
Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 22 

I
C
S
C
 2
0
1
5
 

 

 

 

 

 

BUILDING WEB BASED INTERACTIVE SYSTEMS 

WITH CSOUND PNACL AND WEBSOCKETS 

 

 
Ashvala Vinay 
Berklee College of Music 

avinay [at] berklee [dot] edu 

 

Dr. Richard Boulanger 
Berklee College of Music 

rboulanger [at] berklee [dot] edu 

 

 

 

 

This project aims to harness WebSockets to build networkable interfaces and systems 

using Csound’s Portable Native Client binary (PNaCl) and Socket.io. There are two 

methods explored in this paper. The first method is to create an interface to Csound 

PNaCl on devices that are incapable of running the Native Client binary. For example, 

by running Csound PNaCl on a desktop and controlling it with a smartphone or a tablet. 

The second method is to create an interactive music environment that allows users to 

run Csound PNaCl on their computers and use musical instruments in an orchestra 

interactively. In this paper, we will also address some of the practical problems that 

exist with modern interactive web-based/networked performance systems – latency, 

local versus global, and everyone controlling every instrument versus one person per 

instrument. This paper culminates in a performance system that is robust and relies on 

web technologies to facilitate musical collaboration between people in different parts of 

the world. 

 

 

Introduction  

 
At the 2015 Web Audio Conference, Csound developers Steven Yi, Victor Lazzarini 

and Edward Costello delivered a paper about the Csound Emscripten build and the 

Portable Native Client binary (PNaCl). The PNaCl binary works exclusively on Google 

Chrome and Chromium browsers. It allows Csound to run on the web with very 

minimal performance penalties.  

 

However, when using PNaCl at the moment, a downside is that plug-in opcodes do not 

work out of the box. Thus, this rules out the ability to use the new WebSocket opcodes 

and UDP opcodes that are necessary in order to build a modern interactive system with 

Csound. To circumvent the necessity for the plug-in opcodes, we have built a wrapper 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 23 

I
C
S
C
 2
0
1
5
 

around Csound PNaCl’s javascript API that allows us to network multiple Csound 

PNaCl instances allowing for: 

 

1. The use of Csound from devices incapable of supporting the PNaCl architecture. 

2. The exploration of long distance collaborative improvisation, composition and 

performance.  

 

 

1   Interactive systems that use dynamic orchestras 

 
This method uses no fixed orchestra and relies on the compilation of an orchestra that’s 

sent by the users. To create this system, we start with a simple template, an HTML file 

that contains all the required elements for the interface. 

 

 

1.1   Code for the front end 

 
<html>  

<head>  

 <script src=“csound.js”> </script>  

 <script 

src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></scrip

t> 

 <script src=“https://cdn.socket.io/socket.io-1.2.0.js”> </script>   

 <script src=“main.js”> </script>  

</head> 

<body>  

 <textarea class=“orc_editor”>  

 </textarea> 

 <button class=“send_orc”> Send </button>  

 <button class=“send_sco”> Send score event </button> 

 <div id="engine"> </div>  

</body>  

</html>  

 

This creates a web page that has a text area, and it imports jQuery, Socket.io and 

Csound’s PNaCl javascript interface. In addition, we have also included a main.js. In 

this, we will write our event handling content and make some simple Csound API calls. 

 

From the code below, we have created event handling for interface elements on the web 

page. Clicking on the “send” button will get whatever content is inside the text area and 

emit it out via the Socket. When you click on the “send score event” button, it sends a 

full score-event string to instrument 1, starting at time 0 for a duration of four seconds.  

 

 

 

 

 

 

 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 24 

I
C
S
C
 2
0
1
5
 

 
function moduleDidLoad(){ 

 //Csound module load event 

 console.log(“Csound Loaded”) 

} 

var socket = io.connect(“http://localhost:8181”); // connect to server 

//socket code here: 

socket.on(“connect”, function(){ 

 console.log(“Socket.io connection established”) 

}); // connect event 

 

socket.on(“orc”, function(msg){ 

 console.log(msg) //print orc 

 $(“.orc_editor”).val(msg) //update text area 

 csound.CompileOrc(msg) //compile if browser is csound PNaCl enabled  

}); //orc event 

 

socket.on(“sco”, function(msg){ 

 console.log(sco) 

 csound.Event(sco) 

}); 

 

$(document).ready(function(){ 

 $(“.send_orc”).click(function(){ //react to click event on the orc button 

  var str = $(“.orc_editor”).val() 

  //get string from the text area 

  socket.emit(“orc”, str) 

  //emit the string out via the socket to the server 

 }); //send orchestra 

 

 $(“.send_sco”).click(function(){ // react to click event on the score 

button 

  socket.emit(“sco”, “i 1 0 4”) 

  //emit a score event out of the socket to the server 

 }); 

}); 

 

 

1.2   Code at the Server 

 

On the server side, we use Socket.io and Node.js to create a simple interface that always 

emits the strings to everyone. We will call this file bridge.js. 

The code below creates a server that listens on port 8181, sends back any orchestra sent 

to it, and then broadcasts it to everyone else who is connected to the server. The same 

holds true for the score events as well.  

 
 

var express = require(‘express’) // requirements 

var app = express();  



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 25 

I
C
S
C
 2
0
1
5
 

 

var io = require(‘socket.io’).listen(8181) // listen on port 8181 

console.log(“Listening on port 8181”) 

 

io.on(‘connection’, function(socket){ 

 console.log(“connected a client”) 

 socket.on(“orc”, function(msg){ 

  io.emit(“orc”, msg)  

  // broadcasts message to all the clients.  

 }); 

 socket.on(“sco”, function(msg){ 

  io.emit(“sco”, msg)  

  // broadcasts message to all the client. 

 }); 

 

}); 

 

1.3   Details of the Implementation 

 

Starting with the interface, we will explain the code in more detail. The HTML code 

creates a text area and two buttons. The two buttons are your primary sources for 

interaction with the socket. The buttons are distinguished by the classes attached to 

them;  the one that sends the whole orchestra has the class “send_orc” and the other, 

that sends a generic score event, has the class “send_sco”.  

 

In the main.js file, we attach event handlers that react to a click event on the 

aforementioned send buttons. Also, in the main.js file, we define an interface that 

interacts with the messages it receives from the websocket to which it is connected. On 

a click event, registered by one of the buttons, it broadcasts the appropriate socket 

message to the server.  

 

For the server side, we wrote code that would respond to a message by sending it to 

everyone. Figure 1 shows how this works. The example shows client 1 sending the 

server an orchestra string. The server receives the string and sends it to both client 1 and 

client 2. In effect, everyone now has the same orchestra and the client-side code is what 

determines what happens with the orchestra. In our case, we would update the text area 

and then compile the orchestra we were sent.  

    Figure 1   Сlient 1 sends an orc message 

 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 26 

I
C
S
C
 2
0
1
5
 

1.4 Observations 

 

In the time we spent with this system, we noticed that latency wasn’t necessarily an 

issue on local area network (LAN) connections. The response to the press of a button on 

the client side was transmitted instantly to the server and back. However, on the 

internet, given the overhead associated with sending a message to a remote server and 

then sending it back to your own or another computer, the latency tended to become 

more noticeable and more of a musical issue, to a degree, limiting the styles of music 

one would play and the roles that one could play. We hosted a server in New York and 

had people from Bangalore, California and Boston connect to it. As you might suspect, 

the people in Boston were able to hear the sound first, followed by California and then 

followed by Bangalore.  

 

Another issue was that server broadcasts had no fixed client ordering for score message 

handling. We can consider latency to be the determinant factor for ordering. However, 

musically the results can be discouraging, given that there is anywhere between 0 – 300 

ms of latency over the internet. 

 

The important and exciting thing was that this approach and system enabled us to 

control Csound PNaCl from smartphones, tablets and non-Chromium browsers. 

Opening the website on a smartphone allowed us to type in an orchestra and broadcast it 

along with the instrument messages thus opening up new musical possibilities and 

inspiring many new ideas. 

 

 

2   Static Orchestras and Group performance 

 
In this section we will look at static orchestras and their use in the context of a group 

performance. We will not go into too much detail with regards to the code in this 

section, but we will discuss how we approached the problem and what we discovered in 

the process.  

 

 

2.1   Approaching static orchestras 
 

Static Orchestras are useful if you want to build:  

1. A group environment where everyone gets the same sounds. 

2. A laptop orchestra environment where everyone gets to control an instrument.  

3. A live-coding system. 

 

These methods are separated as such in relation to where you split your orchestras. The 

first method has the orchestra split up on the client-side. The second method has the 

orchestras split up on the server-side and sent to the client individually, and the third 

method does not rely on splitting up the orchestra.  

 

Socket.io allows us to create “rooms” into which every client can assign themselves. 

This allows us to correctly and selectively serve orchestras to appropriate rooms and 

clients and maintain a level of separation. It also allows us to separate score and channel 

messages based on the group. In effect, multiple groups can use the same orchestra and 

yet have completely different channel and score messages. This also entails the notion 

that multiple people could be connected to the same server and yet do a variety of 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 27 

I
C
S
C
 2
0
1
5
 

different things, up to and including: creating their own orchestras; collaborating with 

others; doing live coding performances; and having interactive orchestra performances.  

 

 

2.2   Csound live coding environment with Csound PNaCl 

 

As stated previously, using static orchestras allows us to design live coding 

environments. This section and its subsections will deal with the design and architecture 

of a simple live-coding setup. 

 

2.2.1 Server-side code 

We will work with the bridge.js file we used in the first section of this paper. However, 

we will make a set of small changes to make it work with static orchestras and serve 

them to a client when they connect to our server.  

 

The changes we have made in the code allow us to now read an orchestra and save it as 

a string inside of our server. As a way of sending orchestras when requested, we have 

written a handler for a new event called request_orc, and in the next section, pertaining 

to the front-end code, we will see how this event handling is used in greater clarity. 

 
var express = require(‘express’) // requirements 

var app = express();  

var io = require(‘socket.io’).listen(8181) // listen on port 8181 

console.log(“Listening on port 8181”) 

var orc_str; 

 

fs.readFile(“StaticOrc.orc”, “utf-8”, function(err,data){ 

if (err){throw err;} 

orc_str = data 

}); //read a file and store it into orc_str - a generic strint 

 

io.on(‘connection’, function(socket){ 

 console.log(“connected a client”) 

 socket.on(“request_orc”, function(msg){ 

  io.to(socket.id).emit(‘orc’, orc_str); 

  // send the orchestra just to the client who requests it.  

 }); 

 socket.on(“orc”, function(msg){ 

  io.emit(“orc”, msg)  

  // broadcasts message to all the clients.  

 }); 

 socket.on(“sco”, function(msg){ 

  io.emit(“sco”, msg)  

  // broadcasts message to all the client. 

 }); 

}); 

 

 

 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 28 

I
C
S
C
 2
0
1
5
 

2.2.2 Front end code changes 

On the front-end side of things, we only manipulate the main.js file. We will write an 

event that will request an orchestra and send it across.  We will make a change to the 

connection event: 

 
//socket code here: 

socket.on(“connect”, function(){ 

 console.log(“Socket.io connection established”) 

 socket.emit(“request_orc”) //request the orchestra from the server 

}); // connect event 

 

The new emit event allows us to request our static orchestra from the server when we 

connect. 

The remainder of the code in our original main.js remains the same. We will instead 

write a Python-based interface where we will send score events to the browser that has 

already parsed our orchestra and compiled it. In order to have a more realistic live 

coding performance, you can still modify the code in the text-area on the fly.  

 

 

2.2.3 Python interface 

This section details the implementation of a simple Python command-line interface, 

where you can send note events to your server and have a live coding performance.  

 

The sole dependency for this was the socket.io client (socketIO_client) for Python, 

which is available through the official Python package archive. 

 
from socketIO_client import SocketIO 

 

def on_connect_function(*args):  

    print “connected" # Connected! 

 

class CsSocket: 

    def __init__(self, port): #initialization 

        self.port = port # Socket.io port 

        self.socketIO = SocketIO('localhost', port) # connect to localhost 

        self.socketIO.wait(seconds = 1) # check every second 

        self.socketIO.on("connect", on_connect_function) # on connect event 

function 

 

    def parse(self, str): 

        (header, score) = str.split(" “) # split at spaces 

        if header == "sco" and len(score) > 0: # check for proper score event 

            self.socketIO.emit(header, score) # send score event 

         

if __name__ == "__main__": 

    CsSocket_Instance = CsSocket(8181) # create a new instance 

    print “sending messages on port 8181” 

    while True: 

        command_str = raw_input("> “) # User input 

        if command_str == "exit": 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 29 

I
C
S
C
 2
0
1
5
 

            break # exit the loop 

 

        command_str2 = “sco " + command_str # pre-pend sco 

        CsSocket_Instance.parse(command_str2) # run through the simple parser 

 

The code above creates a command-line interface where you type out score events in the 

same format as you would have in a Csound file or a score file, e.g “i 1 0 10”. 

Depending on the parameter field (p-field) requirements, you can also expand your 

score string so that it fulfills these requirements. It also creates a Socket.io client that 

connects to port 8181 and sends the score message that you enter. Conceivably, the 

parser function in the CsSocket class can be extended further to send and parse more 

events – such as chngets, orchestras and influence the interface at the front-end.  

 

 

2.3   A simple group environment 

 

A simple group environment relies on the client splitting up the orchestra on the client. 

We will not discuss code examples. We will talk about the details of the implementation 

instead. 

 

For a simple group environment, we use the same server-side code that we used in the 

live coding example. However, we made some changes to the orchestra to allow us to 

divide the orchestra into groups of instruments. We used a separator in the form of a 

Csound comment “;- - - - -;” between instruments that constitute a group. 

 

On the client-side, we wrote a simple function that would look for the separator and 

split the orchestra into groupings and store the separated groupings into an array. This 

allows us to map buttons to array indices and display content related to a certain 

instrument group. An example of this is shown in Figure 2.  

 

 
 

Figure 2   A simple Group Environment example 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 30 

I
C
S
C
 2
0
1
5
 

 

In Figure 2, you can see that we have rendered a knob for the channel “lfo-rate.”  

Another example of displaying relevant content to a group is shown in Figure 3 where 

we have rendered buttons for our percussion group that has a kick, a snare and a hi-hat. 

 

Prior to splitting up the orchestra, we compile the Csound code that the client receives 

from the server. Note that the delimiter/separator is not influential in this scenario as it 

will be ignored by the Csound parser.  

 

 
 

Figure 3   Demonstrating Percussion UI 

 

 

2.4   A simple laptop orchestra environment 

 

Our simple laptop-orchestra environment is largely similar to the group environment . 

We have made some changes to the server-side code in this instance. We took the code 

we wrote on the client-side to split an orchestra and transplanted it into the server-side. 

This allows us to request  a certain orchestra group.  

 

The difference between this and a group environment is that the group orchestra is 

compiled completely and this means that the client can send score events to every 

instrument. The laptop-orchestra environment compiles the separated group that is 

requested by the client. Thus, the client can only send score events to the instruments in 

the group you requested.  

 

The interface we designed for this is based on the design shown in Figures 2 and 3.  

 

 

2.5   Observations  

 

We believe that group orchestras work best over a Local Area Network (LAN) 

connection – given its naturally low latency. Over the Internet, latency is still an issue 



Ashvala Vinay and Dr. Richard Boulanger. Building Web Based Interactive Systems  

 31 

I
C
S
C
 2
0
1
5
 

and can become an issue when trying to achieve musical results that involve timing 

events. Clearly, orchestras that have percussion parts and loops that "groove" in time 

tend to work better on a LAN.  

 

This system can support true live-coding performances. You can implement channel 

message handlers in your Socket.io code to better handle and parse your chnset string 

and input values. This can be used to affect timbers and the output level of your sounds 

in real-time. 

 

Musically, we found that separating orchestras by instrument and having a laptop 

orchestra environment tended to make for a more musical result and a better sense of 

ensemble playing. This is because everyone is in control of their own sounds and can 

more tastefully play and mix their instruments with the music and better adapt to the 

context and flow. And once you implement chnset message handlers to mix volume 

levels correctly, hosting an environment where everyone hears everyone else works out 

quite well. 

 

Devices that are otherwise incapable of running Csound PNaCl can still participate in a 

group setting, albeit minimally. They can affect sounds via channel messages and send 

note events. However, as it stands right now, they are incapable of making any Csound 

on their own. 

 

It is our hope that this paper gives you some insight and understanding into the many 

exciting new collaborative composition and group performance possibilities with 

sockets; and we hope that you will follow this research as we publish an extensive 

chapter and set of online tutorials in the upcoming MIT Press Book, tentatively titled:  

Csound Applied – Csound Inside. 

 

 

Conclusions 

 
Through the course of building this system, we have begun to identify and explore new 

ways of interactively and collaboratively designing, building and performing with 

Csound. In our daily lives, the Internet is an important tool, and in so many ways, we 

rely upon, and are literally caught up in, this web. It’s fair to say that being able to 

remotely collaborate with fellow sound designers, performers, composers and coders in 

real-time over the Internet will allow us to explore music in new, and quite possibly 

richer and deeper ways. Thus far, we have designed interfaces for iOS, Android, and 

command-line Python utilities – all to facilitate how we perform with and use Csound. 

During our presentation, and in the keynote address, we will demonstrate these 

interfaces and the potential and power of this system as it stands today.  

 


