
TEA

THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

User Manual

Authors:

M. OLIVER BOWMAN

JASMINA BLECIC

Programmers:

M. OLIVER BOWMAN

JASMINA BLECIC

Lead Scientist:

JASMINA BLECIC

Principal Investigator:

JOSEPH HARRINGTON

Tester:

MADDISON STEMM

April 12, 2016

TEA User Manual, Bowman & Blecic 1

TEA User Manual, Bowman & Blecic 2

This document goes along with the TEA code, the TEA theory paper (Blecic

et al., 2016), and the code description document.

TEA is part of the PhD dissertation work of Dr. Jasmina Blecic, who

developed it with coding assistance from undergraduate M. Oliver Bowman

and under the advice of Prof. Joseph Harrington at the University of Central

Florida, Orlando, Florida, USA.

Copyright c© 2014-2016 University of Central Florida.

This program is reproducible-research software: you can redistribute it and/or

modify it under the terms of the Reproducible Research Software License as

published by Prof. Joseph Harrington at the University of Central Florida,

either version 0.3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the Reproducible

Research Software License for more details.

You should have received a copy of the Reproducible Re-

search Software License along with this program. If not, see

http://planets.ucf.edu/resources/reproducible/. The

license’s preamble explains the situation, concepts, and reasons surrounding

reproducible research, and answers some common questions.

This project was started with the support of the NASA Earth and Space

Science Fellowship Program, grant NNX12AL83H, held by Jasmina Blecic,

Principal Investigator Joseph Harrington, and the NASA Science Mission

Directorates Planetary Atmospheres Program, grant NNX12AI69G.

See the file ACKNOWLEDGING in the top-level TEA directory for instruc-

tions on how to acknowledge TEA in publications.

We welcome your feedback, but do not guarantee support. Many questions are

answered in the TEA forums:

https://physics.ucf.edu/mailman/listinfo/tea-user

https://physics.ucf.edu/mailman/listinfo/tea-devel

Visit our Github site: https://github.com/dzesmin/TEA/

Reach us directly at:

Jasmina Blecic: jasmina@physics.ucf.edu

Joseph Harrington: jh@physics.ucf.edu

TEA User Manual, Bowman & Blecic 3

Contents

1 Introduction 4

2 Dependencies 4

2.1 Python . 4

2.2 NumPy . 5

2.3 SymPy . 5

3 Work-flow & Modular Format 6

3.1 Pre-Pipeline . 7

3.2 Main Pipeline . 7

4 Installing TEA 7

5 Quick Example 9

6 Program Inputs 10

6.1 TEA.cfg . 10

6.2 Single T, P . 12

6.3 Multiple T, P . 13

6.4 JANAF Tables . 14

6.5 Abundances . 14

7 Program Outputs 15

7.1 Pre-pipeline . 15

7.2 Intermediate Files . 15

7.3 Auxiliary Header Files . 16

7.4 Single T, P . 17

7.5 Multiple T, P . 18

8 Executing TEA 18

8.1 Directory Structure . 19

8.2 Pre-pipeline . 20

8.3 makeatm.py . 20

8.4 Single T, P . 21

8.5 Multiple T, P . 21

8.6 Plot TEA . 21

9 Potential User Errors 22

10 Examples 22

11 Current Limitations 22

TEA User Manual, Bowman & Blecic 4

1 Introduction

There are two approaches to how one can calculate thermochemical equilibrium: by using equi-

librium constants and reaction rates or by minimizing the free energy of the system. Although

chemical equilibrium can be calculated almost trivially for several reactions present in the system,

as the number of reactions increases, the number of equilibrium-constant relations becomes diffi-

cult to solve simultaneously. An advantage of the free-energy-minimization method is that each

species present in the system can be treated independently, without specifying complicated sets

of reactions. Therefore, just a limited set of equations needs to be solved. The Thermochemical

Equilibrium Abundances (TEA) code is based on the Gibbs-free-energy minimization calculation

originally developed by White et al. (1958) and Eriksson (1971). The code is written entirely in

Python and is available to the scientific community under the reproducible-research license.

TEA solves complex chemical systems with a plethora of species in a short amount of time

(Section 10). The code is designed to handle either a system containing a single temperature and

pressure (T, P) or a layered system of temperatures and pressures, such as one would find in a

planetary atmosphere. The intended use of the TEA code is to solve equilibrium abundances for

hot-Jupiter exoplanetary atmospheres, though it is not strictly limited to such a system. TEA uses

the Lagrangian steepest-descent method (Blecic et al., 2016, Section 1.2) in order to minimize

the free-energy of a system. This minimization followed by a short correction for validity called

”Lambda correction” (Blecic et al., 2016, Section 4) results in the equilibrium abundances one

would expect to find at a certain temperature and pressure. TEA outputs are abundances given as

fractional abundances (mole mixing fractions), i.e., the ratio of each species’ mole numbers to the

total sum of all mole numbers in the mixture.

This is a second part of a three-part document describing the TEA code. The first part, the TEA

Theory document (Blecic et al., 2016) presents the theoretical basis for the method applied, this

document is the user manual, and the third is the TEA Code Description document by Blecic &

Bowman. If you find this package useful, please cite Blecic et al. (2016).

This project was completed with the support of the NASA Earth and Space Science Fellowship

Program, grant NNX12AL83H, held by Jasmina Blecic, PI Joseph Harrington. Project developers

included graduate student Jasmina Blecic and undergraduate M. Oliver Bowman.

2 Dependencies

As TEA is written in the Python programming language, there are certain pre-requisite packages

that must be installed for it to execute properly. Specifically, three major Python libraries are

required to operate TEA: NumPy, a package to allow for scientific computing, SymPy, a numerical

computation package to facilitate solving a system of equations, and the general Python overhead.

Any other packages used by TEA are included by default in the Python overhead installation and

do not need to be explicitly installed. These dependencies have been tested on the Linux operating

system.

2.1 Python

Python is a high-level programming language widely used throughout scientific and engineering

fields. Its design philosophy emphasizes code readability, and its syntax allows programmers to

express concepts in fewer lines of code than would be possible in languages such as C or Fortran.

TEA User Manual, Bowman & Blecic 5

Python was chosen as primary language for TEA, becasue it is entirely open source and is often

used for scientific calculations.

TEA was written using Python 2.7.3. We tested TEA with other Python versions: 2.7.5 and

2.7.8 (current at the writing of this manual) and observed no performance difference between the

versions.

2.2 NumPy

NumPy is the fundamental package for scientific computing with Python. NumPy is implemented

in TEA primarily for its data-handling systems, i.e., object arrays and in/out functionality. It is also

used in numerical and logarithmic calculations throughout the TEA pipeline.

TEA was written using NumPy 1.6.1. We tested TEA with other NumPy versions: 1.7.1, 1.6.1,

1.7.0, 1.8.0 and 1.9.0 (current at the writing of this manual). There is no known performance

difference between the versions.

2.3 SymPy

SymPy is an open-source Python package developed to give Python a more fluent and intuitive

means of solving individual or sets of equations. TEA uses SymPy to solve sets of equations

during the Lagrange optimization process (Blecic et al., 2016, Section 3 Equation 27). SymPy

documentation and its installation procedure can be found at http://sympy.org/.

TEA uses SymPy 0.7.1.rc1 for optimal run-time. Newer versions have been shown as accurate,

but can heavily consume resources and inflate computation time.

Figure 1: Performance benchmarks for a sample TEA execution with recent SymPy versions.

Hardware specs: Intel i7-3770K 3.50GHz [CPU].

We performed a test comparing SymPy version 0.7.1.rc1 with more recent versions (Figure 1).

The test was performed on a machine with an Intel i7-3770K 3.50GHz processor and an input file

that contains 100 temperature and pressure points, 5 input species, and 13 output species. The

test shows the speed of execution between different SymPy versions using the flag rational =

False in the solve() SymPy routine. This flag is introduced to improve accuracy, however, we

see no accuracy improvements in the final abundances by setting rational = True.

http://sympy.org/

TEA User Manual, Bowman & Blecic 6

When rational = False, the total computation time decreases in general with respect to

the runs where rational = True. However, this varies in each SymPy version. The contin-

uous increase in the total run-time of 25 – 50 seconds is observed for every new version. On the

other hand, if set to True, the total run-time jumps to about 6000 seconds (the solve() routine

is used at every T, P point and in each iteration cycle). Thus, our solve() routine uses the flag

rational = False, and although we recommend installing the fastest 0.7.1.rc1 version, any

newer SymPy version can be used with a slight overall run-time increase.

3 Work-flow & Modular Format

Figure 2: Layout of the pre-pipeline and pipeline packages.

The TEA code is written in a modular format (Figure 2) where each scientific package has

one specific goal, from creating thermodynamic libraries to producing minimized values. These

packages are supported by several file control packages that do not perform calculations on their

TEA User Manual, Bowman & Blecic 7

own, but instead provide input-output (I/O) support for reading and writing files and data. All

packages have one of three roles: scientific calculation, file or data structure support, or execution

of the calculation programs over temperature and pressure points in an iterative manner.

The code itself is split into two main sections: a collection of single-run setup programs (pre-

pipeline) and the main iterative loop (pipeline).

3.1 Pre-Pipeline

The pre-pipeline is designed to lay out the thermodynamic libraries and stoichiometric informa-

tion TEA will use in the main pipeline. It uses the JANAF tables and elemental abundances file

(Sections 6.4 and 6.5 respectively) as inputs. The pre-pipeline is executed using the wrapper pro-

gram prepipe.py which in turn executes both readJANAF.py and makestoich.py (see

respective sections in the TEA Code Description by Blecic & Bowman). The pre-pipeline is ex-

ecuted prior to the release, and the thermochemical libraries and stoichiometric information are

distributed with the code. Thus, the user does not need to execute the code. However, if updated

JANAF tables are provided in the same format as currently used in TEA (last downloaded October

2012), the pre-pipeline execution will populate the thermochemical libraries and stoichiometric

values with new information.

3.2 Main Pipeline

Similarly to the pre-pipeline, the main TEA pipeline is executed with one of two driver programs

depending on the nature of the system the user has specified: a system with constant temperature

and pressure (single T, P) or a full atmospheric systems (multiple T, P). Both drivers follow

the same general flow of execution and differ in the number of unique T, P points solved and

the file structure of the input, intermediary, and output files. For each T, P point, the pipeline

establishes an initial set of mass-balanced abundances and proceeds to iteratively apply Lagrange

minimization and lambda correction before settling on a final set of equilibrium abundances (Blecic

et al., 2016). Should the user need to solve system of more than one T, P point, the pipeline

driver will additionally repeat this process over each T, P point. The final abundances are given as

fractional abundances, mole mixing fractions.

4 Installing TEA

TEA is available to the scientific community via the open-source development site GitHub.com.

To download TEA from the github repository, execute in terminal:

git clone https://github.com/dzesmin/TEA.

The following directories and files are included in the download:

1. readme - a file with basic instructions

2. doc - directory containing:

(a) examples - directory with following examples:

i. singleTP - directory with single T, P example run

ii. multiTP - directory with multiple T, P example run

iii. quick example - directory with a quick example run

TEA User Manual, Bowman & Blecic 8

iv. PT - directory containing several examples of the pressure and temperature profile

(b) TEA Theory document, Blecic et al. (2016) - document containing

theory part of the code

(c) TEA User manual - document containing the user manual

(d) TEA Code Description - document containing program description

(e) start guide.txt - file containing instructions on how to install, set, and execute

TEA

3. janaf - directory containing JANAF tables in their raw format (downloaded October 2012)

4. lib - directory containing abundances file, thermochemical data, and stoichiometric infor-

mation:

(a) abundances.txt - elemental abundances file, based on the elemental solar abun-

dances given by Asplund et al. (2009), Table 1.

(b) TEA.cfg - TEA configuration file

(c) gdata - directory containing thermochemical data of interest from JANAF tables

(d) stoich.txt - stoichiometric data file

(e) conversion record sorted.txt - record of converted JANAF files produced

after readJANAF.py is executed. The run will produce an unsorted conversion record.txt

file. To sort the content alphabetically, on Linux, execute in terminal:

sort conversion record.txt >conversion record sorted.txt

5. prepipe - directory containing source files to produce the thermochemical library and stoi-

chiometric information: directory gdata/, conversion record.txt, and

stoich.txt (see respective sections in the TEA Code Description by Blecic & Bowman):

(a) prepipe.py (*) - wrapper for makestoich.py and readJANAF.py

(b) makestoich.py (*) - makes stoch.txt file with stoichiometric infomation

(c) readJANAF.py (*) - makes the gdata/ directory of converted JANAF tables and

the conversion record.txt file

Asterisk (*) indicates modules that must be executable in *nix (e.g., Linux) systems.

6. tea - directory containing tea source files (see respective sections in the TEA Code Descrip-

tion by Blecic & Bowman):

(a) balance.py (*) - solves mass balance equation

(b) format.py - auxiliary program to manage I/O operations

(c) iterate.py (*) - executes iteration loop

(d) lagrange.py - applies Lagrange method

(e) lambdacorr.py - applies lambda correction method

(f) makeheader.py - writes header files

(g) readatm.py - reads multiple T, P file

(h) runatm.py (*) - runs TEA for multiple T, P case

(i) runsingle.py (*) - runs TEA for single T, P case

(j) makeatm.py (*) - makes multiple T, P file

TEA User Manual, Bowman & Blecic 9

(k) plotTEA.py (*) - plots TEA output

(l) readconfig.py - reads configuration file

Asterisk (*) indicates modules that must be executable in *nix (e.g., Linux) systems.

The modules that perform scientific calculations are: balance.py, lagrange.py, and

lambdacorr.py. The modules that perform file or data structure support are: prepipe.py,

makestoich,py, readJANAF.py, format.py, makeheader.py, readatm.py,

plotTEA.py, and readconfig.py; while the modules that perform execution of the calcula-

tion programs are: iterate.py, makeatm.py, runsingle.py and runatm.py.

To properly install and run TEA, a list of steps is provided in the start guide.txt placed

in the doc directory. The start guide describes the general purpose of the TEA code, lists the

Python packages needed for proper TEA execution, and gives instructions on how to configure

TEA input, execute TEA, and plot its output. Command lines for executing example runs (given

in ../TEA/doc/examples/ directory) are provided with the list of potential user errors.

5 Quick Example

The following script gives an example of a TEA run on Linux operating systems. Copy and paste

the commands into the command prompt, to compare results to the included quick example/ di-

rectory.

Create a working directory outside of the TEA package directory:

mkdir TEA example

cd TEA example

Clone the repository to the working directory:

git clone https://github.com/dzesmin/TEA TEA

cd TEA

Make the run directory to place the configuration file and outputs:

mkdir run

cd run

cp ../doc/examples/quick example/TEA.cfg TEA.cfg

Run TEA using the pre-atmopsheric file from the doc/examples/ directory:

../tea/runatm.py ../doc/examples/quick example/quick example.atm run example

To plot results execute:

../tea/plotTEA.py run example/results/run example.tea H2,H2O,CO

Check the output by comparing the results between doc/examples/quick example/results/ and

run/run example/results/ directories and doc/examples/plots/ and run/plots/ directories.

TEA User Manual, Bowman & Blecic 10

6 Program Inputs

TEA has two modes of execution: single and multiple T, P . Both modes require the pre-pipeline

to be executed so the thermochemical library data (gdata/) and stoichiometric values

(stoich.txt) are properly populated. Inputs for the pre-pipeline are the JANAF tables and

elemental abundances profile provided with the TEA package.

TEA is configured with an ASCII file, TEA.cfg. Both single and multiple T, P runs require

an ASCII file carrying elemental abundances in logarithmic (dex, decimal exponent) units (further

called abundances file). For single T, P runs, TEA requires a custom-made input file with a single

temperature and pressure point. For multiple T, P runs, TEA requires a file carrying a list of

temperature and pressure points, a multiple T, P file, further called a ’pre-atmosphere file’. This

file can be custom-made or created by running the TEA supporting program makeatm.py. If

the makeatm.py module is used, a list of pressure and temperature points must be stored in an

ASCII file, called the pressure-temperature profile (PT-profile) file (more on each of the input files

in the following sections).

While the JANAF tables (located in ../TEA/janaf/), thermochemical data (located in

../TEA/lib/gdata/), stoichiometric information (located in ../TEA/lib/stoich.txt),

and abundances (located in ../TEA/lib/abundances.txt) are provided with the package

distribution, users may prepare their own versions of these files granted the format is correct and

acceptable to TEA’s file reader. A custom-made single T, P input, multiple T, P input, and a

PT-profile file must also be in the TEA acceptable format (see Sections 6.2 and 6.3).

6.1 TEA.cfg

The TEA package uses a single configuration file. This file is named TEA.cfg and is located in

the ../TEA/lib/ directory. Before TEA is executed, the user needs to open a working directory

outside of the main TEA package, copy the TEA.cfg to the working directory, and edit it with

the correct information.

The configuration file contains two sections: TEA SECTION that manages run-time restric-

tions that are not specific to any physical system, and PRE-ATM SECTION that manages con-

figuration of the makeatm.py module and how a multiple T, P , also called a pre-atmosphere

file is produced. TEA SECTION has eight parameters the user can change to control how TEA

should run and produce files: the number of iterations to run per T, P point, whether or not to save

header files, whether or not to save intermediate files, the option to show additional debugging info

on-screen, the option to show the time required to run each step of the pipeline, the path to the

main TEA package, the path to the abundances file, and the path to the current working directory.

PRE-ATM SECTION has four parameters specific to the chemical system of interest: the path to

the pressure and temperature file, the desired name of the pre-atmosphere file, the list of elemental

species (must have symbols as they appear in the periodic table) and the list of output species (must

include all elemental and desired molecular species named as they appear in the gdata/ directory

or conversion record sorted.txt). Below is the default appearance of the configuration

file:

==

Configuration file containing two sections:

1. TEA section with parameters and booleans to run and debug TEA.

2. PRE-ATM section with parameters to make pre-atmosphere file.

TEA User Manual, Bowman & Blecic 11

==

=========================== TEA SECTION ==========================

Change the parameters below to control how TEA runs. The default

number of iterations in ’maxiter’ parameter is the optimal

value for common molecular species in hot Jupiters.

Following ’maxiter’ parameter, next four parameters are for

debugging purposes only. Setting them to ’False’ will ensure the

fastest execution.

==

======== Sets maximum number of iteration ========

maxiter = 100 # (Def: 100) Number of iterations

======== Controls output files ========

save_headers = False # (Def: False) Preserve headers

save_outputs = False # (Def: False) Preserve intermediate outputs

======== Controls debugging and tracking ========

doprint = False # (Def: False) Enable various debug printouts

times = False # (Def: False) Enable time printing

======== Location of TEA package ========

location TEA = ../TEA/

======== Location of abundances file ========

abun file = ../TEA/tea/lib/abundances.txt

======== Location of working directory ========

location out = .

========================= PRE-ATM SECTION =========================

Execution of this section is optional. The user can produce a TEA

pre-atmosphere file by running makeatm.py, or make a custom-made

file in the format that TEA can read it. See the correct format

in the ../TEA/doc/examples/multiTP/ directory.

Change the parameters below to control how pre-atmosphere file is

made. Before executing the module make a pressure-temperature

file. Run makeatm.py as: makeatm.py <RESULTS DIR NAME>

======== Pressure and temperature file ========

PT file = ../TEA/tea/doc/examples/PT.dat

======== pre-atmosphere filename ========

Use extension .atm. File will be placed in atm inputs/.

pre atm name = pre atm.atm

TEA User Manual, Bowman & Blecic 12

======== Input elements names ========

MUST have symbols as they appear in periodic table.

input elem = H C N O

======== Output species names ========

MUST have names as they appear in the gdata/ directory.

MUST include all elemental species.

output species = H g C g N g O g H2 ref CO g CH4 g H2O g N2 ref NH3 g

By default, TEA is set to run with 100 iterations and will not produce any additional files

beyond the input and result files described in Sections 7.4 and 7.5. The convergence of any system’s

solution is unique to that system, though through extensive testing we have found that 100 iterations

is often more than enough for a system’s solution to successfully converge. Increasing the number

of iterations TEA should run beyond 100 will significantly increase over-all run-time but may

allow more complex systems (such as those with a plethora of output species) to converge to a

more accurate solution. This default is the optimal value for common molecular species found in

hot-Jupiter atmospheres. When the maximum iteration is reached, TEA stops further abundance

calculations for that T, P point and places the resulting values in the relevant results file.

For additional debugging, both the doprint and times booleans should be set to True.

This will allow the calculations and data passed between each step to be printed on-screen while

TEA is run, as well as to show the amount of time each package took to execute.

6.2 Single T, P

The single T, P calculation for TEA requires an input file consisting of three pieces of data: tem-

perature (K), pressure (bar), and list of chemical species allowed to exist in the system. The list of

chemical species must conform to the naming convention produced by readJANAF.py (placed

in the gdata/ directory and conversion record sorted.txt file), and must also include

all mono-atomic species in the system. This naming convention consists of the chemical formula

of the species, the state (according to the JANAF naming structure, Section 6.4) and the isomer

name, if applicable, all separated by underscores (e.g., H g, N2 ref, CH4 g, etc).

For ease of organization, such input files are named ”singleTP <DESCRIPTION>,” though

this is not strictly required. The name of this file is passed to the TEA main pipeline via

runsingle.py’s command-line argument, described in Section 8.4. Note that for each run of

TEA using a single T, P point, the user must produce their own input file in the format described

below. The following is an example of the single T, P input file (provided in the

../TEA/doc/examples/singleTP/inputs/inp Example.txt) with the correspond-

ing key:

3500 # Temperature in Kelvin

51.0344729 # Pressure in bar

H g # List of species allowed in the system

H2 ref # Names for these must match those

H2O g # produced by readJANAF.py

N g #

NH g #

TEA User Manual, Bowman & Blecic 13

NO g #

N2 ref #

O g #

OH g #

O2 ref #

6.3 Multiple T, P

The multiple T, P calculation for TEA is designed for use in a planetary atmosphere and, accord-

ingly, requires a file containing lists of pressure (bar), temperature (K), elements present in the

system (with thier elemental abundances), and a list of chemical species allowed to exist in the

system. As with the single T, P file, the list of chemical species must conform to the naming

convention produced by readJANAF.py and must also include all mono-atomic species in the

system. Such multiple T, P files will be henceforth referred to as pre-atmosphere files in contrast

to the final pipeline output, that we will call atmosphere files.

For ease of organization, such input files are named ”multiTP <DESCRIPTION>,” though

this is not strictly required. The name of this file is passed to the TEA pipeline via runatm.py’s

command-line argument, described in Section 8.5. Below is an example of a pre-atmosphere

input file, (../TEA/doc/examples/multiTP/inputs/multiTP Example.atm), with

the corresponding key:

This is a TEA pre-atmosphere input file.

TEA accepts a file in this format to produce species abundances as

a function of pressure and temperature.

Output species must be added in the line immediately following the

#SPECIES marker and must be named to match JANAF names.

Units: pressure (bar), temperature (K), abundance (unitless).

#SPECIES

H g C g N g O g H2 ref CO g CH4 g H2O g N2 ref NH3 g

#TEADATA
#Pressure Temp H C ...

1.0000e-05 100.00 9.9917414e-01 2.6893119e-04 ...

1.1768e-05 129.29 9.9917414e-01 2.6893119e-04 ...

1.3849e-05 158.59 9.9917414e-01 2.6893119e-04 ...

...

7.2208e+01 2941.41 9.9917414e-01 2.6893119e-04 ...

8.4975e+01 2970.71 9.9917414e-01 2.6893119e-04 ...

1.0000e+02 3000.00 9.9917414e-01 2.6893119e-04 ...

Additional data may be added to the multiple T, P - pre-atmosphere file if the user sees fit

(specifically, additional content may be placed above the #SPECIES marker). TEA will intelli-

gently seek out only the information relevant to its calculations. As the pre-atmosphere file must

first give the abundances of elements present in the system, any dex abundances must be converted

to mole fractions as explained in Section 6.5.

Such a pre-atmosphere file can be custom-made, granted the above format is obeyed. Quick

production of a pre-atmosphere file can be accomplished using the supporting module

TEA User Manual, Bowman & Blecic 14

makeatm.py. This module is configured with the second section of the TEA.cfg file,

PRE-ATM SECTION. The module requires a pressure-temperature (PT) profile file, carrying the

list of T, P points in the following format:

P (bar) T (K)

1.0000e-05 100.00

1.1768e-05 129.29

1.3849e-05 158.59

1.6298e-05 187.88

1.9179e-05 217.17

... ...

... ...

Several examples of the PT profile files are given in the examples/ directory,

../TEA/doc/examples/PT/. The path to the PT-profile file must be provided in TEA.cfg.

Other parameters needed to ensure that makeatm.py is properly executed are: name of the pre-

atmosphere file, list of elemental species, and the list of output species. The format of elemental

and molecular species must be followed as described in Section 6.1. Instructions on how to run

makeatm.py are found in Section 8.3.

6.4 JANAF Tables

The Joint Army Navy Air Force (JANAF) Thermochemical Tables are publicly distributed by

the National Institute of Standards and Technology (NIST) and contain thermodynamical data for

many chemical species. For the purposes of TEA, only three columns of the available data are

used: temperature, free energy function, and heat of formation (Section 7.1).

The raw, ASCII versions of the JANAF tables available for distribution are not machine-

readable by default due to comments within the files to mark transitions or changes in state. To

account for this, the readJANAF.py module will to remove these disjointed comments and al-

low for easy machine-reading of the remaining data. Only these comments are removed and data

remains untouched from that found at the source.

The NIST-JANAF files are available for both on-line viewing and download from

http://kinetics.nist.gov/janaf The documentations and naming conventions for each chem-

ical species that has an appropriate NIST-JANAF file are provided along with the tables. The raw

versions of these tables are included in every TEA installation in the ../TEA/janaf/ directory.

6.5 Abundances

The elemental abundances chosen as the baseline for the TEA pipeline are those provided by

Asplund et al. (2009), Table 1. They are given in a logarithmic, dex (decimal exponent) format and

are meant to emulate conditions within the photosphere of the sun. In the code, dex abundances

are converted into mole fraction abundances, where dex abundance of each element is converted

to number density and then divided by the hydrogen number density. These abundances are used

to ensure that mass balance is maintained in all TEA calculations.

Should the user choose to access or otherwise alter the abundances used for TEA, these values

are housed in abundances.txt. Aside from the elemental solar abundances, this file carries ad-

ditional information about each atomic species (beginning with deuterium, ending with uranium).

http://kinetics.nist.gov/janafd

TEA User Manual, Bowman & Blecic 15

Columns listed are, in order: the element’s atomic number, the element’s atomic symbol, the el-

ement’s dex abundance, the element’s full name, and the element’s atomic mass. User changes

should be applied to the third column containing the dex abundances, while the other columns

should remain unmodified.

7 Program Outputs

7.1 Pre-pipeline

The pre-pipeline produces two outputs that TEA will use in the main pipeline: the thermodynamic

libraries and the file carrying stoichiometric information. This information is produced from the

JANAF tables and elemental abundance file passed as inputs to the pre-pipeline. The primary

function of the pre-pipeline outputs are to establish the stoichiometric and thermodynamic rules

TEA must obey in order to maintain a system at equilibrium (Blecic et al., 2016).

The pre-pipeline is divided into two components, each of which are responsible for one of

the outputs that are produced: makestoich.py that produces the stoichiometric information

and readJANAF.py that creates the thermodynamic library. More information on the programs

themselves can be found in their respective sections in the TEA Code Description by Blecic &

Bowman.

The stoichiometric file created by the pre-pipeline is named stoich.txt and is placed in

../TEA/lib/. This file has three sections containing information derived from the input abun-

dance profile and JANAF tables, namely the list of available elements in TEA, their respective dex

abundances, and a list of each species used in the JANAF tables with corresponding stoichiometric

counts of each element they contain. Below is an example to show the structure of the file if only a

few JANAF files were used (note that row b represents the dex elemental abundance from Section

6.5):

b 0. 12.00 10.93 1.05 1.38 2.70 8.43 7.83 8.69 ...

Species D H He Li Be B C N O ...

CH4 0 4 0 0 0 0 1 0 0 ...

H2O 0 2 0 0 0 0 0 0 1 ...

N2 0 0 0 0 0 0 0 2 0 ...

The thermodynamic library created by running readJANAF.py is a representation of the

TEA-required thermodynamic data from JANAF tables, made in a more machine-readable format.

This library is placed in ../TEA/lib/gdata/ and contains three columns with the temper-

ature, free energy function (−[Go − Ho(Tr)]/T) and heat of formation (∆fH
o) values for each

JANAF species. Note that each thermodynamic file is only produced if it contains values corre-

sponding to 1 bar; calculations for other pressures are performed within the main pipeline. The

name of each file in the library matches the name of the species in the JANAF table with an ad-

ditional marker for state (e.g., H2O g, O2 ref, Mg(OH)2 g, etc, where ”ref” denotes standard

state). For more information on naming conventions and notations, see the JANAF Volume 1 Intro

found at http://kinetics.nist.gov/janaf/janaf4pdf.html.

7.2 Intermediate Files

To facilitate debugging or verification of scientific method, TEA can optionally produce output

files after each step it takes towards finding the minimized Gibbs-free energy of a system. These

http://kinetics.nist.gov/janaf/janaf4pdf.html

TEA User Manual, Bowman & Blecic 16

intermediate files are split into two parts: the raw output of the Lagrange method and the corrected

mole numbers resulting from lambda correction. Each iteration produces two of each file (one

human-read, one machine-read), and in the case of the multiple T, P systems each T, P point will

produce a full set for each of its iterations.

To activate production of these files, the save outputs variable in TEA.cfg must be set

to True. These files will contain the data identical to that passed between the pipeline programs

via memory, and is useful for checking the progression of a minimization. Two different files

are produced at each iteration: one containing pre-lambda correction mole values (denoted with

-nocorr in the file name) and another containing post-lambda correction values. In addition,

each of these files is again split between a human-readable format (denoted with -visual in

the file name) and a machine-readable format (denoted with -machine-read), both of which

contain the same data. Note that these files are produced solely for the user and do not influence

TEA’s execution. The formats of these files are identical to those found in the results files explained

in Section 7.4.

The files themselves will be located in the outputs/ directory and are nested under a di-

rectory the user defines in the pipeline driver program command line, below the current working

directory. If TEA is using multiple T, P points, the temperature and pressure of that run are also

used in the directory name. For example, if the description passed to the pipeline driver program

is TEA run and is at 1e-3 bar and 1500K, the produced files will be in a directory named

outputs/TEA run 1500K 1e-02bar/. Single T, P runs will produce a similar directory but

with no information for temperature and pressure.

7.3 Auxiliary Header Files

TEA will create an auxiliary file, called a header file, containing relevant chemical information

for each T, P point. Such a file is created to accomplish two main goals, the first of which is to

coalesce the data from the various inputs (single T, P input file or multiple T, P , pre-atmosphere,

input file, JANAF tables, elemental abundances, and stochiometric coefficients) into one easy-to-

access file to reduce file read-time. This also accomplishes the second goal which will allow for

easy debugging should the user need to confirm the inputs being read into TEA. Once a header

file is produced, it is effectively the only source of information TEA needs to complete for the

abundance calculations at each T, P point. Below is an example header file produced by TEA:

This is a header file for one T, P.

Contains following data:

pressure (bar), temperature (K), elemental abundances (b, unitless),

species names, stoichiometric values of each element in the species

(a), and chemical potentials.

51.0344729

3500.0

b 0.99944292339 6.7570634538e-05 0.000489505975044

TEA User Manual, Bowman & Blecic 17

Species H N O Chemical potential

H_g 1 0 0 -9.73713019872

H2_ref 2 0 0 -21.4036696373

H2O_g 2 0 1 -38.9040887478

N_g 0 1 0 -5.68391721765

NH_g 1 1 0 -14.622593565

NO_g 0 1 1 -28.3762364925

N2_ref 0 2 0 -28.9641106188

O_g 0 0 1 -14.4687823951

OH_g 1 0 1 -26.683677898

O2_ref 0 0 2 -30.8998942938

Each header file is produced at the beginning of a T, P abundance calculation by

makeheader.py. The file itself is created and controlled entirely by the main TEA pipeline and

requires no user interactions or modifications to function. Preservation of these files is optional,

however, and can be controlled using the save headers boolean in the configuration file (Sec-

tion 6.1). The files themselves will be located in headers/ and are nested under a directory the

user defines in the pipeline driver program command line, below the current working directory. If

TEA is using multiple T, P points, the temperature and pressure of that run are used in the header’s

file name to differentiate between the points.

A header file contains the six components needed for the abundance calculations: pressure in

bars, temperature in Kelvin, mole fraction of elemental abundances, output species, stoichiometric

values per species, and chemical potential per species. Note that the order of the elemental abun-

dances matches those in the stoichiometric array; more information on how this data is obtained

and calculated from the various input sources can be found in the TEA Code Description by Blecic

& Bowman.

7.4 Single T, P

Regardless of the production of intermediate output files, the execution of a single T, P run of

TEA using runsingle.py will produce two results files containing the output abundance data

for the system. As with intermediate outputs, each file is defined to be either human-readable or

machine-readable, both of which contain the same information in differing formats. Specifically,

the data these files contain are the following: location of the header file, number of iterations,

species list, initial mole numbers, final mole numbers, change in mole numbers, final abundances,

total initial moles, total final moles, and change in total moles. When used alongside the header

file for the TEA run in question (Section 7.3), all initial and final conditions for the system can be

easily extracted.

The two results files are placed in the results/ directory and are nested under the di-

rectory named after the description passed to the driver program, below the current working

directory. For example, if the description passed to runsingle.py is TEA run, the pro-

duced files will be in the ./TEA run/results/ directory. The files produced are named

results-machine-read.txt and results-visual.txt for machine- and

human-readability, respectively. Below is an example of a human-read results file:

This .txt file is for visual use only.

These results are for the "C:./headers/header Example.txt" run.

Iterations complete after 100 runs at 51.0344729 atm and 3500.0 K.

TEA User Manual, Bowman & Blecic 18

Species | Initial x | Final x | Delta | Final Abun

H g | 0.0000100000 | 0.0266365865 | 0.0266265865 | 5.1914920e-02

H2 ref | 0.4992669557 | 0.4859215667 | -0.0133453890 | 9.4706501e-01

H2O g | 0.0004395060 | 0.0004740815 | 0.0000345755 | 9.2398867e-04

N g | 0.0000275706 | 0.0000000879 | -0.0000274828 | 1.7127204e-07

NH g | 0.0000100000 | 0.0000001048 | -0.0000098952 | 2.0421056e-07

NO g | 0.0000100000 | 0.0000000154 | -0.0000099846 | 3.0046018e-08

N2 ref | 0.0000100000 | 0.0000336813 | 0.0000236813 | 6.5645089e-05

O g | 0.0000100000 | 0.0000004731 | -0.0000095269 | 9.2214693e-07

OH g | 0.0000100000 | 0.0000149356 | 0.0000049356 | 2.9109567e-05

O2 ref | 0.0000100000 | 0.0000000002 | -0.0000099998 | 3.0881100e-10

Initial Total Mol: 0.4998040323

Final Total Mol: 0.5130815330

Change in Total Mol: 0.0132775007

Should the user desire to use these results within other programs, ”results-machine-read.txt” is

designed to be easily read by any programming language. Data appears line-by-line in the order

described above, however, final abundances are not contained in this file.

7.5 Multiple T, P

Similar to a single temperature and pressure execution of TEA, if save outputs is set to True

in the TEA.cfg, a multiple T, P run using runatm.py will produce the two files outlined

above for each T, P point contained in the system. Should the pre-atmosphere file for a par-

ticular run contain 100 unique T, P points, for example, runatm.py will produce 100 sets of

results files (one for each unique T, P point). For each unique T, P point in the system, a directory

will be made describing the temperature and pressure of that point, inside which the two results

files results-machine-read.txt and results-visual.txt are placed. In addition to

these results files, the multiple T, P execution of TEA will also produce a complete ’atmosphere

file’ for the system with extension .tea. The format of this file is similar to the pre-atmosphere

file described in Section 6.3 with a different commentary section and and columns containing final

abundances (mixing fractions) for each of the output species. If save outputs is set to False

in the TEA.cfg, a multiple T, P run will produce only the final atmosphere file containing final

mole-fraction abundances for each species in the system.

These results file are placed in the results/ directory and are nested under the directory

named after the description passed to the driver program, below the current working directory. For

example, if the description passed to runatm.py is TEA run, the produced files will be in the

directory ./TEA run/results/.

8 Executing TEA

TEA has two main modes of execution: single T, P and multiple T, P run. In addition to these,

TEA uses several supporting programs that provide tools to create TEA inputs and to plot TEA

output. The ../TEA/prepipe/ directory houses modules that populate thermochemical data

and stoichiometric information. The makeatm.pymodule facilitates the production of a multiple

T, P pre-atmosphere file. The plotTEA.py module plots desired TEA output.

TEA User Manual, Bowman & Blecic 19

Described below is the main output structure after TEA execution and a summary of each

execution: what are the input files, what are the commands to run the code, and what are the

outputs.

8.1 Directory Structure

Before TEA can be executed, the user must create a main working directory outside of the TEA

main package directory. In this directory, all future TEA runs will be placed under the directories

named by the user on each run (this argument is passed to TEA upon execution,

<DIRECTORY NAME>; read below and see the directory layout).

The user must then copy the TEA.cfg file (located in ../TEA/lib/) to this working direc-

tory. Once the working directory is made and TEA.cfg is placed inside, no additional copy of

the TEA.cfg file is needed. For each run of TEA, the user should edit this configuration file with

the desired values. Upon TEA execution, the most recent configuration file will be copied to the

inputs/ directory below the directory named by the user, documenting the settings of that run.

When runsingle.py, runatm.py, or makeatm.py is run, the user must provide the

name of the directory that will receive the current run’s inputs and outputs on the command

line. This argument name is <DIRECTORY NAME>. This directory will be located right be-

low the working directory. Inside this directory, the inputs/ directory will be created, as well

as the atm inputs/ directory should the user choose to create a pre-atmosphere input file using

makeatm.py. These directories will contain all inputs used for each TEA run. For TEA driver

programs (single and multiple T, P runs) these inputs are: the single or multiple T, P input file,

abundances file, and TEA.cfg. For makeatm.py executions the atm inputs/ directory will

also contain the PT-profile file.

Upon running runatm.py the user should choose the same directory name

(<DIRECTORY NAME>) as previously used for the makeatm.py run; this ensures that all inputs

and outputs are placed in the directory that already contains atm inputs/. If makeatm.py is

not executed and the pre-atmosphere file is either custom made or used from previous runs, the

user should provide a new directory name. In this case the structure is the same, except that the

atm inputs/ directory will be missing.

After TEA’s execution, the results of the run (see Sections 7.4 and 7.5) are placed in the

results/ directory, nested under the directory named by the user on the command line

(<DIRECTORY NAME>). Depending on the variable assignments in TEA.cfg for

save outputs and save headers, two additional directories may be created: outputs/ to

contain all intermediate outputs described in Section 7.2 and headers/ to contain all header files

described in Section 7.3.

Below are four examples of a proper working directory structure in TEA for two multiple T, P
runs, with and without makeatm.py execution (left and right, respectively) and with intermedi-

ate outputs ignored and preserved (top and bottom, respectively). The directory names for these

examples, mirroring the <DIRECTORY NAME> argument for TEA execution, are

Jupiter100layers and WASP43b:

------------------------ save outputs = False ---------------------------

TEA work dir/

./TEA.cfg ./Jupiter100layers/ ./WASP43b/

./atm inputs/ ./inputs/

./inputs/ ./results/

TEA User Manual, Bowman & Blecic 20

./results/

------------------------ save outputs = True ---------------------------

TEA work dir/

./TEA.cfg ./Jupiter100layers/ ./WASP43b/

./atm inputs/ ./inputs/

./inputs/ ./headers/

./headers/ ./outputs/

./outputs/ ./results/

./results/

8.2 Pre-pipeline

The pre-pipeline contains three modules to produce TEA’s thermochemical libraries and stoichio-

metric information (../TEA/lib/gdata/ and ../TEA/lib/stoich.txt). Both of these

data are provided fully populated within the TEA package, so they need not be produced upon

TEA installation. However, should new or modified JANAF tables become available, the user can

re-run the code to populate these files with the new information. Note that the format of these

new JANAF tables must mirror that of the ones available in the ../TEA/janaf/ directory, else

TEA’s execution will fail.

The modules contained within the pre-pipeline itself are prepipe.py, makestoich.py,

and readJANAF.py. The prepipe.pymodule contains the common setup procedures for both

makestoich.py and readJANAF.py and will execute both of these modules together. As

stand-alone modules, makestoich.py produces stoichiometric information that will be located

in the ../TEA/lib/stoich.txt file, while readJANAF.py populates the

../TEA/lib/gdata/ directory with the thermochemical libraries.

These modules will automatically produce the above outputs in the ../TEA/lib/ directory,

regardless of where they are executed. There are two ways the user can execute the pre-pipeline:

1. Run prepipe.py as: ../TEA/prepipe/prepipe.py

2. Run makestoich.py and readJANAF.py separately as:

../TEA/prepipe/makestoich.py

../TEA/prepipe/readJANAF.py

8.3 makeatm.py

makeatm.py is a supporting module that allows the user to make a multiple T, P
pre-atmosphere file in the format TEA can read. To execute makeatm.py, the user must make

TEA’s working directory outside of the TEA main package and to copy the TEA.cfg file (located

in ../TEA/lib/) in that directory (see Section 8.1). The makeatm.py module uses both

TEA.cfg sections to run, and thus they must be edited with correct information (see Section 6.1).

The input files used are the abundances file that carries elemental abundances and a PT-profile

file with pressure and temperature information. The user can provide their own abundances file

granted the correct format for abundance files is obeyed (see Section 6.5) . The default solar

elemental abundances file is placed in ../TEA/lib/abundances.txt, while the PT-profile

file needs to be created by the user in the format that makeatm.py can read. The format of

the PT-profile file is described in Section 6.3 and examples of some PT-profile files are given in

../TEA/doc/examples/PT/.

TEA User Manual, Bowman & Blecic 21

The makeatm.py module is run with one argument:

../TEA/tea/makeatm.py <DIRECTORY NAME>

The structure of the input-output directories is explained in the Section 8.1. An example of a

makeatm.py execution is provided in the directory

../TEA/doc/examples/multiTP/atm inputs/.

8.4 Single T, P

The runsingle.py module executes using a single T, P input file containing only one temper-

ature and pressure point. Again, before running the code, the user needs to edit the TEA.cfg file

copied to TEA’s working directory.

runsingle.py is executed with two arguments:

../TEA/tea/runsingle.py <SINGLETP INPUT FILE PATH> <DIRECTORY NAME>

<SINGLETP INPUT FILE PATH> defines the path to the single T, P file that was made

by the user. The format of the file is given in Section 6.2. <DIRECTORY NAME>, as previously

explained in Section 8.1, is the directory in which this particular run will be contained. An example

with the full directory inputs/outputs structure is given in

../TEA/doc/examples/singleTP/.

8.5 Multiple T, P

The runatm.py module executes using a multiple T, P pre-atmosphere input file containing a

list of pressure and temperature points. Again, before running the code, the user needs to edit the

TEA.cfg file copied in TEA’s working directory.

runatm.py is executed with two arguments:

../TEA/tea/runatm.py <MULTITP INPUT FILE PATH> <DIRECTORY NAME>

<MULTITP INPUT FILE PATH> defines the path to a multiple T, P file. This file, as previ-

ously explained in Section 6.3, can either be produced using makeatm.py or made manually by

the user if the proper formatting rules are obeyed. <DIRECTORY NAME> is the directory in which

this particular run will be contained. The directory structure made upon running runatm.py is

described in the Section 8.1. An example of the multiple T, P run with the full directory input-

s/outputs structure is given in ../TEA/doc/examples/multiTP/.

8.6 Plot TEA

In order for the user to visualize and plot the results of TEA, we have provided the plotting routine

plotTEA.py. The input for this module is the final output of the multiple T, P run (’atmosphere

file’), that contains all species final abundances (mixing fractions) for each layer in the atmosphere,

i.e., each temperature and pressure pair (Section 6.3). This routine cannot plot the results of the

single T, P run.

plotTEA.py module is executed with two arguments:

../TEA/tea/plotTEA.py <RESULT ATM FILE PATH> <SPECIES>

The <RESULT ATM FILE PATH> argument is the path to the final atmosphere file, while

<SPECIES> contains the names of species the user wants to plot, listed with no breaks between

species and without the state indicators (e.g. CH4,H2O,N2). Plots produced by any run will be

saved in the plots/ directory placed in the TEA working directory (thus above the directories

given by the user in each run, <DIRECTORY NAME>). To differentiate between plots, the plot

TEA User Manual, Bowman & Blecic 22

name will contain the name of the output (atmosphere file) used. Additionally, each plots’ title

will also carry the current output filename. An example of the plotTEA.py output is given in

the ../TEA/doc/examples/plots/ directory.

9 Potential User Errors

The following are some possible errors the user may encounter when making a TEA input file. Any

of the following scenarios will cause the file in question to conflict with TEA’s normal run-time

scenarios and will result in erroneous abundances and/or crashes:

1. The user should have unique T, P values for each line in the PT-profile file before running

makeatm.py, otherwise each repeated layer will be overwritten and the final atmosphere

file will end up with fewer lines.

2. input elem must have symbols as they appear in the periodic table.

3. out species must include all input elements with their states as readJANAF.py pro-

duces them. See the ../TEA/lib/gdata/ directory and the

conversion record sorted.txt file for the correct names of the species.

4. Should the code stall on the first iteration of the first temperature, check if all elements that

appear in the species list are included with their correct names.

5. Elemental hydrogen (H) and helium (He) must be always included in in elem for hot-

Jupiter atmosphere calculations. Similarly, the H g, He ref and H2 ref species must also

appear in out spec for these calculations.

10 Examples

Four directories are listed in ../TEA/doc/examples/: singleTP/, multiTP/, PT/, and

plots/. The singleTP/ and multiTP/ directories each contain the full TEA run with all in-

puts/outputs directories. The PT/ directory contains several PT-profile file examples. The plots/

directory contains an example plot produced by plotTEA.py using the final atmosphere file from

the aforementioned multiple T, P run.

For the above single T, P run, the inputs/ directory contains an example of the single

T, P input file. The user should refer to this file when manually producing their own single

T, P input file. For the above multiple T, P run the input pre-atmosphere file is contained in

both the atm inputs/ and inputs/ directories. If the pre-atmosphere file is produced using

makeatm.py, the user should follow the PT-profile file format provided in the PT directory.

The inputs/ directory for all runs will contain all input files used for that run. As such, the

user can easily replicate any run by ensuring the same inputs are used. The commands how to run

the examples with the total expected execution times are provided in the start guide.txt file,

placed in ../TEA/doc/.

11 Current Limitations

At the time of writing, the TEA code works only for systems containing purely gaseous species. It

works with high numerical precision, without adjustments, for the temperatures above

TEA User Manual, Bowman & Blecic 23

∼ 600 K. For temperatures below 600 K and mixing fractions below 10-14, the code produces

results with low precision. The output can be improved with fine adjustments to the lambda explo-

ration variables in lambdacorr.py module (see TEA Code Description document by Blecic &

Bowman).

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481, ADS, 0909.0948

Blecic, J., Harrington, J., & Bowman, M. O. 2016, accepted in ApJSupp

Eriksson, G. 1971, Acta Chem.Scand.

White, W. B., Johnson, S. M., & Dantzig, G. B. 1958, J. Chem. Phys., 28, 751, ADS

http://adsabs.harvard.edu/abs/2009ARA%26A..47..481A
http://arxiv.org/abs/0909.0948
http://adsabs.harvard.edu/abs/1958JChPh..28..751W

	1 Introduction
	2 Dependencies
	2.1 Python
	2.2 NumPy
	2.3 SymPy

	3 Work-flow & Modular Format
	3.1 Pre-Pipeline
	3.2 Main Pipeline

	4 Installing TEA
	5 Quick Example
	6 Program Inputs
	6.1 TEA.cfg
	6.2 Single T, P
	6.3 Multiple T, P
	6.4 JANAF Tables
	6.5 Abundances

	7 Program Outputs
	7.1 Pre-pipeline
	7.2 Intermediate Files
	7.3 Auxiliary Header Files
	7.4 Single T, P
	7.5 Multiple T, P

	8 Executing TEA
	8.1 Directory Structure
	8.2 Pre-pipeline
	8.3 makeatm.py
	8.4 Single T, P
	8.5 Multiple T, P
	8.6 Plot TEA

	9 Potential User Errors
	10 Examples
	11 Current Limitations

