with:

r jk = rk j =

n
∑

i=1

(ai j aik)yi, (26)
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combining Equations (23), (25), and (26), we get the follow-
ing system of m + 1 equations that can easily be solved:

r11π1 + r12π2 + ...+ r1mπm + b1 u =

n
∑

i=1

ai1 fi(Y ) ,

r21π1 + r22π2 + ...+ r2mπm + b2 u =

n
∑

i=1

ai2 fi(Y ) ,

. ,

. , (27)

. ,

rm1π1 + rm2π2 + ...+ rmmπm + bm u =

n
∑

i=1

aim fi(Y ) ,

b1π1 + b2π2 + ...+ bmπm + 0u =

n
∑

i=1

fi(Y ) ,

where:

u = −1 + x̄/ȳ . (28)

The solutions to Equations (27) and (28) will give π j and u,
and from them using Equation (23) we can calculate the next
set of improved mole numbers, i.e., an improved direction of
descent, ∆i = xi − yi.

4. LAMBDA CORRECTION ALGORITHM

Solving a system of linear equations (i.e., performing the
Lagrangian calculation) can also lead to negative mole num-
bers for some species, so a short additional step is needed to
eliminate this possibility and guarantee a valid result.

To do so, the difference between the initial and final values
given by the Lagrangian calculation, ∆i = xi − yi, we will call
the total distance for each species. To ensure that all improved
mole numbers are positive, we introduce a new value, λ, that
defines the fraction of the total distance as λ∆i (see Figure 2).

FIG. 2.— Simplified illustration of the lambda correction algorithm. Initial
values for one hypothetical Lagrangian iteration cycle, yi, are given in green.
These values are all positive and satisfy the mass balance equation, Equation
17. The xi values, given in blue, are the values produced by the Lagrangian
calculation. These values can be negative, but they also satisfy the mass

balance equation. The x
′

i values, given in red, are produced by choosing the

maximum value of lambda that ensures all positive and non-zero x
′

i . These
values become the new initial values of yi for the next iteration cycle.

The computed changes, λ∆i, are considered to be direc-
tional numbers indicating the preferred direction of descent

the system moves to. Other than providing all positive mole
numbers, we determine the value λ so that the Gibbs energy
of the system must decrease, i.e., the minimum point is not
passed (see Equation 34).

At each Lagrangian iteration cycle we start with the initial
positive values, yi and we get the next set of improved values
xi given as:

xi = yi +∆i . (29)

Since we do not want any xi to be negative, the variable λ
performs a small correction:

x
′

i = yi +λ∆i . (30)

λ takes values between 0 and 1, where value of zero implies
no step is taken from the iteration’s original input, yi, and one
implies that the full Lagrangian distance is travelled, ∆i. We
now rewrite Equation (19) using Equation (30) as:

fi(X
′

) = x
′

i

(g0
i (T )

RT
+ lnP + ln

x
′

i

x̄
′

)

, (31)

which can be written in the form:

fi(λ) = (yi +λ∆i)
(g0

i (T )

RT
+ lnP + ln

yi +λ∆i

ȳ +λ∆̄

)

, (32)

where ∆̄ = ȳ − x̄. Summing over i, we get a new function,
F(λ):

F(λ) =
∑

i

(yi +λ∆i)
(g0

i (T )

RT
+ lnP + ln

yi +λ∆i

ȳ +λ∆̄

)

. (33)

Thus, to ensure that the new corrected values x
′

i are all
positive, the distance travelled will be limited to fractional
amounts defined by λ∆i, using the largest possible value of
λ that satisfies the conditions:

1. The function called the directional derivative is defined
and exists:

dF(λ)

dλ
=

n
∑

i=1

∆i

[g0
i (T )

RT
+ lnP + ln

yi +λ∆i

ȳ +λ∆̄

]

. (34)

2. The directional derivative does not become positive (the
minimum point is not passed).

Every new iteration starts with a different set of yi, thus
changing the convex function F(λ), Equation 33, and produc-
ing a new minimum. This yields to a new λ value. λ will
be found to approach unity after some number of iterations.
Unity in λ indicates the solution is near.

We repeat the Lagrangian method and the lambda correc-
tion until a pre-defined maximum number of iterations is
met. The final abundances are given as fractional abundances
(mole mixing fractions), i.e., the ratio of each species’ mole
numbers to the total sum of mole numbers of all species in the
mixture.
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FIG. 3.— Layout of the TEA pre-pipeline and pipeline modules. The modules have one of three roles: scientific calculation, file or data structure support, or
execution of the calculation programs over temperature and pressure points in an iterative manner. In addition to the modules shown, TEA has three supporting
modules: readconfig.py, makeatm.py, and plotTEA.py. All modules are described in the text.
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5. CODE STRUCTURE

The TEA code is written entirely in Python and uses
the Python packages NumPy (http://numpy.org/) and
(http://www.scipy.org/) along with SymPy, an ex-
ternal linear equation solver (http://sympy.org/).

The code is divided into two parts: the pre-pipeline that
makes the thermochemical data library and stoichiometric ta-
bles, and the pipeline that performs abundance calculations.
Given elemental abundances, TEA calculates molecular abun-
dances for a particular temperature and pressure or a list of
temperature-pressure pairs. Documentation is provided in the
TEA User Manual (Bowman and Blecic) and the TEA Code
Description (Blecic and Bowman) that accompany the code.
Figure 3 shows the layout of the TEA program’s flow. Its
modules are:

1. prepipe.py: Runs the readJANAF.py and
makestoich.py modules and provides their
common setup.

2. readJANAF.py: Extracts relevant from all avail-
able NIST-JANAF Thermochemical Tables and writes
ASCII files.

3. makestoich.py: Reads the chemical formula to ob-
tain species names and their stoichiometric coefficients
from each JANAF file, and elemental solar abundances
from an ASCII file based on Asplund et al. (2009) Table
1. The code produces an output file containing species,
stoichiometric coefficients, and abundances.

4. runsingle.py: Runs TEA for a single T,P pair.

5. runatm.py: Runs TEA over a pre-atmosphere file con-
taining a list of T,P pairs.

6. readatm.py: Reads the pre-atmospheric file with mul-
tiple T,P pairs.

7. makeheader.py: Combines the stoichiometric infor-
mation, Gibbs free energy per species at specific tem-
peratures, and the user input to create a single file
with relevant chemical informations further used by the
pipeline.

8. balance.py: Uses species and stoichiometric informa-
tion to establish viable, mass-balanced, initial mole
numbers.

9. format.py: Auxiliary program that manages in-
put/output operations in each piece of the pipeline.

10. lagrange.py: Uses data from the most recent itera-
tion’s corrected mole numbers and implements the La-
grangian method for minimization. Produces output
with raw, non-corrected mole numbers for each species
(values are temporarily allowed to be negative).

11. lambdacorr.py: Takes non-corrected mole numbers
and implements lambda correction to obtain only valid,
positive numbers of moles. Output is the corrected
mole numbers for each species.

12. iterate.py: Driver program that repeats lagrange.py
and lambdacorr.py until a pre-defined maximum num-
ber of iterations is met.

13. readconfig.py: Reads TEA configuration file.

14. makeatm.py: Makes pre-atmospheric file for a multi-
ple T,P run.

15. plotTEA.py: Plots TEA output, the atmospheric file
with final mole-fraction abundances.

6. APPLICATION TO HOT-JUPITER ATMOSPHERES

In this section, we illustrate several applications of the TEA
code. We produced molecular abundances profiles for models
of hot-Jupiter planetary atmospheres, given their temperature-
pressure profiles.

The temperature and pressure (T − P) profiles adopted for
our thermochemical calculations are shown in Figure 4. The
left and middle panel show the T − P profiles of WASP-12b
from Stevenson et al. (2014a) with the C/O ratio of 0.5 and
1.2, respectively. The right panel shows the thermal profile of
WASP-43b from Stevenson et al. (2014b) with solar metallic-
ity. We chose atmospheric models with elemental-abundance
profiles of C/O > 1 and C/O < 1 and three profiles with so-
lar, 10 times solar, and 50 times solar elemental abundances
to show the influence of the C/O ratio and metallicity on the
chemistry and composition of extrasolar giant planets.

6.1. Background of the Models Used

WASP-12b is a first hot-Jupiter extrasolar planet that is
found to have a C/O ratio larger than one (Madhusudhan et al.
2011b). Subsequent observations and analyses (Cowan et al.
2012, Bergfors et al. 2013, Crossfield et al. 2012, Swain et al.
2013) re-evaluated this result suggesting that stellar binary
companions and thermal phase variations corrupted the orig-
inal conclusion, leading to no evidence for a high C/O ra-
tio. Using previously published results and a suite of inverse
modeling approaches, Line et al. (2014) found high CO2 and
concluded that larger C/O ratios cannot be ruled out. Steven-
son et al. (2014a) performed a uniform analysis of all avail-
able Hubble and Spitzer Space Telescope secondary eclipse
data. They included additional opacity sources in the calcu-
lation, C2H2 and HCN, relevant and abundant in atmospheres
with C/O larger than one. Their results reinstate the previous
conclusion from Madhusudhan et al. (2011b), showing that a
physically plausible carbon-rich solution achieves the best fit,
being even 670 times more probable than the oxygen-rich so-
lution. In our application, we used their two best-fit oxygen-
and carbon-rich models (their Figure 7, left panel), with the
respective C/O ratios of 0.5 and 1.2.

WASP-43b is a hot-Jupiter exoplanet, orbiting a cold K7-
type star on a short-period orbit (only 19.5 hours). Due to
the host star’s cool temperature and small radius, as well as
a small semi-major axis, the system produces deep eclipses
both in transit and occultation, making WASP-43b one of the
most observed and studied exoplanets today. Multiple pho-
tometric and spectroscopic observations of WASP-43b (Hel-
lier et al. 2011, Gillon et al. 2012, Wang et al. 2013, Blecic
et al. 2014, Chen et al. 2014, Zhou et al. 2014, Stevenson et al.
2014b) revealed no thermal inversion in the planetary atmo-
sphere, low day-night energy redistribution, water abundance
1-10×solar, and a slightly enhanced C/O ratio compared to
solar (Benneke 2015, Blecic et al. 2015b). Stevenson et al.
(2014b), in addition, constructed a longitudinally-resolved
brightness temperature map as a function of the optical depth
and compared their best-fit retrieved dayside temperature and
pressure profile with three scenarios of self-consistent radia-
tive equilibrium models. They showed that the best match
is with the profile at the substellar point, supporting a low
day-night heat redistribution. In our application, we used the
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FIG. 4.— The left and middle panels show the O-rich and C-rich temperature and pressure (T − P) profile of WASP-12b from Stevenson et al. (2014a) with C/O
= 0.5 and C/O = 1.2 respectively. The right panel shows the T − P profile of WASP-43b from Stevenson et al. (2014b) with solar metallicity.
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FIG. 5.— Comparison between vertical thermochemical equilibrium distributions for WASP-12b O-rich, left panel, and WASP-12b C-rich, right panel, elemen-
tal abundance profile. The inset plots are the T − P profiles shown in Figure 4, left and middle panels.

retrieved dayside temperature and pressure profile from their
Figure 5, Stevenson et al. (2014b), Supplemental Material.

6.2. Results

We adopt Asplund et al. (2009) photospheric solar abun-
dances as our baseline. To change the elemental abundance
profile, set them to a certain C/O ratio, or enhance metallic-
ity, we use our Python routine, makeAbun.py. This rou-
tines is the part of the BART project and it is available to the
community via Github.com under an open-source licence
(https://github.com/exosports/BART). For dif-
ferent metallicities, the routine multiples the elemental abun-
dances of all species except for hydrogen and helium, preserv-
ing the ratio of major atomic species like C, N, and O.

We chose to run the models for all plausible, spectroscopi-
cally active species in the infrared relevant for hot-Jupiter at-
mospheres: H2, CO, CO2, CH4, H2O, HCN, C2H2, C2H4, N2,
NH3, HS, and H2S. Our input species are: H, He, C, N, O, S.

Figure 5 shows results for WASP-12b. Each T − P profile
is sampled 100 times uniformly in log-pressure space. Figure
6 shows the TEA runs for WASP-43b with different metal-
licities. This T − P profile is sampled 90 times in uniformly
log-pressure space.

As expected, Figure 5 shows that H2O, CH4, CO, CO2,
C2H2, C2H4, and HCN are under the strong influence of the
atmospheric C/O ratio in hot Jupiters (e.g., Lodders & Fegley
2002, Seager et al. 2005, Fortney et al. 2005, Madhusudhan

et al. 2011b,a, Madhusudhan 2012, Madhusudhan & Seager
2011, Moses et al. 2013). These species are plotted in solid
lines, while species with only small influence from the C/O
ratio are plotted as dashed lines.

The results also show, as expected, that CO is a major at-
mospheric species on hot Jupiters for all C/O ratios and metal-
licities (Figures 5 and 6), because CO is chemically favored
over H2O. Other oxygen-bearing molecules like H2O and CO2

are more abundant when C/O<1, while CH4, C2H2, and C2H4

become significant species when C/O>1. Species like N2 and
NH3 that do not contain carbon or oxygen are much less af-
fected by the C/O ratio.

H2O is abundant in hot-Jupiter atmospheres (e.g., Bur-
rows & Sharp 1999, Lodders & Fegley 2002, Hubeny & Bur-
rows 2007, Sharp & Burrows 2007) due to the large solar
abundances of oxygen and hydrogen. Even disequilibrium
processes like photochemistry cannot deplete its abundance.
Photochemical models by Moses et al. (2011) and Line et al.
(2010, 2011) predict that water will be recycled in hot-Jupiter
atmospheres, keeping H2O abundances close to thermochem-
ical equilibrium values. A low water abundance seems to oc-
cur only in atmospheres with a C/O>1.

CO2, although present in hot-Jupiter atmospheres and spec-
troscopically important, is not a major constituent, and it be-
comes even less abundant when C/O>1. Although photo-
chemistry can greatly enhance the HCN, C2H2, and C2H4

abundances (Moses et al. 2013), we also see that with C/O>1,
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FIG. 6.— Thermochemical equilibrium vertical distributions for different
metallicities of WASP-43b assuming the T − P profile in Figure 4, right panel
(profile given in inset). Three metallicity cases with ζ= 1, 10, and 50 are
shown from the top to the bottom.

they are the most abundant constituents.
In Figure 6, the species strongly influenced by metallicity

are again plotted as solid lines. In general, we see, as expected
(e.g., Line et al. 2011, Lodders & Fegley 2002, Venot et al.
2014), that the shapes of the vertical distributions are mostly
preserved for all metallicities. However, the thermochemical
mixing ratio of CO2, CO, H2O, N2, HS, and H2S vary by sev-

eral orders of magnitude over the range of metallicities, while
CH4 and hydrocarbons change very little.

When the metallicity changes from 1 to 50, the abundance
of CO2 experiences the most dramatic change. It increases
by a factor of 1000, confirming it as the best probe of plane-
tary metallicity (Lodders & Fegley 2002, Zahnle et al. 2009).
CO2 abundance is the quadratic function of metallicity (Venot
et al. 2014), while CO, H2O, HS, H2S, and N2 abundances,
for species that either contain one metal atom or are the ma-
jor reservoirs of carbon and nitrogen, increase linearly with
metallicity (Visscher et al. 2006). For this metallicity range,
the CO, H2O, HS, H2S, and N2 abundances change by a factor
of 100, while NH3, CH4, C2H2, C2H4, and HCN change by a
factor of 10 or less.

7. COMPARISON TO OTHER METHODS

To test the validity of our code, we performed 4 different
tests. We compared the output of TEA with the example from
White et al. (1958) using their thermodynamic data. We also
compared the TEA output with the output of our TEBS (Ther-
mochemical Equilibrium by Burrows & Sharp) code that im-
plements the Burrows & Sharp (1999) analytical method for
calculating the abundances of five major molecular species
present in hot-Jupiter atmospheres (CO, CH4, H2O, N2,
NH3). As another comparison, we used the free thermochem-
ical equilibrium code CEA (Chemical Equilibrium with Ap-
plications, available from NASA Glenn Research Center at
http://www.grc.nasa.gov/WWW/CEAWeb/). This
code uses the Newton-Raphson descent method within the
Lagrange optimization scheme to solve for chemical abun-
dances. Their approach is described by Gordon & McBride
(1994), McBride & Gordon (1996), and Zeleznik & Gordon
(1960, 1968). The thermodynamic data included in the CEA
code are partially from the JANAF tables (Chase 1986) that
we used in our TEA code, but also from numerous other
sources (e.g., Cox et al. 1982, Gurvich et al. 1989, McBride
et al. 1993). Lastly, we derived CEA free energies and used
them as input to TEA, to compare the CEA and TEA outputs.

Our first comparison was done using the example from
White et al. (1958). We determined the composition of the
gaseous species arising from the combustion of a mixture of
hydrazine, N2H4, and oxygen, O2, at T = 3500 K and the
pressure of 750 psi = 51.034 atm. We used the free-energy
functions and b j values (total number of moles of element j
originally present in the mixture) from their Table 1. We re-
produced their abundances, Table 1, with slightly higher pre-
cision probably due to our use of double precision.

TABLE 1
COMPARISON WHITE ET AL. vs. TEA

Species
g0

i (T )

RT
White et al. TEA Difference

abundances abundances

H -10.021 0.040668 0.04065477 -0.00001323

H2 -21.096 0.147730 0.14771009 -0.00001991

H2O -37.986 0.783153 0.78318741 0.00003441

N -9.846 0.001414 0.00141385 -0.00000015

N2 -28.653 0.485247 0.48524791 0.00000091

NH -18.918 0.000693 0.00069312 0.00000012

NO -28.032 0.027399 0.02739720 -0.00000180

O -14.640 0.017947 0.01794123 -0.00000577

O2 -30.594 0.037314 0.03730853 -0.00000547

OH -26.111 0.096872 0.09685710 0.00001490
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FIG. 7.— Left: Comparison TEA, CEA and TEBS. TEBS is an analytic method, while CEA and TEA are numerical methods. We show the major
spectroscopically-active species in the infrared that can be produced by all three methods. We run the codes for the same range of temperatures and the pressure
of P = 1 bar. Each species in each method is plotted with a different line style, but with the same color. The TEBS final abundances are plotted as dots, CEA as
dashed lines, while TEA is plotted as solid lines. Right: Comparison of the TEA results with the results from CEA. CEA and TEA are both numerical methods
that use Gibbs free energy minimization method with similar optimization scheme. We show the most plausible and most abundant spectroscopically-active
species in the infrared expected to be present in hot-Jupiter atmospheres, that all codes can cover. In the inset plot, we show a detail (zoom-in part), pointing
out species lines that do not overlap. The T − P profile used for this run is given in the right panel of Figure 4. Tables 2 and 3 list differences between the final
abundances for random three T,P points chosen from each run.
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FIG. 8.— Comparison TEA and CEA using CEA thermodynamic data provided in their thermo.inp file. The comparison is done for the same conditions as
in Figure 7. Tables 2 and 3 list differences between the final abundances for random three T,P points chosen from each run.

Figure 7, left panel, shows the CEA, TEA, and TEBS runs
for the temperatures between 600 and 3000 K, pressure of 1
bar, and solar abundances. The runs were performed with the
input and output species that all codes contain (H, C, O, N, H2,
CO, CH4, H2O, N2, NH3). We also run the comparison just be-
tween CEA and TEA, Figure 7, right panel, for the WASP-43b
model atmosphere that we described in Section 6. We used
the pressure and temperature profile shown in Figure 4, right
panel, and solar elemental abundances. The temperatures and

pressures range from 958.48 to 1811.89 K and 1.5×10-5 to

3.1623×101 bar, respectively. We included the same species
as in Section 6 with the exclusion of the C2H2 and HS species,
because CEA does not carry the thermodynamical parameters
for them.

In the left panel of Figure 7, we see that for the most species
and temperatures CEA and TEA lines overlap (CEA result

is plotted in dashed and TEA in solid lines). However, CH4

species abundances above T ∼1700 K do not overlap. TEBS
colored dots do not overplot either CEA or TEA curves, but
follow them closely. This method is derived for only five ma-
jor molecular species and is based on a few simple analytic
expressions.

In Figure 7, right panel, we again see that most species over-
lap, except HCN and CH4. The HCN curves (for CEA and
TEA runs) differ for the full temperature range (see the inset
figure), while, as before, CH4 curve differs slightly only for
pressures above ∼0.1 bar and temperatures above ∼1700 K
(see Figure 4 for the T − P profile used for this run).

The differences seen in Figure 7 come from the different
sources of thermodynamic data used for CEA and TEA (see
Tables 2 and 3). When the CEA thermodynamic data are used
as input to TEA, all species final abundances match, see Fig-
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TABLE 2
DIFFERENCES CEA vs. TEA, FIGURES 7 AND 8, LEFT PANELS

Pressure Temp Species

(bar) (K) CO CH4 H2O N2 NH3

CEA free energies

1.0000e+00 2500.00 -33.80559930 -34.91655970 -40.12912409 -27.71757996 -32.70878374

1.0000e+00 2700.00 -33.69182758 -35.33414843 -39.64186320 -27.99507610 -33.05270703

1.0000e+00 2900.00 -33.61649725 -35.76252669 -39.25604592 -28.25692510 -33.39666924

TEA (JANAF) free energies

1.0000e+00 2500.00 -33.80793700 -34.70780992 -40.12426098 -27.72037451 -32.73695542

1.0000e+00 2700.00 -33.69214791 -35.08662806 -39.63255004 -27.99496246 -33.08302621

1.0000e+00 2900.00 -33.61466712 -35.47533692 -39.24191944 -28.25439783 -33.42896561

CEA final abundances

1.0000e+00 2500.00 5.3129e-04 4.2666e-09 4.3546e-04 6.6686e-05 8.2252e-08

1.0000e+00 2700.00 5.2311e-04 1.8387e-09 4.2855e-04 6.5661e-05 6.4332e-08

1.0000e+00 2900.00 5.0876e-04 8.2340e-10 4.1586e-04 6.3844e-05 4.9466e-08

TEA final abundances using CEA free energies

1.0000e+00 2500.00 5.3129e-04 4.2665e-09 4.3547e-04 6.6685e-05 8.2251e-08

1.0000e+00 2700.00 5.2311e-04 1.8387e-09 4.2856e-04 6.5661e-05 6.4332e-08

1.0000e+00 2900.00 5.0876e-04 8.2339e-10 4.1586e-04 6.3844e-05 4.9466e-08

TEA final abundances using JANAF free energies

1.0000e+00 2500.00 5.3129e-04 3.3976e-09 4.3547e-04 6.6685e-05 8.3987e-08

1.0000e+00 2700.00 5.2312e-04 1.4194e-09 4.2856e-04 6.5661e-05 6.6260e-08

1.0000e+00 2900.00 5.0878e-04 6.1471e-10 4.1586e-04 6.3845e-05 5.1339e-08

TABLE 3
DIFFERENCES CEA vs. TEA, FIGURES 7 AND 8, RIGHT PANELS

Pressure Temp Species

(bar) (K) CO CO2 CH4 H2O HCN NH3 H2S

CEA free energies

3.8019e-01 1719.64 -34.9307244 -58.4124145 -33.595356 -43.7404858 -19.8124391 -31.4721776 -30.6054338

1.6596e+00 1805.28 -34.7237371 -57.3627896 -33.695587 -43.1403205 -20.4938031 -31.5886558 -30.7577826

2.1878e+01 1810.15 -34.7128505 -57.3065771 -33.701803 -43.1083097 -20.5310828 -31.5955222 -30.7664570

TEA (JANAF) free energies

3.8019e-01 1719.64 -34.9288052 -58.4130468 -33.5180429 -43.7386156 -19.6678405 -31.4830322 -30.5760402

1.6596e+00 1805.28 -34.7231685 -57.3648328 -33.6061366 -43.1392058 -20.3573682 -31.6020990 -30.7285988

2.1878e+01 1810.15 -34.7123566 -57.3086978 -33.6116396 -43.1072342 -20.3950903 -31.6091097 -30.7372812

CEA final abundances

3.8019e-01 1719.64 4.5960e-04 5.8035e-08 4.9221e-08 3.7681e-04 5.6243e-09 7.9716e-08 2.2498e-05

1.6596e+00 1805.28 4.5918e-04 5.2864e-08 4.4665e-07 3.7724e-04 2.4131e-08 2.8864e-07 2.2504e-05

2.1878e+01 1810.15 4.0264e-04 5.3052e-08 5.6873e-05 4.3396e-04 2.3851e-07 3.7082e-06 2.2520e-05

TEA final abundances using CEA free energies

3.8019e-01 1719.64 4.5959e-04 5.8035e-08 4.9219e-08 3.7682e-04 5.6240e-09 7.9714e-08 2.2498e-05

1.6596e+00 1805.28 4.5918e-04 5.2865e-08 4.4667e-07 3.7724e-04 2.4131e-08 2.8864e-07 2.2504e-05

2.1878e+01 1810.15 4.0263e-04 5.3053e-08 5.6875e-05 4.3396e-04 2.3851e-07 3.7083e-06 2.2519e-05

TEA final abundances using JANAF free energies

3.8019e-01 1719.64 4.5959e-04 5.8326e-08 4.5480e-08 3.7681e-04 4.8604e-09 8.0472e-08 2.2497e-05

1.6596e+00 1805.28 4.5922e-04 5.3200e-08 4.0512e-07 3.7719e-04 2.0937e-08 2.9102e-07 2.2504e-05

2.1878e+01 1810.15 4.0694e-04 5.3429e-08 5.2592e-05 4.2965e-04 2.1124e-07 3.7386e-06 2.2519e-05

ure 8. Section 7.1, below, elaborates on this and investigate
the difference in free energy input values used for CEA and
TEA.

7.1. Comparison of free energy values in CEA and TEA

The thermodynamic data used for CEA are in the form of
polynomial coefficients, and are listed in the termo.inp file
provided with the CEA code. The format of this library is ex-
plained in Appendix A of McBride & Gordon (1996). For
each species, the file lists, among other data, the reference
sources of the thermodynamic data, the values of the standard

enthalpy of formation, ∆ f H
0
298, at the reference temperature

of 298.15 K and pressure of 1 bar, and coefficients of specific

heat, C0
p, with integration constants for enthalpy, Ho, and en-

tropy, So, for temperature intervals of 200 to 1000 K, 1000 to
6000 K, and 6000 to 20000 K.

The JANAF tables list the reference sources of their thermo-
dynamic parameters in Chase (1986, 1998). The data are also
available at http://kinetics.nist.gov/janaf/.

The difference in thermodynamic parameters between CEA

and TEA is noticeable even in their ∆ f H
0
298 values. The

source of standard enthalpies of formation in CEA for, e.g.,
HCN and CH4 is Gurvich (1991), page 226 and 36, re-
spectively, and their respective values are 133.08 and -74.60
kJ/mol. The source of standard enthalpies of formation in
the JANAF tables is listed in Chase (1986) on page 600 and



12 Blecic et al.

615, respectively, and their respective values are 135.14 and
-74.873 kJ/mol.

TEA uses JANAF tables to calculate the values of free ener-
gies for each species following Equation 10. To calculate the
values of free energies used in CEA, we started from Chap-
ter 4 in Gordon & McBride (1994). Our goal is to plug CEA
free energies into TEA and test whether TEA will produce the
same final abundances as CEA does.

As explained in Section 4.2, the thermodynamic functions
specific heat, enthalpy, and entropy as function of tempera-
tures are given as:

Co
p

R
=
∑

ai T
qi , (35)

Ho

RT
=

∫

Co
p dT

RT
, (36)

So

R
=

∫

Co
p

RT
dT . (37)

These functions are given in a form of seven polynomial coef-
ficients for specific heat, Co

p/R, and two integrations constants

(a8 and a9) for enthalpy, Ho/RT , and entropy, So/R:

Co
p

R
= a1T −2

+ a2T −1
+ a3 + a4T + a5T 2

+ a6T 3
+ (38)

a7T 4 ,

Ho

RT
= − a1T −2

+ a2T −1 lnT + a3 + a4

T

2
+ a5

T 2

3
+ (39)

a6

T 3

4
+ a7

T 4

5
+

a8

T
,

So

R
= − a1

T −2

2
− a2T −1

+ a3 lnT + a4T + a5

T 2

2
+ (40)

a6

T 3

3
+ a7

T 4

4
+ a9 .

To derive free energies in the form that TEA uses them, we
rewrite Equation 10 for one species as:

g0(T )

RT
= 1/R

[G0
T − H0

298

T

]

+

∆ f H
0
298

RT
, (41)

The first term on the right side can be expressed in the follow-
ing format (Chase et al. 1974, Page 3):

G0
T (T ) − H0

298

T
= − So

T +

(Ho
T − H0

298)

T
. (42)

Thus, we rewrite Equation 41 as:

g0(T )

RT
= 1/R

[

So
T +

(Ho
T − H0

298)

T

]

+

∆ f H
0
298

RT
, (43)

g0(T )

RT
= 1/R

[

So
T +

Ho
T

T
−

H0
298

T

]

+

∆ f H
0
298

RT
, (44)

To see Equations 39 and 40 inside Equation 44, we multiply
and divide the first and second term on the right with R and
get:

g0(T )

RT
=

So
T

R
+

Ho
T

RT
−

H0
298

RT
+

∆ f H
0
298

RT
, (45)

In the CEA analysis paper, Section 4.1, Gordon & McBride
(1994) state that they have arbitrary assumed Ho(298.15) =
∆ f H

o(298.15). Adopting this assumption leads to:

g0(T )

RT
=

So
T

R
+

Ho
T

RT
−

∆ f H
0
298

RT
+

∆ f H
0
298

RT
. (46)

The last two terms cancel leading to a simple expression for
free energies:

g0(T )

RT
=

So
T

R
+

Ho
T

RT
, (47)

The first term on the right side is Equation 40, while the sec-
ond term is Equation 39; expressions with polynomial coeffi-
cients that are given in the CEA thermo.inp file.

Following the last conclusion, we calculated the free en-
ergies for each species of interest and used them as input to
TEA. Figure 8 shows the comparison between CEA and TEA
using CEA free energies. We see that all species overlap. Ta-
bles 2 and 3 give the exact values of free energies used and
the final abundances for several (T,P) points that showed the
largest differences between CEA and TEA runs in Figure 7. It
also lists the free energies calculated using JANAF tables and
the final abundances produced by TEA using JANAF thermo-
dynamic data.

As seen in Figure 8, although CEA uses Newton-Raphson
and TEA the Lagrangian method of steepest descent, both ap-
proaches, using the same inputs (free energies), find the same
final abundances. Table 2, (groups CEA final abundances and
TEA final abundances using CEA free energies), shows val-
ues identical for most species between the two tests. A few

cases show that abundance ratios are inconsistent at the 10-5

level. Table 3 displays the same trend. The differences in the
fifth decimal place may indicate that, somewhere in CEA, a
calculation is carried out in 32-bit precision, possibly due to
a literal single-precision number in the source code. Python
floating literals are in 64-bit precision by default.

8. REPRODUCIBLE RESEARCH LICENSE

Reproducing a lengthy computation, such as that imple-
mented in TEA, can be prohibitively time consuming (Stod-
den 2009). We have released TEA under an open-source li-
cense, but this is not enough, as even the most stringent of
those licenses (e.g., the GNU General Public License) does
not require disclosure of modifications if the researcher does
not distribute the code. So that the process of science can pro-
ceed efficiently, there are several terms in our license to en-
sure reproducibility of all TEA results, including those from
derivative codes. A key term requires that any reviewed sci-
entific publication using TEA or a derived code must publish
that code, the code input and output used in the paper (such
as data in tables and figures, and data summarized in the text),
and all the information used to initialize the code to produce
those outputs. These items must appear in a Reproducible
Research Compendium (RRC). The RRC must be published
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with the paper, preferably in a permanent, free-of-charge (to
the downloader), public internet archive, such as zenodo.org
(note that zenodo.com is a different site). The American As-
tronomical Society recommends this site because it indexes
its content for online searches, making it highly "discover-
able". A permanent link to the archive must be published in
the paper, and the archive must never be closed, altered, or
charged for. Details and examples of how to do this appear
in the license and documents accompanying TEA, along with
additional discussion. The RRC for this paper, including the
TEA package and documentation, is available at Blecic (2016,
zenodo.org: RRC-BlecicEtal-2016-ApJS-TEA). See
http://planets.ucf.edu/resources/reproducible for further dis-
cussion of the Reproducible Research Software License, its
latest version, how to make a good RRC, and a discussion
group.

An unreviewed version of this paper (Blecic et al.
2015a) also has an RRC, which was posted in May 2015 at
https://github.com/dzesmin/RRC-BlecicEtal
-2015a-ApJS-TEA/. This initial RRC carries a test ver-
sion of the TEA code under a more restrictive, pre-publication
license. We now understand that using github.com and other
versioning sites is less than optimal, as they have poorer
discoverability and are oriented toward making changes
rather than historical archiving.

9. CONCLUSIONS

We have developed an open-source Thermochemical Equi-
librium Abundances code for gaseous molecular species.
Given elemental abundances and one or more temperature-
pressure pairs, TEA produces final mixing fractions using the
Gibbs-free-energy minimization method with an iterative La-
grangian optimization scheme.

We applied the TEA calculations to several hot-Jupiter
T −P models, with expected results. The code is tested against
the original method developed by White et al. (1958), the an-
alytic method developed by Burrows & Sharp (1999), and the
Newton-Raphson method implemented in the free Chemical
Equilibrium with Applications code. Using the free energies

listed in White et al. (1958), their example, and derived free
energies based on the thermodynamic data provided in CEA’s
thermo.inp file, TEA produces the same final abundances,
but with higher precision.

Currently, TEA is specialized for gaseous species, with the
implementation of condensates left for future work. In opac-
ity calculations at low temperatures (below 1000 K), the in-
clusion of condensates is necessary as it reduces the gas phase
contribution to opacity (e.g., Sharp & Huebner 1990, Lodders
& Fegley 2002, Burrows & Sharp 1999).

The thermochemical equilibrium abundances obtained
with TEA can be used in all static atmospheres, at-
mospheres with vertical transport and temperatures above
1200 K (except when ions are present), and as a start-
ing point in models of gaseous chemical kinetics and
abundance retrievals run on spectroscopic data. TEA
is currently used to initialize the atmospheric retrial cal-
culations in the open-source BART project (available at
https://github.com/exosports/BART).

TEA is written in a modular way using the Python pro-
gramming language. It is documented (the Start Guide,
the User Manual, the Code Document, and this theory pa-
per are provided with the code), actively maintained, and
available to the community via the open-source develop-
ment sites https://github.com/dzesmin/TEA and
https://github.com/dzesmin/TEA-Examples.
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